To obtain the fundamental solution of soil has become the key problem for the semi-analytical and semi-numerical (SASN) method in analyzing plate on layered soil. By applying axisymmetric finite element method (FEM),a...To obtain the fundamental solution of soil has become the key problem for the semi-analytical and semi-numerical (SASN) method in analyzing plate on layered soil. By applying axisymmetric finite element method (FEM),an expression relating the surface settlement and the reaction of the layered soil can be obtained. Such a reaction can be treated as load acting on the applied external load. Having the plate modelled by four-node elements,the governing equation of the plate can be formed and solved. In this case, the fundamental solution can be introduced into the global soil stiffness matrix and five-node or nine-node element soil stiffness matrix.The existing commercial FEM software can be used to solve the fundamental solution of soil, which can bypass the complicated formula derivation and boasts high computational efficiency as well.展开更多
Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately t...Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.展开更多
文摘To obtain the fundamental solution of soil has become the key problem for the semi-analytical and semi-numerical (SASN) method in analyzing plate on layered soil. By applying axisymmetric finite element method (FEM),an expression relating the surface settlement and the reaction of the layered soil can be obtained. Such a reaction can be treated as load acting on the applied external load. Having the plate modelled by four-node elements,the governing equation of the plate can be formed and solved. In this case, the fundamental solution can be introduced into the global soil stiffness matrix and five-node or nine-node element soil stiffness matrix.The existing commercial FEM software can be used to solve the fundamental solution of soil, which can bypass the complicated formula derivation and boasts high computational efficiency as well.
基金Project supported by the National Natural Science Foundation of China (Nos. 50335030, 50505033 and 50575171)National Basic Research Program of China (No. 2005CB724106)Doctoral Program Foundation of University of China(No. 20040698026)
文摘Based on B-spline wavelet on the interval (BSWI), two classes of truncated conical shell elements were constructed to solve axisymmetric problems, i.e. BSWI thin truncated conical shell element and BSWI moderately thick truncated conical shell element with independent slopedeformation interpolation. In the construction of wavelet-based element, instead of traditional polynomial interpolation, the scaling functions of BSWI were employed to form the shape functions through the constructed elemental transformation matrix, and then construct BSWI element via the variational principle. Unlike the process of direct wavelets adding in the wavelet Galerkin method, the elemental displacement field represented by the coefficients of wavelets expansion was transformed into edges and internal modes via the constructed transformation matrix. BSWI element combines the accuracy of B-spline function approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples of conical shells were studied to demonstrate the present element with higher efficiency and precision than the traditional element.