A monolithic microwave integrated circuit (MMIC) power amplifier (PA) is proposed. It adopts a new on-chip bias circuit, which not only avoids the instability of the direct current bias caused by the change in the...A monolithic microwave integrated circuit (MMIC) power amplifier (PA) is proposed. It adopts a new on-chip bias circuit, which not only avoids the instability of the direct current bias caused by the change in the power supply and temperature, but also compensates deviations caused by the increase in input power. The bias circuit is a current-mirror configuration, and the feedback circuit helps to maintain bias voltage at a constant level. The gain of the feedback circuit is improved by the addition of a non-inverting amplifier within the feedback circuit. A shunt capacitor at the base node of the active bias transistor enhances the linearity of the PA. The chip is fabricated in an InGaP/GaAs heterojunction bipolar transistor (HBT) process. Measured results exhibit a 26. 6-dBm output compression point, 33.6% power-added efficiency (PAE) and - 40.2 dBc adjacent channel power ratio (ACPR) for wide-band code division multiple access (W-CDMA) applications.展开更多
With the large-signal model extracted from the InGaP/GaAs HBT with three fingers,a three-stage,class AB power amplifier at ISM band is designed.Through the optimization of the traditional bias network,the gain compres...With the large-signal model extracted from the InGaP/GaAs HBT with three fingers,a three-stage,class AB power amplifier at ISM band is designed.Through the optimization of the traditional bias network,the gain compression at the low input power level is eliminated successfully.At 3.5V of supply voltage of the power amplifier after optimization exhibits 30dBm of maximum linear output power,43.4% of power added efficiency 109.7mA of a quite low quiescent bias current ,29.1dB of the corresponding gain,and -100dBc of the adjacent channel power rejection (ACPR) at the output power of 30dBm.展开更多
This paper presents research on a low power CMOS UWB LNA based on a cascoded common source and current-reused topology. A systematic approach for the design procedure from narrow band to UWB is developed and discussed...This paper presents research on a low power CMOS UWB LNA based on a cascoded common source and current-reused topology. A systematic approach for the design procedure from narrow band to UWB is developed and discussed in detail. The power reduction can be achieved by using body biased technique and current-reused topology. The optimum width of the major transistor device M1 is determined by the power-constraint noise optimization with inner parasitic capacitance between the gate and source terminal. The derivation of the signal amplification S21 by high frequency small signal model is displayed in the paper. The optimum design of the complete circuit was studied in a step by step analysis. The measurements results show that the proposed circuit has superior S11, gain, noise figure, and power consumption. From the measured results, S11 is lower than -12 dB, S22 is lower than -10 dB and forward gain S21 has an average value with 12 dB. The noise figure is from 4 to 5.7 dB within the whole band. The total power consumption of the proposed circuit including the output buffer is 4.6 mW with a supply voltage of 1 V. This work is implemented in a standard TSMC 0.18 μm CMOS process technology.展开更多
A novel design of high-efficiency broadband power amplifier (BPA) with the low-pass bias networkto enhance the efficiency and output power is presented in this paper. Compared with other bias networks, the proposed ...A novel design of high-efficiency broadband power amplifier (BPA) with the low-pass bias networkto enhance the efficiency and output power is presented in this paper. Compared with other bias networks, the proposed low-pass bias network shows a smaller baseband impedance, which can reduce the electrical memory effect. While it provides a larger radio frequency (RF) impedance, which can prevent the leakage of the output power from bias network. A BPA with the proposed bias network is designed using commercial GaN device Cree40025F. The designed BPA shows a fractional bandwidth of 40%, from 1.8 GHz to 2.7 GHz. The measured results exhibit 73.9 % drain efficiency (DE) value with output power of 43.5 dBm at 2.7 GHz, which appears an enhancement of 9.5% and 2.5 dBm comparing with that adopts LC bias network.展开更多
NPN-input bipolar operational amplifiers LM741 were irradiated with ^60Coγ-ray, 3 MeV protons and10 MeV protons respectively at different biases to investigating the proton radiation response of the NPN-input operati...NPN-input bipolar operational amplifiers LM741 were irradiated with ^60Coγ-ray, 3 MeV protons and10 MeV protons respectively at different biases to investigating the proton radiation response of the NPN-input operational amplifier. The comparison of protons with^60Coγ-rays showed that the proton radiation mainly induced ionization damage in LM741. Under different bias conditions, the radiation sensitivity is different; zero biased devices show more radiation sensitivity in the input biased current than forward biased devices. Supply current(±Icc)is another parameter that is sensitive to proton radiation,^60Coγ-ray, 3 MeV and 10 MeV proton irradiation would induce a different irradiation response in ±Icc, which is caused by different ionization energy deposition and displacement energy deposition of^60Coγ-ray, 3 MeV and 10 MeV proton irradiation.展开更多
A 2.4-GHz SiGe HBT power amplifier (PA) with a novel bias current controlling circuit has been realized in IBM 0.35-μm SiGe BiCMOS technology, BiCMOS5PAe. The bias circuit switches the quiescent current to make the...A 2.4-GHz SiGe HBT power amplifier (PA) with a novel bias current controlling circuit has been realized in IBM 0.35-μm SiGe BiCMOS technology, BiCMOS5PAe. The bias circuit switches the quiescent current to make the PA operate in a high or low power mode. Under a single supply voltage of +3.5 V, the two-stage mode-switchable power amplifier provides a PAE improvement up to 56.7% and 19.2% at an output power of 0 and 20 dBm, respec- tively, with a reduced quiescent current in the low power mode as compared to only operating the PA in the high power mode. The die size is only 1.32×1.37mm^2.展开更多
The performance of the power amplifier determines the detection capability of 77 GHz automotive radar, and the bias circuit is one of the most important parts of a silicon-germanium power amplifier. In this paper,we d...The performance of the power amplifier determines the detection capability of 77 GHz automotive radar, and the bias circuit is one of the most important parts of a silicon-germanium power amplifier. In this paper,we discussed and designed an on-chip bias circuit based on a silicon-germanium heterojunction bipolar transistor,which is used for the W-band silicon-germanium power amplifier. Considering the low breakdown voltage and the correlation between characteristic frequency and bias current density of the silicon-germanium heterojunction bipolar transistor, the bias circuit is designed to improve the breakdown voltage of the power amplifier and meet the W band characteristic frequency at the same time. The simulation results show that the designed bias circuit can make the amplifier operate normally from-40 to 125 ℃. In addition, the output power and smooth controllability of the power amplifier can be adjusted by controlling the bias circuit.展开更多
基金The National High Technology Research and Development Program of China(863 Program)(No.2009AA01Z260)
文摘A monolithic microwave integrated circuit (MMIC) power amplifier (PA) is proposed. It adopts a new on-chip bias circuit, which not only avoids the instability of the direct current bias caused by the change in the power supply and temperature, but also compensates deviations caused by the increase in input power. The bias circuit is a current-mirror configuration, and the feedback circuit helps to maintain bias voltage at a constant level. The gain of the feedback circuit is improved by the addition of a non-inverting amplifier within the feedback circuit. A shunt capacitor at the base node of the active bias transistor enhances the linearity of the PA. The chip is fabricated in an InGaP/GaAs heterojunction bipolar transistor (HBT) process. Measured results exhibit a 26. 6-dBm output compression point, 33.6% power-added efficiency (PAE) and - 40.2 dBc adjacent channel power ratio (ACPR) for wide-band code division multiple access (W-CDMA) applications.
文摘With the large-signal model extracted from the InGaP/GaAs HBT with three fingers,a three-stage,class AB power amplifier at ISM band is designed.Through the optimization of the traditional bias network,the gain compression at the low input power level is eliminated successfully.At 3.5V of supply voltage of the power amplifier after optimization exhibits 30dBm of maximum linear output power,43.4% of power added efficiency 109.7mA of a quite low quiescent bias current ,29.1dB of the corresponding gain,and -100dBc of the adjacent channel power rejection (ACPR) at the output power of 30dBm.
文摘This paper presents research on a low power CMOS UWB LNA based on a cascoded common source and current-reused topology. A systematic approach for the design procedure from narrow band to UWB is developed and discussed in detail. The power reduction can be achieved by using body biased technique and current-reused topology. The optimum width of the major transistor device M1 is determined by the power-constraint noise optimization with inner parasitic capacitance between the gate and source terminal. The derivation of the signal amplification S21 by high frequency small signal model is displayed in the paper. The optimum design of the complete circuit was studied in a step by step analysis. The measurements results show that the proposed circuit has superior S11, gain, noise figure, and power consumption. From the measured results, S11 is lower than -12 dB, S22 is lower than -10 dB and forward gain S21 has an average value with 12 dB. The noise figure is from 4 to 5.7 dB within the whole band. The total power consumption of the proposed circuit including the output buffer is 4.6 mW with a supply voltage of 1 V. This work is implemented in a standard TSMC 0.18 μm CMOS process technology.
基金supported by National Basic Research Program of China(973 Program)(2014CB339900)National Natural Science Foundation of China(61201025)National Natural Science Foundation of China for the Major Equipment Development(61327806)
文摘A novel design of high-efficiency broadband power amplifier (BPA) with the low-pass bias networkto enhance the efficiency and output power is presented in this paper. Compared with other bias networks, the proposed low-pass bias network shows a smaller baseband impedance, which can reduce the electrical memory effect. While it provides a larger radio frequency (RF) impedance, which can prevent the leakage of the output power from bias network. A BPA with the proposed bias network is designed using commercial GaN device Cree40025F. The designed BPA shows a fractional bandwidth of 40%, from 1.8 GHz to 2.7 GHz. The measured results exhibit 73.9 % drain efficiency (DE) value with output power of 43.5 dBm at 2.7 GHz, which appears an enhancement of 9.5% and 2.5 dBm comparing with that adopts LC bias network.
文摘NPN-input bipolar operational amplifiers LM741 were irradiated with ^60Coγ-ray, 3 MeV protons and10 MeV protons respectively at different biases to investigating the proton radiation response of the NPN-input operational amplifier. The comparison of protons with^60Coγ-rays showed that the proton radiation mainly induced ionization damage in LM741. Under different bias conditions, the radiation sensitivity is different; zero biased devices show more radiation sensitivity in the input biased current than forward biased devices. Supply current(±Icc)is another parameter that is sensitive to proton radiation,^60Coγ-ray, 3 MeV and 10 MeV proton irradiation would induce a different irradiation response in ±Icc, which is caused by different ionization energy deposition and displacement energy deposition of^60Coγ-ray, 3 MeV and 10 MeV proton irradiation.
基金supported by the City University of Hong Kong(Nos.700182,7002007)
文摘A 2.4-GHz SiGe HBT power amplifier (PA) with a novel bias current controlling circuit has been realized in IBM 0.35-μm SiGe BiCMOS technology, BiCMOS5PAe. The bias circuit switches the quiescent current to make the PA operate in a high or low power mode. Under a single supply voltage of +3.5 V, the two-stage mode-switchable power amplifier provides a PAE improvement up to 56.7% and 19.2% at an output power of 0 and 20 dBm, respec- tively, with a reduced quiescent current in the low power mode as compared to only operating the PA in the high power mode. The die size is only 1.32×1.37mm^2.
文摘The performance of the power amplifier determines the detection capability of 77 GHz automotive radar, and the bias circuit is one of the most important parts of a silicon-germanium power amplifier. In this paper,we discussed and designed an on-chip bias circuit based on a silicon-germanium heterojunction bipolar transistor,which is used for the W-band silicon-germanium power amplifier. Considering the low breakdown voltage and the correlation between characteristic frequency and bias current density of the silicon-germanium heterojunction bipolar transistor, the bias circuit is designed to improve the breakdown voltage of the power amplifier and meet the W band characteristic frequency at the same time. The simulation results show that the designed bias circuit can make the amplifier operate normally from-40 to 125 ℃. In addition, the output power and smooth controllability of the power amplifier can be adjusted by controlling the bias circuit.