BACKGROUND Analyzing the variations in serum bile acid(BA)profile can provide a certain biological basis for early warning and prevention of various diseases.There is currently no comprehensive study on the relationsh...BACKGROUND Analyzing the variations in serum bile acid(BA)profile can provide a certain biological basis for early warning and prevention of various diseases.There is currently no comprehensive study on the relationship between the serum BA profile and colonic polyps.AIM To study the serum BA profile detection results of patients with colonic polyps,and analyze the correlation between BA and colonic polyps.METHODS From January 1,2022,to June 1,2023,204 patients with colonic polyps who were diagnosed and treated at Zhongda Hospital Southeast University were chosen as the study subjects,and 135 non-polyp people who underwent physical examination were chosen as the control group.Gathering all patients'clinical information,typical biochemical indicators,and BA profile.RESULTS Compared with the control group,the serum levels of taurocholic acid,glycocholic acid,glycochenodeoxycholic acid,and taurochenodeoxycholic acid in the colonic polyp group were significantly higher than those in the control group,while the content of deoxycholic acid(DCA)was lower than that in the control group(P<0.05).When colonic polyps were analyzed as subgroups,it was shown that there was a strong correlation between changes in the BA profile and polyp diameter,location,morphology,pathological kind,etc.CONCLUSION The serum BA profile showed significant changes in patients with colonic polyps,with a significant increase in primary conjugated BA content and a decrease in secondary free bile acid DCA content.There is a certain correlation between primary free BA and pathological parameters of polyps.展开更多
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic...In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.展开更多
Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal ...Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.展开更多
Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common ...Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids,glucose,and energy.Bile acids have historically been utilized as first-line,valuable therapeutic agents for related metabolic and hepatobiliary diseases.Notably,bile acids are the major active ingredients of cow bezoar and bear bile,which are commonly used traditional Chinese medicines(TCMs)with the therapeutic effects of clearing heat,detoxification,and relieving wind and spasm.In recent years,the promising performance of bile acids against infectious diseases has attracted attention from the scientific community.This paper reviews for the first time the biological activities,possible mechanisms,production routes,and potential applications of bile acids in the treatment and prevention of infectious diseases.Compared with previous reviews,we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality.In addition,to ensure a stable supply of bile acids at affordable prices,it is necessary to clarify the biosynthesis of bile acids in vivo,which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis,biosynthesis,and chemoenzymatic synthesis.Finally,we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids.The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.展开更多
Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we re...Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphorylation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.展开更多
Background Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats.While bile acids(BAs)have been used as a lipid emulsifier in monogastric and aquatic animals,their effect ...Background Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats.While bile acids(BAs)have been used as a lipid emulsifier in monogastric and aquatic animals,their effect on ruminants is not well understood.This study aimed to investigate the impact of BAs supplementation on various aspects of dairy goat physiology,including milk composition,rumen fermentation,gut microbiota,and BA metabolism.Results We randomly divided eighteen healthy primiparity lactating dairy goats(days in milk=100±6 d)into two groups and supplemented them with 0 or 4 g/d of BAs undergoing 5 weeks of feeding on a starch-rich diet.The results showed that BAs supplementation positively influenced milk yield and improved the quality of fatty acids in goat milk.BAs supplementation led to a reduction in saturated fatty acids(C16:0)and an increase in monounsaturated fatty acids(cis-9 C18:1),resulting in a healthier milk fatty acid profile.We observed a significant increase in plasma total bile acid concentration while the proportion of rumen short-chain fatty acids was not affected.Furthermore,BAs supplementation induced significant changes in the composition of the gut microbiota,favoring the enrichment of specific bacterial groups and altering the balance of microbial populations.Correlation analysis revealed associations between specific bacterial groups(Bacillus and Christensenellaceae R-7 group)and BA types,suggesting a role for the gut microbiota in BA metabolism.Functional prediction analysis revealed notable changes in pathways associated with lipid metabolism,suggesting that BAs supplementation has the potential to modulate lipid-related processes.Conclusion These findings highlight the potential benefits of BAs supplementation in enhancing milk production,improving milk quality,and influencing metabolic pathways in dairy goats.Further research is warranted to elucidate the underlying mechanisms and explore the broader implications of these findings.展开更多
Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides dista...Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.展开更多
BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals...BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.展开更多
Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previo...Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.展开更多
Non-alcoholic fatty liver disease(NAFLD)is the main cause of chronic liver disease worldwide.Bupleurum is widely used in the treatment of non-alcoholic fatty liver,and saikosaponin D(SSD)is one of the main active comp...Non-alcoholic fatty liver disease(NAFLD)is the main cause of chronic liver disease worldwide.Bupleurum is widely used in the treatment of non-alcoholic fatty liver,and saikosaponin D(SSD)is one of the main active components of Bupleurum.The purpose of this study was to investigate the efficacy of SSD in the treatment of NAFLD and to explore the mechanism of SSD in the improvement of NAFLD based on“gut-liver axis”.Our results showed that SSD dose-dependently alleviated high fat diet-induced weight gain in mice,improved insulin sensitivity,and also reduced liver lipid accumulation and injury-related biomarkers aspartate aminotransferase(AST)and alanine aminotransferase(ALT).Further exploration found that SSD inhibited the mRNA expression levels of farnesoid X receptor(Fxr),small heterodimer partner(Shp),recombinant fibroblast growth factor 15(Fgf15)and apical sodium dependent bile acid transporter(Asbt)in the intestine,suggesting that SSD improved liver lipid metabolism by inhibiting intestinal FXR signaling.SSD can significantly reduce the gut microbiota associated with bile salt hydrolase(BSH)expression,such as Clostridium.Decreased BSH expression reduced the ratio of unconjugated to conjugated bile acids,thereby inhibiting the intestinal FXR.These data demonstrated that SSD ameliorated NAFLD potentially through the gut microbiota-bile acidintestinal FXR pathway and suggested that SSD is a promising therapeutic agent for the treatment of NAFLD.展开更多
This study aimed to evaluate the effects of Bifi dobacterium breve CCFM683 on psoriasis and to investigate the underlying mechanisms.B.breve CCFM683 significantly ameliorated psoriasis in mice as well as elevated the ...This study aimed to evaluate the effects of Bifi dobacterium breve CCFM683 on psoriasis and to investigate the underlying mechanisms.B.breve CCFM683 significantly ameliorated psoriasis in mice as well as elevated the deoxycholic acid(DCA)and lithocholic acid(LCA)in the colon compared with those of the imiquimod(IMQ)-treated mice.Meanwhile,B.breve CCFM683 increased the relative abundance of DCA-producing Lachnoclostridium and diminished the harmful Desulfovibrio and Prevotellaceae UCG001.Additionally,the farnesoid X receptor(FXR)in the skin was activated and the expression of the Toll-like receptor 4(TLR4)/nuclear factor kappa-B(NF-κB)pathway was inhibited,and the downstream interleukin(IL)-17 and tumor necrosis factor(TNF)-αwere downregulated whereas IL-10 was up-regulated.Moreover,the subsequent hyperproliferation of keratinocytes and the dysfunction of the epidermal barrier were improved.In conclusion,CCFM683 administration ameliorated IMQ-induced psoriasis via modulating gut microbiota,promoting the DCA production,regulating the FXR-TLR4/NF-κB pathway,diminishing proinflammatory cytokines,and regulating keratinocytes and epidermal barrier.These findings may be conducive to elucidating the mechanism for probiotics to ameliorate psoriasis and to promote its clinical trials in skin disease.展开更多
BACKGROUND The understanding of bile acid(BA)and unsaturated fatty acid(UFA)profiles,as well as their dysregulation,remains elusive in individuals with type 2 diabetes mellitus(T2DM)coexisting with non-alcoholic fatty...BACKGROUND The understanding of bile acid(BA)and unsaturated fatty acid(UFA)profiles,as well as their dysregulation,remains elusive in individuals with type 2 diabetes mellitus(T2DM)coexisting with non-alcoholic fatty liver disease(NAFLD).Investigating these metabolites could offer valuable insights into the pathophy-siology of NAFLD in T2DM.AIM To identify potential metabolite biomarkers capable of distinguishing between NAFLD and T2DM.METHODS A training model was developed involving 399 participants,comprising 113 healthy controls(HCs),134 individuals with T2DM without NAFLD,and 152 individuals with T2DM and NAFLD.External validation encompassed 172 participants.NAFLD patients were divided based on liver fibrosis scores.The analytical approach employed univariate testing,orthogonal partial least squares-discriminant analysis,logistic regression,receiver operating characteristic curve analysis,and decision curve analysis to pinpoint and assess the diagnostic value of serum biomarkers.RESULTS Compared to HCs,both T2DM and NAFLD groups exhibited diminished levels of specific BAs.In UFAs,particular acids exhibited a positive correlation with NAFLD risk in T2DM,while theω-6:ω-3 UFA ratio demonstrated a negative correlation.Levels ofα-linolenic acid andγ-linolenic acid were linked to significant liver fibrosis in NAFLD.The validation cohort substantiated the predictive efficacy of these biomarkers for assessing NAFLD risk in T2DM patients.CONCLUSION This study underscores the connection between altered BA and UFA profiles and the presence of NAFLD in individuals with T2DM,proposing their potential as biomarkers in the pathogenesis of NAFLD.展开更多
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction b...Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction between the liver and the gut microbiota,bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption.With the development of genomics and metabolomics,more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors.Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora,epithelial barrier function,and intestinal immunology.Inflammatory bowel disease can be treated in new ways by using these potential molecules.This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications.In addition,we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.展开更多
The intensive crosstalk between the liver and the intestine performs many essential functions.This crosstalk is important for natural immune surveillance,adaptive immune response regulation and nutrient metabolism and...The intensive crosstalk between the liver and the intestine performs many essential functions.This crosstalk is important for natural immune surveillance,adaptive immune response regulation and nutrient metabolism and elimination of toxic bacterial metabolites.The interaction between the gut microbiome and bile acids is bidirectional.The gut microbiome regulates the synthesis of bile acids and their biological signaling activity and circulation via enzymes.Similarly,bile acids also shape the composition of the gut microbiome by modulating the host’s natural antibacterial defense and the intestinal immune system.The interaction between bile acids and the gut microbiome has been implicated in the pathophysiology of many intestinal and extra intestinal diseases,especially liver diseases.As essential mediators of the gut-liver crosstalk,bile acids regulate specific host metabolic pathways and modulate the inflammatory responses through farnesoid X-activated receptor and G protein-coupled bile acid receptor 1.Several clinical trials have demonstrated the signaling effects of bile acids in the context of liver diseases.We hypothesize the existence of a gut microbiome-bile acids-liver triangle and explore the potential therapeutic strategies for liver diseases targeting the triangle.展开更多
The biliary tract has been considered for several decades a passive system just leading the hepatic bile to the intestine.Nowadays several researches demonstrated an important role of biliary epithelia(i.e.cholangiocy...The biliary tract has been considered for several decades a passive system just leading the hepatic bile to the intestine.Nowadays several researches demonstrated an important role of biliary epithelia(i.e.cholangiocytes)in bile formation.The study of biliary processes therefore maintains a continuous interest since the possible important implications regarding chronic cholestatic human diseases,such as primary biliary cholangitis or primary sclerosing cholangitis.Bile acids(BAs),produced by the liver,are the most represented organic molecules in bile.The physiologic importance of BAs was initially attributed to their behavior as natural detergents but several studies now demonstrate they are also important signaling molecules.In this minireview the effect of BAs on the biliary epithelia are reported focusing in particular on secondary(deriving by bacterial manipulation of primary molecules)ones.This class of BAs is demonstrated to have relevant biological effects,ranging from toxic to therapeutic ones.In this family ursodeoxycholic and lithocholic acid present the most interesting features.The molecular mechanisms linking ursodeoxycholic acid to its beneficial effects on the biliary tract are discussed in details as well as data on the processes leading to lithocholic damage.These findings suggest that expansion of research in the field of BAs/cholangiocytes interaction may increase our understanding of cholestatic diseases and should be helpful in designing more effective therapies for biliary disorders.展开更多
AIM: To investigate the bile acid pool size after cholecystectomy whether or not correlated to the gastrointestinal migrating myoeiectric complex (MMC) in guinea pigs. METHODS: Gallbladder motilities were assessed bef...AIM: To investigate the bile acid pool size after cholecystectomy whether or not correlated to the gastrointestinal migrating myoeiectric complex (MMC) in guinea pigs. METHODS: Gallbladder motilities were assessed before cholecystectomy. Furthermore, we continuously monitored interdigestive gastrointestinal motilities using bipolar electrodes in conscious guinea pigs before and after surgery at 4 wk in standard diet group and high cholesterol diet (cholesterol gallstone) group. Total bile acid pool sizes were measured by isotope dilution method at meantime. RESULTS: After cholecystectomy, there were parallel falls in duration of phase Ⅰ, Ⅱ, Ⅲ and MMC cycle duration but increase in amplitude in the guinea pigs with normal gallbladder function, and in the guinea pigs with cholesterol stones. However, There were not significantly differences. On the other hand, the bile acid pool was definitely small in the GS guinea pigs compared to normal guinea pigs and became slightly smaller after cholecystectomy. Similarly, bile acid in gallbladder bile, fecal bile acid was slightly increased in GS guinea pigs after cholecystectomy, to the same degree as normal. These differences, however, were not significant. CONCLUSION: It is concluded that in the guinea pigs with normal gallbladder function, and in the guinea pigs with cholesterol stones: (1) Cholecystectomy produce a similar but less marked trend in bile acid pool; and (2) MMC are linked to enterohepatic circulation of bile acids, rather than surgery, which is consistent with changes of the bile acid pool size. As a result, gastrointestinal dyskinesia is not involved in occurrence of postchole cystectomy syndrome.展开更多
BACKGROUND Hepatobiliary diseases result in the accumulation of toxic bile acids(BA)in the liver,blood,and other tissues which may contribute to an unfavorable prognosis.AIM To discover and validate diagnostic biomark...BACKGROUND Hepatobiliary diseases result in the accumulation of toxic bile acids(BA)in the liver,blood,and other tissues which may contribute to an unfavorable prognosis.AIM To discover and validate diagnostic biomarkers of cholestatic liver diseases based on the urinary BA profile.METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and compared the urinary BA profile between 300 patients with hepatobiliary diseases vs 103 healthy controls by statistical analysis.The BA profile was characterized using BA indices,which quantifies the composition,metabolism,hydrophilicity,and toxicity of the BA profile.BA indices have much lower interand intra-individual variability compared to absolute concentrations of BA.In addition,BA indices demonstrate high area under the receiver operating characteristic curves,and changes of BA indices are associated with the risk of having a liver disease,which demonstrates their use as diagnostic biomarkers for cholestatic liver diseases.RESULTS Total and individual BA concentrations were higher in all patients.The percentage of secondary BA(lithocholic acid and deoxycholic acid)was significantly lower,while the percentage of primary BA(chenodeoxycholic acid,cholic acid,and hyocholic acid)was markedly higher in patients compared to controls.In addition,the percentage of taurine-amidation was higher in patients than controls.The increase in the non-12α-OH BA was more profound than 12α-OH BA(cholic acid and deoxycholic acid)causing a decrease in the 12α-OH/non-12α-OH ratio in patients.This trend was stronger in patients with more advanced liver diseases as reflected by the model for end-stage liver disease score and the presence of hepatic decompensation.The percentage of sulfation was also higher in patients with more severe forms of liver diseases.CONCLUSION BA indices have much lower inter-and intra-individual variability compared to absolute BA concentrations and changes of BA indices are associated with the risk of developing liver diseases.展开更多
Bile acids are implicated as etiologic agents in cancer of the gastrointestinal (GI) tract, including cancer of the esophagus, stomach, small intestine, liver, biliary tract, pancreas and colon/rectum. Deleterious eff...Bile acids are implicated as etiologic agents in cancer of the gastrointestinal (GI) tract, including cancer of the esophagus, stomach, small intestine, liver, biliary tract, pancreas and colon/rectum. Deleterious effects of bile acid exposure, likely related to carcinogenesis, include: induction of reactive oxygen and reactive nitrogen species; induction of DNA damage; stimulation of mutation; induction of apoptosis in the short term, and selection for apoptosis resistance in the long term. These deleterious effects have, so far, been reported most consistently in relation to esophageal and colorectal cancer, but also to some extent in relation to cancer of other organs. In addition, evidence is reviewed for an association of increased bile acid exposure with cancer risk in human populations, in specific human genetic conditions, and in animal experiments. A model for the role of bile acids in GI carcinogenesis is presented from a Darwinian perspective that offers an explanation for how the observed effects of bile acids on cells contribute to cancer development.展开更多
BACKGROUND: The well-known functions of bile acids(BAs) are the emulsification and absorption of lipophilic xenobiotics. However, the emerging evidences in the past decade showed that BAs act as signaling molecules...BACKGROUND: The well-known functions of bile acids(BAs) are the emulsification and absorption of lipophilic xenobiotics. However, the emerging evidences in the past decade showed that BAs act as signaling molecules that not only autoregulate their own metabolism and enterohepatic recirculation, but also as important regulators of integrative metabolism by activating nuclear and membrane-bound G protein-coupled receptors. The present review was to get insight into the role of maintenance of BA homeostasis and BA signaling pathways in development and management of hepatobiliary and intestinal diseases.DATA SOURCES: Detailed and comprehensive search of PubM ed and Scopus databases was carried out for original and review articles.RESULTS: Disturbances in BA homeostasis contribute to the development of several hepatobiliary and intestinal disorders, such as non-alcoholic fatty liver disease, liver cirrhosis, cholesterol gallstone disease, intestinal diseases and both hepatocellular and colorectal carcinoma.CONCLUSION: Further efforts made in order to advance the understanding of sophisticated BA signaling network may be promising in developing novel therapeutic strategies related not only to hepatobiliary and gastrointestinal but also systemic diseases.展开更多
AIM: To investigate whether high-fat-feeding is associ- ated with increased intestinal permeability via altera- tions in bile acid metabolism.METHODS: Male C57BI/6J mice were fed on a high-fat (n = 26) or low-fat ...AIM: To investigate whether high-fat-feeding is associ- ated with increased intestinal permeability via altera- tions in bile acid metabolism.METHODS: Male C57BI/6J mice were fed on a high-fat (n = 26) or low-fat diet (n = 24) for 15 wk. Intestinal permeability was measured from duodenum, jejunum, ileum and colon in an Ussing chamber system using 4 kDa FITC-labeled dextran as an indicator. Fecal bile ac- ids were analyzed with gas chromatography. Segments of jejunum and colon were analyzed for the expression of farnesoid X receptor (FXR) and tumor necrosis factor展开更多
文摘BACKGROUND Analyzing the variations in serum bile acid(BA)profile can provide a certain biological basis for early warning and prevention of various diseases.There is currently no comprehensive study on the relationship between the serum BA profile and colonic polyps.AIM To study the serum BA profile detection results of patients with colonic polyps,and analyze the correlation between BA and colonic polyps.METHODS From January 1,2022,to June 1,2023,204 patients with colonic polyps who were diagnosed and treated at Zhongda Hospital Southeast University were chosen as the study subjects,and 135 non-polyp people who underwent physical examination were chosen as the control group.Gathering all patients'clinical information,typical biochemical indicators,and BA profile.RESULTS Compared with the control group,the serum levels of taurocholic acid,glycocholic acid,glycochenodeoxycholic acid,and taurochenodeoxycholic acid in the colonic polyp group were significantly higher than those in the control group,while the content of deoxycholic acid(DCA)was lower than that in the control group(P<0.05).When colonic polyps were analyzed as subgroups,it was shown that there was a strong correlation between changes in the BA profile and polyp diameter,location,morphology,pathological kind,etc.CONCLUSION The serum BA profile showed significant changes in patients with colonic polyps,with a significant increase in primary conjugated BA content and a decrease in secondary free bile acid DCA content.There is a certain correlation between primary free BA and pathological parameters of polyps.
基金The Guangdong Basic and Applied Basic Research Foundation(2022A1515010730)National Natural Science Foundation of China(32001647)+2 种基金National Natural Science Foundation of China(31972022)Financial and moral assistance supported by the Guangdong Basic and Applied Basic Research Foundation(2019A1515011996)111 Project(B17018)。
文摘In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods.
基金supported by Fujian Provincial Natural Science(2020J01122587)National Natural Science Foundation of China(82103355,82102255,and 82222901)+1 种基金RGC Theme-based Research Scheme(T12-703/19-R)Research grants Council-General Research Fund(14117422 and 14117123)。
文摘Hepatocellular carcinoma(HCC)is a prevalent and aggressive liver malignancy.The interplay between bile acids(BAs)and the gut microbiota has emerged as a critical factor in HCC development and progression.Under normal conditions,BA metabolism is tightly regulated through a bidirectional interplay between gut microorganisms and BAs.The gut microbiota plays a critical role in BA metabolism,and BAs are endogenous signaling molecules that help maintain liver and intestinal homeostasis.Of note,dysbiotic changes in the gut microbiota during pathogenesis and cancer development can disrupt BA homeostasis,thereby leading to liver inflammation and fibrosis,and ultimately contributing to HCC development.Therefore,understanding the intricate interplay between BAs and the gut microbiota is crucial for elucidating the mechanisms underlying hepatocarcinogenesis.In this review,we comprehensively explore the roles and functions of BA metabolism,with a focus on the interactions between BAs and gut microorganisms in HCC.Additionally,therapeutic strategies targeting BA metabolism and the gut microbiota are discussed,including the use of BA agonists/antagonists,probiotic/prebiotic and dietary interventions,fecal microbiota transplantation,and engineered bacteria.In summary,understanding the complex BA-microbiota crosstalk can provide valuable insights into HCC development and facilitate the development of innovative therapeutic approaches for liver malignancy.
基金funded by the China Academy of Chinese Medical Sciences(CACMS)Innovation Fund(CI2021A00601)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ16-YQ-037 and JJPY2022022)the Scientific and Technological Innovation Project of the China Academy of Chinese Medical Sciences(CI2021B017-09).
文摘Infectious diseases are a global public health problem,with emerging and re-emerging infectious diseases on the rise worldwide.Therefore,their prevention and treatment are still major challenges.Bile acids are common metabolites in both hosts and microorganisms that play a significant role in controlling the metabolism of lipids,glucose,and energy.Bile acids have historically been utilized as first-line,valuable therapeutic agents for related metabolic and hepatobiliary diseases.Notably,bile acids are the major active ingredients of cow bezoar and bear bile,which are commonly used traditional Chinese medicines(TCMs)with the therapeutic effects of clearing heat,detoxification,and relieving wind and spasm.In recent years,the promising performance of bile acids against infectious diseases has attracted attention from the scientific community.This paper reviews for the first time the biological activities,possible mechanisms,production routes,and potential applications of bile acids in the treatment and prevention of infectious diseases.Compared with previous reviews,we comprehensively summarize existing studies on the use of bile acids against infectious diseases caused by pathogenic microorganisms that are leading causes of global morbidity and mortality.In addition,to ensure a stable supply of bile acids at affordable prices,it is necessary to clarify the biosynthesis of bile acids in vivo,which will assist scientists in elucidating the accumulation of bile acids and discovering how to engineer various bile acids by means of chemosynthesis,biosynthesis,and chemoenzymatic synthesis.Finally,we explore the current challenges in the field and recommend a development strategy for bile-acid-based drugs and the sustainable production of bile acids.The presented studies suggest that bile acids are potential novel therapeutic agents for managing infectious diseases and can be artificially synthesized in a sustainable way.
基金supported by research funds from Zhangzhou Pien Tze Huang Pharmaceutical Co.Ltd(Grant Nos.:437b8f31,d6092dae,YHT-19064 to Chundong Yu)the National Natural Science Foundation of China(Grant Nos.:81970485,82173086 to Chundong Yu)the Natural Science Foundation of Fujian Province(Grant No.:2023J01249 to Shicong Wang).
文摘Pien Tze Huang(PZH),a class-1 nationally protected traditional Chinese medicine(TCM),has been used to treat liver diseases such as hepatitis;however,the effect of PZH on the progression of sepsis is unknown.Here,we reported that PZH attenuated lipopolysaccharide(LPS)-induced sepsis in mice and reduced LPS-induced production of proinflammatory cytokines in macrophages by inhibiting the activation of mitogen-activated protein kinase(MAPK)and nuclear factor-kappa B(NF-κB)signalling.Mechanistically,PZH stimulated signal transducer and activator of transcription 3(STAT3)phosphorylation to induce the expression of A20,which could inhibit the activation of NF-κB and MAPK signalling.Knockdown of the bile acid(BA)receptor G protein-coupled bile acid receptor 1(TGR5)in macrophages abolished the effects of PZH on STAT3 phosphorylation and A20 induction,as well as the LPS-induced inflammatory response,suggesting that BAs in PZH may mediate its anti-inflammatory effects by activating TGR5.Consistently,deprivation of BAs in PZH by cholestyramine resin reduced the effects of PZH on the expression of phosphorylated-STAT3 and A20,the activation of NF-κB and MAPK signalling,and the production of proinflammatory cytokines,whereas the addition of BAs to cholestyramine resin-treated PZH partially restored the inhibitory effects on the production of proinflammatory cytokines.Overall,our study identifies BAs as the effective components in PZH that activate TGR5-STAT3-A20 signalling to ameliorate LPS-induced sepsis.
基金funded by grants from the National Natural Science Foundation of China(grant number 32072761,32102570)Shaanxi Livestock and Poultry Breeding Double-chain Fusion Key Project(grant number 2022GDTSLD-46-0501)the fellowship of China Postdoctoral Science Foundation(grant number 2021M702691).
文摘Background Diets rich in starch have been shown to increase a risk of reducing milk fat content in dairy goats.While bile acids(BAs)have been used as a lipid emulsifier in monogastric and aquatic animals,their effect on ruminants is not well understood.This study aimed to investigate the impact of BAs supplementation on various aspects of dairy goat physiology,including milk composition,rumen fermentation,gut microbiota,and BA metabolism.Results We randomly divided eighteen healthy primiparity lactating dairy goats(days in milk=100±6 d)into two groups and supplemented them with 0 or 4 g/d of BAs undergoing 5 weeks of feeding on a starch-rich diet.The results showed that BAs supplementation positively influenced milk yield and improved the quality of fatty acids in goat milk.BAs supplementation led to a reduction in saturated fatty acids(C16:0)and an increase in monounsaturated fatty acids(cis-9 C18:1),resulting in a healthier milk fatty acid profile.We observed a significant increase in plasma total bile acid concentration while the proportion of rumen short-chain fatty acids was not affected.Furthermore,BAs supplementation induced significant changes in the composition of the gut microbiota,favoring the enrichment of specific bacterial groups and altering the balance of microbial populations.Correlation analysis revealed associations between specific bacterial groups(Bacillus and Christensenellaceae R-7 group)and BA types,suggesting a role for the gut microbiota in BA metabolism.Functional prediction analysis revealed notable changes in pathways associated with lipid metabolism,suggesting that BAs supplementation has the potential to modulate lipid-related processes.Conclusion These findings highlight the potential benefits of BAs supplementation in enhancing milk production,improving milk quality,and influencing metabolic pathways in dairy goats.Further research is warranted to elucidate the underlying mechanisms and explore the broader implications of these findings.
基金supported by the National Natural Science Foundation of China(32272331)。
文摘Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics.
基金Supported by the Major Basic Research Project of Natural Science Foundation of Shandong Province,No.ZR2020ZD15.
文摘BACKGROUND Gastric cancer(GC)is associated with high mortality rates.Bile acids(BAs)reflux is a well-known risk factor for GC,but the specific mechanism remains unclear.During GC development in both humans and animals,BAs serve as signaling molecules that induce metabolic reprogramming.This confers additional cancer phenotypes,including ferroptosis sensitivity.Ferroptosis is a novel mode of cell death characterized by lipid peroxidation that contributes universally to malignant progression.However,it is not fully defined if BAs can influence GC progression by modulating ferroptosis.AIM To reveal the mechanism of BAs regulation in ferroptosis of GC cells.METHODS In this study,we treated GC cells with various stimuli and evaluated the effect of BAs on the sensitivity to ferroptosis.We used gain and loss of function assays to examine the impacts of farnesoid X receptor(FXR)and BTB and CNC homology 1(BACH1)overexpression and knockdown to obtain further insights into the molecular mechanism involved.RESULTS Our data suggested that BAs could reverse erastin-induced ferroptosis in GC cells.This effect correlated with increased glutathione(GSH)concentrations,a reduced GSH to oxidized GSH ratio,and higher GSH peroxidase 4(GPX4)expression levels.Subsequently,we confirmed that BAs exerted these effects by activating FXR,which markedly increased the expression of GSH synthetase and GPX4.Notably,BACH1 was detected as an essential intermediate molecule in the promotion of GSH synthesis by BAs and FXR.Finally,our results suggested that FXR could significantly promote GC cell proliferation,which may be closely related to its anti-ferroptosis effect.CONCLUSION This study revealed for the first time that BAs could inhibit ferroptosis sensitivity through the FXR-BACH1-GSHGPX4 axis in GC cells.This work provided new insights into the mechanism associated with BA-mediated promotion of GC and may help identify potential therapeutic targets for GC patients with BAs reflux.
基金financially supported by the National Natural Science Foundation of China(Grant No.31972580 and U21A20252)the China Agriculture Research System(CARS-35)+1 种基金the Science Fund for Distinguished Young Scholars of Heilongjiang Province(JQ2022C002)the Support Project of Young Leading Talents of Northeast Agricultural University(NEAU2023QNLJ-017)。
文摘Background Infection with pathogenic bacteria during nonantibiotic breeding is one of the main causes of animal intestinal diseases.Oleanolic acid(OA)is a pentacyclic triterpene that is ubiquitous in plants.Our previous work demonstrated the protective effect of OA on intestinal health,but the underlying molecular mechanisms remain unclear.This study investigated whether dietary supplementation with OA can prevent diarrhea and intestinal immune dysregulation caused by enterotoxigenic Escherichia coli(ETEC)in piglets.The key molecular role of bile acid receptor signaling in this process has also been explored.Results Our results demonstrated that OA supplementation alleviated the disturbance of bile acid metabolism in ETEC-infected piglets(P<0.05).OA supplementation stabilized the composition of the bile acid pool in piglets by regulating the enterohepatic circulation of bile acids and significantly increased the contents of UDCA and CDCA in the ileum and cecum(P<0.05).This may also explain why OA can maintain the stability of the intestinal microbiota structure in ETEC-challenged piglets.In addition,as a natural ligand of bile acid receptors,OA can reduce the severity of intestinal inflammation and enhance the strength of intestinal epithelial cell antimicrobial programs through the bile acid receptors TGR5 and FXR(P<0.05).Specifically,OA inhibited NF-κB-mediated intestinal inflammation by directly activating TGR5 and its downstream c AMP-PKA-CREB signaling pathway(P<0.05).Furthermore,OA enhanced CDCA-mediated MEK-ERK signaling in intestinal epithelial cells by upregulating the expression of FXR(P<0.05),thereby upregulating the expression of endogenous defense molecules in intestinal epithelial cells.Conclusions In conclusion,our findings suggest that OA-mediated regulation of bile acid metabolism plays an important role in the innate immune response,which provides a new diet-based intervention for intestinal diseases caused by pathogenic bacterial infections in piglets.
基金supported by National Natural Science Foundation of China (82222071, 82273990, 82104253)the opening project of State Key Laboratory of Natural Medicines (SKLNMKF202208)
文摘Non-alcoholic fatty liver disease(NAFLD)is the main cause of chronic liver disease worldwide.Bupleurum is widely used in the treatment of non-alcoholic fatty liver,and saikosaponin D(SSD)is one of the main active components of Bupleurum.The purpose of this study was to investigate the efficacy of SSD in the treatment of NAFLD and to explore the mechanism of SSD in the improvement of NAFLD based on“gut-liver axis”.Our results showed that SSD dose-dependently alleviated high fat diet-induced weight gain in mice,improved insulin sensitivity,and also reduced liver lipid accumulation and injury-related biomarkers aspartate aminotransferase(AST)and alanine aminotransferase(ALT).Further exploration found that SSD inhibited the mRNA expression levels of farnesoid X receptor(Fxr),small heterodimer partner(Shp),recombinant fibroblast growth factor 15(Fgf15)and apical sodium dependent bile acid transporter(Asbt)in the intestine,suggesting that SSD improved liver lipid metabolism by inhibiting intestinal FXR signaling.SSD can significantly reduce the gut microbiota associated with bile salt hydrolase(BSH)expression,such as Clostridium.Decreased BSH expression reduced the ratio of unconjugated to conjugated bile acids,thereby inhibiting the intestinal FXR.These data demonstrated that SSD ameliorated NAFLD potentially through the gut microbiota-bile acidintestinal FXR pathway and suggested that SSD is a promising therapeutic agent for the treatment of NAFLD.
基金supported by the National Natural Science Foundation of China(32072227,32021005)111 Project(BP0719028)the Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province.
文摘This study aimed to evaluate the effects of Bifi dobacterium breve CCFM683 on psoriasis and to investigate the underlying mechanisms.B.breve CCFM683 significantly ameliorated psoriasis in mice as well as elevated the deoxycholic acid(DCA)and lithocholic acid(LCA)in the colon compared with those of the imiquimod(IMQ)-treated mice.Meanwhile,B.breve CCFM683 increased the relative abundance of DCA-producing Lachnoclostridium and diminished the harmful Desulfovibrio and Prevotellaceae UCG001.Additionally,the farnesoid X receptor(FXR)in the skin was activated and the expression of the Toll-like receptor 4(TLR4)/nuclear factor kappa-B(NF-κB)pathway was inhibited,and the downstream interleukin(IL)-17 and tumor necrosis factor(TNF)-αwere downregulated whereas IL-10 was up-regulated.Moreover,the subsequent hyperproliferation of keratinocytes and the dysfunction of the epidermal barrier were improved.In conclusion,CCFM683 administration ameliorated IMQ-induced psoriasis via modulating gut microbiota,promoting the DCA production,regulating the FXR-TLR4/NF-κB pathway,diminishing proinflammatory cytokines,and regulating keratinocytes and epidermal barrier.These findings may be conducive to elucidating the mechanism for probiotics to ameliorate psoriasis and to promote its clinical trials in skin disease.
基金Supported by the Scientific Research Projects of Jiangsu Provincial Health and Health Commission,No.ZDB2020034 and No.M2021056.
文摘BACKGROUND The understanding of bile acid(BA)and unsaturated fatty acid(UFA)profiles,as well as their dysregulation,remains elusive in individuals with type 2 diabetes mellitus(T2DM)coexisting with non-alcoholic fatty liver disease(NAFLD).Investigating these metabolites could offer valuable insights into the pathophy-siology of NAFLD in T2DM.AIM To identify potential metabolite biomarkers capable of distinguishing between NAFLD and T2DM.METHODS A training model was developed involving 399 participants,comprising 113 healthy controls(HCs),134 individuals with T2DM without NAFLD,and 152 individuals with T2DM and NAFLD.External validation encompassed 172 participants.NAFLD patients were divided based on liver fibrosis scores.The analytical approach employed univariate testing,orthogonal partial least squares-discriminant analysis,logistic regression,receiver operating characteristic curve analysis,and decision curve analysis to pinpoint and assess the diagnostic value of serum biomarkers.RESULTS Compared to HCs,both T2DM and NAFLD groups exhibited diminished levels of specific BAs.In UFAs,particular acids exhibited a positive correlation with NAFLD risk in T2DM,while theω-6:ω-3 UFA ratio demonstrated a negative correlation.Levels ofα-linolenic acid andγ-linolenic acid were linked to significant liver fibrosis in NAFLD.The validation cohort substantiated the predictive efficacy of these biomarkers for assessing NAFLD risk in T2DM patients.CONCLUSION This study underscores the connection between altered BA and UFA profiles and the presence of NAFLD in individuals with T2DM,proposing their potential as biomarkers in the pathogenesis of NAFLD.
基金National Natural Science Foundation of China,No.81900466and Hunan Provincial Natural Science Foundation of China,No.2020JJ5307.
文摘Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction between the liver and the gut microbiota,bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption.With the development of genomics and metabolomics,more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors.Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora,epithelial barrier function,and intestinal immunology.Inflammatory bowel disease can be treated in new ways by using these potential molecules.This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications.In addition,we explore bile acid metabolism and the interaction of bile acids and the gut microbiota.
基金Supported by National Science and Technology Major Project of China,No.2018ZX10302206.
文摘The intensive crosstalk between the liver and the intestine performs many essential functions.This crosstalk is important for natural immune surveillance,adaptive immune response regulation and nutrient metabolism and elimination of toxic bacterial metabolites.The interaction between the gut microbiome and bile acids is bidirectional.The gut microbiome regulates the synthesis of bile acids and their biological signaling activity and circulation via enzymes.Similarly,bile acids also shape the composition of the gut microbiome by modulating the host’s natural antibacterial defense and the intestinal immune system.The interaction between bile acids and the gut microbiome has been implicated in the pathophysiology of many intestinal and extra intestinal diseases,especially liver diseases.As essential mediators of the gut-liver crosstalk,bile acids regulate specific host metabolic pathways and modulate the inflammatory responses through farnesoid X-activated receptor and G protein-coupled bile acid receptor 1.Several clinical trials have demonstrated the signaling effects of bile acids in the context of liver diseases.We hypothesize the existence of a gut microbiome-bile acids-liver triangle and explore the potential therapeutic strategies for liver diseases targeting the triangle.
文摘The biliary tract has been considered for several decades a passive system just leading the hepatic bile to the intestine.Nowadays several researches demonstrated an important role of biliary epithelia(i.e.cholangiocytes)in bile formation.The study of biliary processes therefore maintains a continuous interest since the possible important implications regarding chronic cholestatic human diseases,such as primary biliary cholangitis or primary sclerosing cholangitis.Bile acids(BAs),produced by the liver,are the most represented organic molecules in bile.The physiologic importance of BAs was initially attributed to their behavior as natural detergents but several studies now demonstrate they are also important signaling molecules.In this minireview the effect of BAs on the biliary epithelia are reported focusing in particular on secondary(deriving by bacterial manipulation of primary molecules)ones.This class of BAs is demonstrated to have relevant biological effects,ranging from toxic to therapeutic ones.In this family ursodeoxycholic and lithocholic acid present the most interesting features.The molecular mechanisms linking ursodeoxycholic acid to its beneficial effects on the biliary tract are discussed in details as well as data on the processes leading to lithocholic damage.These findings suggest that expansion of research in the field of BAs/cholangiocytes interaction may increase our understanding of cholestatic diseases and should be helpful in designing more effective therapies for biliary disorders.
基金Supported by the National Natural Science Foundation of China, No. 30170414
文摘AIM: To investigate the bile acid pool size after cholecystectomy whether or not correlated to the gastrointestinal migrating myoeiectric complex (MMC) in guinea pigs. METHODS: Gallbladder motilities were assessed before cholecystectomy. Furthermore, we continuously monitored interdigestive gastrointestinal motilities using bipolar electrodes in conscious guinea pigs before and after surgery at 4 wk in standard diet group and high cholesterol diet (cholesterol gallstone) group. Total bile acid pool sizes were measured by isotope dilution method at meantime. RESULTS: After cholecystectomy, there were parallel falls in duration of phase Ⅰ, Ⅱ, Ⅲ and MMC cycle duration but increase in amplitude in the guinea pigs with normal gallbladder function, and in the guinea pigs with cholesterol stones. However, There were not significantly differences. On the other hand, the bile acid pool was definitely small in the GS guinea pigs compared to normal guinea pigs and became slightly smaller after cholecystectomy. Similarly, bile acid in gallbladder bile, fecal bile acid was slightly increased in GS guinea pigs after cholecystectomy, to the same degree as normal. These differences, however, were not significant. CONCLUSION: It is concluded that in the guinea pigs with normal gallbladder function, and in the guinea pigs with cholesterol stones: (1) Cholecystectomy produce a similar but less marked trend in bile acid pool; and (2) MMC are linked to enterohepatic circulation of bile acids, rather than surgery, which is consistent with changes of the bile acid pool size. As a result, gastrointestinal dyskinesia is not involved in occurrence of postchole cystectomy syndrome.
基金Supported by University of Nebraska Medical Center-Clinical Research Center and Great Plains Health Research Consortiumand Society of American Gastrointestinal and Endoscopic Surgeons,No.36-5360-2186-001.
文摘BACKGROUND Hepatobiliary diseases result in the accumulation of toxic bile acids(BA)in the liver,blood,and other tissues which may contribute to an unfavorable prognosis.AIM To discover and validate diagnostic biomarkers of cholestatic liver diseases based on the urinary BA profile.METHODS We analyzed urine samples by liquid chromatography-tandem mass spectrometry and compared the urinary BA profile between 300 patients with hepatobiliary diseases vs 103 healthy controls by statistical analysis.The BA profile was characterized using BA indices,which quantifies the composition,metabolism,hydrophilicity,and toxicity of the BA profile.BA indices have much lower interand intra-individual variability compared to absolute concentrations of BA.In addition,BA indices demonstrate high area under the receiver operating characteristic curves,and changes of BA indices are associated with the risk of having a liver disease,which demonstrates their use as diagnostic biomarkers for cholestatic liver diseases.RESULTS Total and individual BA concentrations were higher in all patients.The percentage of secondary BA(lithocholic acid and deoxycholic acid)was significantly lower,while the percentage of primary BA(chenodeoxycholic acid,cholic acid,and hyocholic acid)was markedly higher in patients compared to controls.In addition,the percentage of taurine-amidation was higher in patients than controls.The increase in the non-12α-OH BA was more profound than 12α-OH BA(cholic acid and deoxycholic acid)causing a decrease in the 12α-OH/non-12α-OH ratio in patients.This trend was stronger in patients with more advanced liver diseases as reflected by the model for end-stage liver disease score and the presence of hepatic decompensation.The percentage of sulfation was also higher in patients with more severe forms of liver diseases.CONCLUSION BA indices have much lower inter-and intra-individual variability compared to absolute BA concentrations and changes of BA indices are associated with the risk of developing liver diseases.
基金Supported by Grants from the NIH (R21CA111513-01A1, 5 RO1 CA119087, and SPORE Grant 1 P50CA95060)grants from the Arizona Biomedical Research Commission (#0012 & #0803)by Biomedical Diagnostics & Research In., Tucson Arizona, and by a VA Merit Review Grant
文摘Bile acids are implicated as etiologic agents in cancer of the gastrointestinal (GI) tract, including cancer of the esophagus, stomach, small intestine, liver, biliary tract, pancreas and colon/rectum. Deleterious effects of bile acid exposure, likely related to carcinogenesis, include: induction of reactive oxygen and reactive nitrogen species; induction of DNA damage; stimulation of mutation; induction of apoptosis in the short term, and selection for apoptosis resistance in the long term. These deleterious effects have, so far, been reported most consistently in relation to esophageal and colorectal cancer, but also to some extent in relation to cancer of other organs. In addition, evidence is reviewed for an association of increased bile acid exposure with cancer risk in human populations, in specific human genetic conditions, and in animal experiments. A model for the role of bile acids in GI carcinogenesis is presented from a Darwinian perspective that offers an explanation for how the observed effects of bile acids on cells contribute to cancer development.
基金supported by a grant from the Ministry of Education,Science and Technological Development,Republic of Serbia(III 41012)
文摘BACKGROUND: The well-known functions of bile acids(BAs) are the emulsification and absorption of lipophilic xenobiotics. However, the emerging evidences in the past decade showed that BAs act as signaling molecules that not only autoregulate their own metabolism and enterohepatic recirculation, but also as important regulators of integrative metabolism by activating nuclear and membrane-bound G protein-coupled receptors. The present review was to get insight into the role of maintenance of BA homeostasis and BA signaling pathways in development and management of hepatobiliary and intestinal diseases.DATA SOURCES: Detailed and comprehensive search of PubM ed and Scopus databases was carried out for original and review articles.RESULTS: Disturbances in BA homeostasis contribute to the development of several hepatobiliary and intestinal disorders, such as non-alcoholic fatty liver disease, liver cirrhosis, cholesterol gallstone disease, intestinal diseases and both hepatocellular and colorectal carcinoma.CONCLUSION: Further efforts made in order to advance the understanding of sophisticated BA signaling network may be promising in developing novel therapeutic strategies related not only to hepatobiliary and gastrointestinal but also systemic diseases.
基金Supported by The Foundation for Nutrition Research and the Finnish Funding Agency of Technology and Innovation
文摘AIM: To investigate whether high-fat-feeding is associ- ated with increased intestinal permeability via altera- tions in bile acid metabolism.METHODS: Male C57BI/6J mice were fed on a high-fat (n = 26) or low-fat diet (n = 24) for 15 wk. Intestinal permeability was measured from duodenum, jejunum, ileum and colon in an Ussing chamber system using 4 kDa FITC-labeled dextran as an indicator. Fecal bile ac- ids were analyzed with gas chromatography. Segments of jejunum and colon were analyzed for the expression of farnesoid X receptor (FXR) and tumor necrosis factor