期刊文献+
共找到1,413篇文章
< 1 2 71 >
每页显示 20 50 100
Coconut Fiber Pyrolysis: Bio-Oil Characterization for Potential Application as an Alternative Energy Source and Production of Bio-Degradable Plastics
1
作者 Patrick Ssemujju Lubowa Hiram Ndiritu +1 位作者 Peter Oketch James Mutua 《World Journal of Engineering and Technology》 2024年第2期310-319,共10页
The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed int... The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed into useful alternative energy resources. Pyrolysis is one of the technologies for converting biomass into more valuable products, such as bio-oil, bio-char, and syngas. This work investigated the production of bio-oil through batch pyrolysis technology. A fixed bed pyrolyzer was designed and fabricated for bio-oil production. The major components of the system include a fixed bed reactor, a condenser, and a bio-oil collector. The reactor was heated using a cylindrical biomass external heater. The pyrolysis process was carried out in a reactor at a pressure of 1atm and a varying operating temperature of 150˚C, 250˚C, 350˚C to 450˚C for 120 minutes. The mass of 1kg of coconut fiber was used with particle sizes between 2.36 mm - 4.75 mm. The results show that the higher the temperature, the more volume of bio-oil produced, with the highest yield being 39.2%, at 450˚C with a heating rate of 10˚C/min. The Fourier transformation Infrared (FTIR) Spectroscopy analysis was used to analyze the bio-oil components. The obtained bio-oil has a pH of 2.4, a density of 1019.385 kg/m<sup>3</sup>, and a calorific value of 17.5 MJ/kg. The analysis also showed the presence of high-oxygenated compounds;carboxylic acids, phenols, alcohols, and branched oxygenated hydrocarbons as the main compounds present in the bio-oil. The results inferred that the liquid product could be bestowed as an alternative resource for polycarbonate material production. 展开更多
关键词 Batch Pyrolysis Technology Coconut Fiber bio-oil Fourier Transformation Infrared Analysis
下载PDF
Design of Multiple Metal Doped Ni Based Catalyst for Hydrogen Generation from Bio-oil Reforming at Mild-temperature 被引量:1
2
作者 袁丽霞 丁芳 +5 位作者 姚建铭 陈祥松 刘伟伟 吴金勇 巩飞艳 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期109-120,I0004,共13页
A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two refor... A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature. 展开更多
关键词 Hydrogen generation bio-oil Ni based catalyst Mild-temperature
下载PDF
The Effect of Bio-Oil on High-Temperature Performance of Bio-Oil Recycled Asphalt Binders 被引量:2
3
作者 Hengcong Zhang Jianmin Wu +1 位作者 Zhong Qin Yin Luo 《Journal of Renewable Materials》 SCIE EI 2022年第4期1025-1037,共13页
Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability.This paper investigated the road performance of the aged asphal... Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability.This paper investigated the road performance of the aged asphalt binder by adding bio-oil so that the aged asphalt binder could be reused to reach purpose of reuse.The residual soybean oil was selected as rejuvenator and blended with aged asphalt binder at 0%,2%,4%,and 6%,respectively.The results showed that bio-oil increased the penetration of aged asphalt binder,the penetration of bio-oil recycled asphalt binder with a bio-oil content of 6%reached the standard of 70#matrix asphalt binder.The addition of bio-oil reduced the viscosity,mixing and compaction temperature of aged asphalt binder.As a common knowledge,bio-oil helps to increase the lightweight components of the aged asphalt binder,which diminishes the high-temperature rutting resistance of bio-oil recycled asphalt binders.The high-temperature deformation resistance of bio-oil recycled asphalt binders had not decreased linearly with the bio-oil dosage.Meanwhile,the hightemperature performance of the bio-oil recycled asphalt binder with a 6%bio-oil was superior to matrix asphalt binder.Bio-oil increased the light components of the aged asphalt binder,thus reducing the high-temperature rheological properties of bio-oil recycled asphalt binders as the bio-oil dosage increases.The above test results showed that the bio-oil could restore the aged asphalt binder to the initial level to reach the reuse target. 展开更多
关键词 bio-oil bio-oil recycled asphalt rotational viscosity rheological property
下载PDF
Hydrogen Production by Low-temperature Steam Reforming of Bio-oil over Ni/HZSM-5 Catalyst
4
作者 仇松柏 宫璐 +3 位作者 刘璐 洪成贵 袁丽霞 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第2期211-217,I0004,共8页
We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst comp... We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods. 展开更多
关键词 bio-oil HYDROGEN Steam reforming Ni/HZSM-5 catalyst
下载PDF
Hydrogen Production From Crude Bio-oil and Biomass Char by Electrochemical Catalytic Reforming
5
作者 李兴龙 宁坤 +1 位作者 袁丽霞 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第4期477-483,I0004,共8页
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield... We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2. 展开更多
关键词 Hydrogen bio-oil Biomass char Ni-Al2O3 catalyst CuZn-AI203 catalyst Electro chemical catalytic reforming
下载PDF
Production of Low-carbon Light Olefins from Catalytic Cracking of Crude Bio-oil 被引量:5
6
作者 袁燕妮 王铁军 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期237-244,I0004,共9页
Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light ... Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light olefins were performed by using the La/HZSM-5 catalyst. The highest olefins yield from crude bio-oil reached 0.19 kg/(kg crude bio-oil). The reaction conditions including temperature, weight hourly space velocity, and addition of La into the HZSM-5 zeolite can be used to control both olefins yield and selectivity. Moderate adjusting the acidity with a suitable ratio between the strong acid and weak acid sites through adding La to the zeolite effectively enhanced the olefins selectivity and improved the catalyst stability. The production of light olefins from crude bio-oil is closely associated with the chemical composition and hydrogen to carbon effective ratios of feedstock. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the bio-oil conversion to light olefins was also discussed. 展开更多
关键词 Crude bio-oil Low-carbon olefin Catalytic cracking Zeolite catalyst
下载PDF
Aqueous-phase catalytic hydrogenation of furfural to cyclopentanol over Cu-Mg-Al hydrotalcites derived catalysts:Model reaction for upgrading of bio-oil 被引量:9
7
作者 Minghao Zhou Zuo Zeng +2 位作者 Hongyan Zhu Guomin Xiao Rui Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第1期91-96,共6页
A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to... A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite. 展开更多
关键词 hydrotalcite hydrogenation FURFURAL CYCLOPENTANOL CYCLOPENTANONE bio-oil UPGRADING
下载PDF
Production of Hydrogen from Bio-oil Using Low-temperature Electrochemical Catalytic Reforming Approach over CoZnAI Catalyst
8
作者 林少斌 叶同奇 +2 位作者 袁丽霞 侯滔 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2010年第4期451-458,I0002,共9页
High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products ... High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products distribution were investigated. Both the hydrogen yield and carbon conversion were remarkably enhanced by the current through the catalyst, reaching hydrogen yield of 70% and carbon conversion of 85% at a lower reforming temperature of 500 ℃. The influence of current on the properties of the CoZnAl catalyst was also characterized by X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric analysis, and Brunauer-Emmett-Teller measurements. The thermal electrons would play an important role in promoting the reforming reactions of the oxygenated-organic compounds in the bio-oil. 展开更多
关键词 HYDROGEN bio-oil CoZnAl catalyst Electrochemical catalytic reforming
下载PDF
Properties of Bio-oil from Fast Pyrolysis of Rice Husk 被引量:14
9
作者 郭秀娟 王树荣 +2 位作者 王琦 郭祚刚 骆仲泱 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第1期116-121,共6页
Physicochemical properties of bio-oil obtained from fast pyrolysis of rice husk were studied in the present work.Molecular distillation was used to separate the crude bio-oil into three fractions viz.light fraction,mi... Physicochemical properties of bio-oil obtained from fast pyrolysis of rice husk were studied in the present work.Molecular distillation was used to separate the crude bio-oil into three fractions viz.light fraction,middle fraction and heavy fraction.Their chemical composition was analyzed by gas chromatograph and mass spectrometer(GC-MS).The thermal behavior,including evaporation and decomposition,was investigated using thermogravimetric analyzer coupled with Fourier transform infrared spectrometer(TG-FTIR).The product distribution was significantly affected by contents of cellulose,hemicellulose and lignin.The bio-oil yield was 46.36%(by mass) and the yield of gaseous products was 27%(by mass).The chemicals in the bio-oil included acids,aldehydes,ketones,alcohols,phenols,sugars,etc.The light fraction was mainly composed of acids and compounds with lower boiling point temperature,the middle and heavy fractions were consisted of phenols and levoglucosan.The thermal stability of the bio-oil was determined by the interactions and intersolubility of compounds.It was found that the thermal stability of bio-oil was better than the light fraction,but worse than the middle and heavy fractions. 展开更多
关键词 biochemical engineering bio-oil fast pyrolysis DECOMPOSITION DISTILLATION
下载PDF
Catalytic Transformation of Bio-oil to Olefins with Molecular Sieve Catalysts
10
作者 黄伟伟 巩飞艳 +1 位作者 翟起 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第4期441-447,I0004,共8页
Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, ... Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed. 展开更多
关键词 bio-oil OLEFINS Catalytic pyrolysis Molecular sieve catalyst
下载PDF
Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts 被引量:5
11
作者 Huaqing Xie Qingbo Yu +3 位作者 Xin Yao Wenjun Duan Zongliang Zuo Qin Qin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第3期299-308,共10页
The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process ca... The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process can improve the catalytic activity with the change of high-valence Ni(Ni2O3,NiO) to low-valence Ni(Ni,NiO).Among these catalysts after activation,the Ce-Ni/Co catalyst showed the best catalytic activity for the steam reforming of all the four model compounds.After long-term experiment at 700°C and the S/C ratio of 9,the Ce-Ni/Co catalyst still maintained excellent stability for the steam reforming of the simulated bio-oil(mixed by the four compounds with the equal masses).With CaO calcinated from calcium acetate as CO2 sorbent,the catalytic steam reforming experiment combined with continuous in situ CO2 adsorption was performed.With the comparison of the case without the adding of CO2 sorbent,the hydrogen concentration was dramatically improved from 74.8% to 92.3%,with the CO2 concentration obviously decreased from 19.90% to 1.88%. 展开更多
关键词 hydrogen production bio-oil model compounds Ni catalyst CO2capture
下载PDF
Fractional pyrolysis of Cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production 被引量:4
12
作者 Huijuan Li Linling Li +2 位作者 Rui Zhang Dongmei Tong Changwei Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第6期732-741,共10页
Fractional pyrolysis and one-step pyrolysis of natural algae Cyanobacteria from Taihu Lake were comparatively studied from 200 to 500 ℃. One-step pyrolysis produced bio-oil with complex composition and low high heati... Fractional pyrolysis and one-step pyrolysis of natural algae Cyanobacteria from Taihu Lake were comparatively studied from 200 to 500 ℃. One-step pyrolysis produced bio-oil with complex composition and low high heating value (HHV〈30.9 MJ/kg). Fractional pyrolysis separated the degradation of different components in Cyanobacteria and improved the selectivity to products in bio-oil. That is, acids at 200 ℃, amides and acids at 300 ℃, phenols and nitriles at 400 ℃, and phenols at 500 ℃, were got as main products, respectively. HZSM-5 could promote the dehydration, cracking and aromatization of pyrolytic intermediates in fractional pyrolysis. At optimal HZSM-5 catalyst dosage of 1.0 g, the selectivity to products and the quality of bio-oil were improved obviously. The main products in bio-oil changed to nitriles (47.2%) at 300 ℃, indoles (51.3%) and phenols (36.3%) at 400 ℃. The oxygen content was reduced to 7.2 wt% and 9.4 wt%, and the HHV was raised to 38.1 and 37.3 MJ/kg at 300 and 400 ℃, respectively. Fractional catalytic pyrolysis was proposed to be an efficient method not only to provide a potential solution for alleviating environmental pressure from water blooms, but also to improve the selectivity to products and obtain high quality bio-oil. 展开更多
关键词 CYANOBACTERIA fractional pyrolysis product selectivity bio-oil HZSM-5
下载PDF
Transformation of Bio-oil into BTX by Bio-oil Catalytic Cracking
13
作者 朱九方 汪继聪 李全新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第4期477-483,J0002,共8页
Production of benzene, toluene and xylenes (BTX) from bio-oil can provide basic feedstocks for the petrochemical industry. Catalytic conversion of bio-oil into BTX was performed by using different pore characteristi... Production of benzene, toluene and xylenes (BTX) from bio-oil can provide basic feedstocks for the petrochemical industry. Catalytic conversion of bio-oil into BTX was performed by using different pore characteristics zeolites (HZSM-5, HY-zeolite, and MCM-41). Based on the yield and selectivity of BTX, the production of aromatics decreases in the following order: HZSM-5〉MCM-41〉HY-zeolite. The highest BTX yield from bio-oil using HZSM-5 reached 33.1% with aromatics selectivity of 86.4%. The reaction conditions and catalyst characterization were investigated in detail to make clear the optimal operating parameters and the relation between the catalyst structure and the production of BTX. 展开更多
关键词 bio-oil BTX Catalytic cracking
下载PDF
Soot formation and oxidation during bio-oil gasification:experiments and modeling 被引量:3
14
作者 Younes Chhiti Marine Peyrot Sylvain Salvador 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第5期701-709,共9页
A model is proposed to describe soot formation and oxidation during bio-oil gasification.It is based on the description of bio-oil heating,devolatilization,reforming of gases and conversion of both char and soot solid... A model is proposed to describe soot formation and oxidation during bio-oil gasification.It is based on the description of bio-oil heating,devolatilization,reforming of gases and conversion of both char and soot solids.Detailed chemistry (159 species and 773 reactions) is used in the gas phase.Soot production is described by a single reaction based on C2H2species concentration and three heterogeneous soot oxidation reactions.To support the validation of the model,three sets of experiments were carried out in a lab-scale Entrained Flow Reactor (EFR) equipped with soot quantification device.The temperature was varied from 1000 to 1400 C and three gaseous atmospheres were considered:default of steam,large excess of steam(H2O/C=8),and the presence of oxygen in the O/C range of 0.075–0.5.The model is shown to accurately describe the evolution of the concentration of the main gas species and to satisfactorily describe the soot concentration under the three atmospheres using a single set of identified kinetic parameters.Thanks to this model the contribution of different mechanisms involved in soot formation and oxidation in various situations can be assessed. 展开更多
关键词 SOOT GASIFICATION PYROLYSIS partial oxidation bio-oil
下载PDF
Catalytic conversion of guaiacol to alcohols for bio-oil upgrading 被引量:3
15
作者 Minghao Zhou Yuan Wang +1 位作者 Yanbin Wang Guomin Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期425-431,共7页
Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided ... Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided catalysts. Effects of metal composition,reaction temperature,and hydrogen pressure on conversion and selectivity were investigated systematically. Among various compositions of catalysts,Ni Co/CNT exhibited best performance of guaiacol conversion with higher selectivity towards desired alcohols with higher H/Cefffactor. The reaction pathways of guaiacol in aqueous were proposed based on the product analyzed.Results show that metal composition and temperature have great effects on the conversion of guaiacol and the yields of desired products. 展开更多
关键词 Hydrogenation HYDRODEOXYGENATION GUAIACOL bio-oil upgrading BIOFUEL
下载PDF
Characterization of Pyrolytic Lignin Extracted from Bio-oil 被引量:5
16
作者 JIANG Xiaoxiang Naoko Ellis ZHONG Zhaoping 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第6期1018-1022,共5页
Bio-oil is a new liquid fuel produced by fast pyrolysis,which is a promising technology to convert bio-mass into liquid. Pyrolytic lignin extracted from bio-oil,a fine powder,contributes to the instability of bio-oil.... Bio-oil is a new liquid fuel produced by fast pyrolysis,which is a promising technology to convert bio-mass into liquid. Pyrolytic lignin extracted from bio-oil,a fine powder,contributes to the instability of bio-oil. The paper presents the structural features of three kinds of pyrolytic lignin extracted from bio-oil with different methods(WIF,HMM,and LMM) . The pyrolytic lignin samples are characterized by Fourier transform infrared spectrometer(FTIR) and X-ray photoelectron spectroscopy(XPS) . FTIR data indicate that the three pyrolytic lignin samples have similar functional groups,while the absorption intensity is different,and show characteristic vibra-tions of typical lignocellulosic material groups O H(3340-3380 cm-1) ,C H(2912-2929 cm-1) and C O(1652-1725 cm-1) . Comparison in the region(3340-3380 cm-1) indicates that WIF has more O H stretch groups than HMM and LMM. The carbon spectra are fitted to four peaks:C1,C C or C H,BE 283.5 eV;C2,C OR or C OH,BE 284.5-285.8 eV;C3,C O or HO C OR,BE 286.10-287.10 eV;C4,O C O,BE 287.5-287.7 eV. The absence of C1,C C or C H indicates the dominant polymerization structure of aro-matic carbon in pyrolytic lignin samples. For HMM and WIF,C2a and C2b can not be separated,so there is no free hydroxyl group in the samples. The oxygen peaks are also fitted to four peaks:O1,OH,BE = 530.3 eV;O2,RC O,BE 531.45-531.72 eV;O3,O C O,BE = 532.73-533.74 eV;O4,H2O,BE 535 eV. The absence of O1 and O4 indicates that little hydroxyl groups and adsorbed water are present in the samples. 展开更多
关键词 bio-oil pyrolytic lignin Fourier transform infrared spectrometer X-ray photoelectron spectroscopy
下载PDF
Hydrogen Production by Catalytic Steam Reforming of Bio-oil, Naphtha and CH4 over C12A7-Mg Catalyst 被引量:4
17
作者 Yue Pan Zhao-xiang Wang +2 位作者 Tao Kan Xi-feng Zhu Quan-xin Li 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第3期190-192,共3页
Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was ... Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process. 展开更多
关键词 C12A7-Mg bio-oil NAPHTHA CH4 Catalytic steam reforming HYDROGEN
下载PDF
Roles of furfural during the thermal treatment of bio-oil at low temperatures 被引量:2
18
作者 Zhe Xiong Yuanjing Chen +8 位作者 Muhammad Mufti Azis Xun Hu Wei Deng Hengda Han Long Jiang Sheng Su Song Hu Yi Wang Jun Xiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期85-95,共11页
The reactive O-containing species in bio-oil could induce the polymerization of bio-oil during its thermal treatment, which affects the relevant utilization of bio-oil significantly. Furans, as the highly reactive Oco... The reactive O-containing species in bio-oil could induce the polymerization of bio-oil during its thermal treatment, which affects the relevant utilization of bio-oil significantly. Furans, as the highly reactive Ocontaining species in bio-oil, play important roles during the thermal treatment of bio-oil. In this study,furfural was chosen as the representative of the furans in bio-oil to investigate its roles during the thermal treatment of bio-oil. The raw bio-oil with and without the addition of extra furfural(10 wt% of bio-oil) and pure furfural were pyrolyzed in a fixed-bed reactor at 200–500 ℃. The results show that the interactions among furfural and bio-oil components can take place prior to the evaporation of furfural(<140 ℃) to form the intermediates, then these intermediates could be further polymerized to form large molecular compounds, and coke can be formed via the interactions at temperatures ≥ 300 ℃. At temperatures ≤ 300 ℃, furfural mainly interacts with anhydrosugars. As the temperature further increases, the aromatics are involved in the interactions to form coke. The increased percentage of the coke formed via the interactions is in a linear relation with the conversion of furfural during the pyrolysis at 300–500 ℃(no coke formed at 200 ℃). Meanwhile, more non-aromatic light components(≤ C6) and less aromatics in the tars could be formed due to the interactions. 展开更多
关键词 bio-oil FURFURAL AROMATIC COKE POLYMERIZATION Interaction
下载PDF
Pyrolysis of Rice Husk in a Fluidized Bed Reactor:Evaluate the Characteristics of Fractional Bio-Oil and Particulate Emission of Carbonaceous Aerosol(CA) 被引量:2
19
作者 Ning Li Weiming Yi +4 位作者 Zhihe Li Lihong Wang Yongjun Li Xueyuan Bai Mei Jiang 《Journal of Renewable Materials》 SCIE EI 2020年第3期329-346,共18页
Bio-oil production via pyrolysis is one of promising technologies for renewable energy production from bio-wastes.However,the complicated biooil is still a challenge for high-valued application and during biomass pyro... Bio-oil production via pyrolysis is one of promising technologies for renewable energy production from bio-wastes.However,the complicated biooil is still a challenge for high-valued application and during biomass pyrolysis,the emission of non-cleaned aerosol,the potential emission,namely carbonaceous aerosol(CA)increased the difficulty of the commercial promotion.In this study,Rice husk pyrolysis was performed in a semi-continuous fluidized bed reactor coupled with fractional condensers.The effects of pyrolysis and condensation temperature on the properties of bio-oil and emission of CAwere investigated systemically.Results indicated that the in-situ separation of vapors was accomplished via condensers of different temperatures(85℃and−10℃).The bio-oil with different physiochemical properties were obtained in the high content of phenols and lower acids of BO1 and high content of acids and better liquidity.The size distribution of CA was found primarily classified as sub-micrometer grade particles,which have a diameter of less than 1.1μm.In particular,CA existed in three representative forms:bead,granular aggregate,and liquidoid.The results of light absorption of total organic carbon(TOC)and non-volatile organic carbon(NVOC)indicated that the absorption per mass increased in the single temperature with the decrement of wavelength and it improved as the pyrolysis temperature increased at the specified wavelength.The absorption per mass was to maximum value(3.7 m^(2)/g)at 360 nm wavelength and 600℃.TOC demonstrated a strong light absorption and a wide spectral range dependence(AAE:5.08-10.05)which enhanced the light absorption in the ultra-violet and low-visible regions. 展开更多
关键词 Rice husk PYROLYSIS bio-oil AEROSOL size distribution light absorption
下载PDF
Liquid phase equilibrium of phenol extraction from bio-oil produced by biomass pyrolysis using thermodynamic models 被引量:1
20
作者 Dewi Selvia Fardhyanti Bayu Triwibowo +3 位作者 Heri Istanto Muhammad Khusni Anajib Amalia Larasati Windy Oktaviani 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第2期391-399,共9页
Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biom... Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biomass into a more valuable product which is bio-oil. Bio-oil is a condensed liquid from the vapor phase of biomass pyrolysis such as coconut shells and coffee shells. Biomass composition consisting of hemicellulose, cellulose, and lignin will oxidize to phenol which is the main content in bio-oil. The total phenolic compounds contained in bio-oil are 47.03%(coconut shell) and 45%(coffee shell). The content of phenol compounds in corrosive bio-oils still quite high, the use of this bio-oil directly will cause various difficulties in the combustion system due to high viscosity, low calorific value, corrosivity, and instability. Phenol compounds have some benefits as one of the compounds for floor cleaners and disinfectants which are contained in bio-oil.The correlation between experimental data and calculations shows that the UNIQUAC Functional-group Activity Coefficients(UNIFAC) equilibrium model can be used to predict the liquid–liquid equilibrium in the phenol extraction process of the coconut shell pyrolysis bio-oil. While the Non-Random Two Liquid(NRTL) equilibrium model can be used to predict liquid–liquid equilibrium in the extraction process of phenol from bio-oil pyrolysis of coffee shells. 展开更多
关键词 Biomass PYROLYSIS bio-oil UNIFAC NRTL
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部