The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed int...The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed into useful alternative energy resources. Pyrolysis is one of the technologies for converting biomass into more valuable products, such as bio-oil, bio-char, and syngas. This work investigated the production of bio-oil through batch pyrolysis technology. A fixed bed pyrolyzer was designed and fabricated for bio-oil production. The major components of the system include a fixed bed reactor, a condenser, and a bio-oil collector. The reactor was heated using a cylindrical biomass external heater. The pyrolysis process was carried out in a reactor at a pressure of 1atm and a varying operating temperature of 150˚C, 250˚C, 350˚C to 450˚C for 120 minutes. The mass of 1kg of coconut fiber was used with particle sizes between 2.36 mm - 4.75 mm. The results show that the higher the temperature, the more volume of bio-oil produced, with the highest yield being 39.2%, at 450˚C with a heating rate of 10˚C/min. The Fourier transformation Infrared (FTIR) Spectroscopy analysis was used to analyze the bio-oil components. The obtained bio-oil has a pH of 2.4, a density of 1019.385 kg/m<sup>3</sup>, and a calorific value of 17.5 MJ/kg. The analysis also showed the presence of high-oxygenated compounds;carboxylic acids, phenols, alcohols, and branched oxygenated hydrocarbons as the main compounds present in the bio-oil. The results inferred that the liquid product could be bestowed as an alternative resource for polycarbonate material production.展开更多
A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two refor...A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature.展开更多
Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability.This paper investigated the road performance of the aged asphal...Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability.This paper investigated the road performance of the aged asphalt binder by adding bio-oil so that the aged asphalt binder could be reused to reach purpose of reuse.The residual soybean oil was selected as rejuvenator and blended with aged asphalt binder at 0%,2%,4%,and 6%,respectively.The results showed that bio-oil increased the penetration of aged asphalt binder,the penetration of bio-oil recycled asphalt binder with a bio-oil content of 6%reached the standard of 70#matrix asphalt binder.The addition of bio-oil reduced the viscosity,mixing and compaction temperature of aged asphalt binder.As a common knowledge,bio-oil helps to increase the lightweight components of the aged asphalt binder,which diminishes the high-temperature rutting resistance of bio-oil recycled asphalt binders.The high-temperature deformation resistance of bio-oil recycled asphalt binders had not decreased linearly with the bio-oil dosage.Meanwhile,the hightemperature performance of the bio-oil recycled asphalt binder with a 6%bio-oil was superior to matrix asphalt binder.Bio-oil increased the light components of the aged asphalt binder,thus reducing the high-temperature rheological properties of bio-oil recycled asphalt binders as the bio-oil dosage increases.The above test results showed that the bio-oil could restore the aged asphalt binder to the initial level to reach the reuse target.展开更多
We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst comp...We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.展开更多
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield...We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.展开更多
Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light ...Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light olefins were performed by using the La/HZSM-5 catalyst. The highest olefins yield from crude bio-oil reached 0.19 kg/(kg crude bio-oil). The reaction conditions including temperature, weight hourly space velocity, and addition of La into the HZSM-5 zeolite can be used to control both olefins yield and selectivity. Moderate adjusting the acidity with a suitable ratio between the strong acid and weak acid sites through adding La to the zeolite effectively enhanced the olefins selectivity and improved the catalyst stability. The production of light olefins from crude bio-oil is closely associated with the chemical composition and hydrogen to carbon effective ratios of feedstock. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the bio-oil conversion to light olefins was also discussed.展开更多
A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to...A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.展开更多
High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products ...High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products distribution were investigated. Both the hydrogen yield and carbon conversion were remarkably enhanced by the current through the catalyst, reaching hydrogen yield of 70% and carbon conversion of 85% at a lower reforming temperature of 500 ℃. The influence of current on the properties of the CoZnAl catalyst was also characterized by X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric analysis, and Brunauer-Emmett-Teller measurements. The thermal electrons would play an important role in promoting the reforming reactions of the oxygenated-organic compounds in the bio-oil.展开更多
Physicochemical properties of bio-oil obtained from fast pyrolysis of rice husk were studied in the present work.Molecular distillation was used to separate the crude bio-oil into three fractions viz.light fraction,mi...Physicochemical properties of bio-oil obtained from fast pyrolysis of rice husk were studied in the present work.Molecular distillation was used to separate the crude bio-oil into three fractions viz.light fraction,middle fraction and heavy fraction.Their chemical composition was analyzed by gas chromatograph and mass spectrometer(GC-MS).The thermal behavior,including evaporation and decomposition,was investigated using thermogravimetric analyzer coupled with Fourier transform infrared spectrometer(TG-FTIR).The product distribution was significantly affected by contents of cellulose,hemicellulose and lignin.The bio-oil yield was 46.36%(by mass) and the yield of gaseous products was 27%(by mass).The chemicals in the bio-oil included acids,aldehydes,ketones,alcohols,phenols,sugars,etc.The light fraction was mainly composed of acids and compounds with lower boiling point temperature,the middle and heavy fractions were consisted of phenols and levoglucosan.The thermal stability of the bio-oil was determined by the interactions and intersolubility of compounds.It was found that the thermal stability of bio-oil was better than the light fraction,but worse than the middle and heavy fractions.展开更多
Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, ...Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.展开更多
The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process ca...The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process can improve the catalytic activity with the change of high-valence Ni(Ni2O3,NiO) to low-valence Ni(Ni,NiO).Among these catalysts after activation,the Ce-Ni/Co catalyst showed the best catalytic activity for the steam reforming of all the four model compounds.After long-term experiment at 700°C and the S/C ratio of 9,the Ce-Ni/Co catalyst still maintained excellent stability for the steam reforming of the simulated bio-oil(mixed by the four compounds with the equal masses).With CaO calcinated from calcium acetate as CO2 sorbent,the catalytic steam reforming experiment combined with continuous in situ CO2 adsorption was performed.With the comparison of the case without the adding of CO2 sorbent,the hydrogen concentration was dramatically improved from 74.8% to 92.3%,with the CO2 concentration obviously decreased from 19.90% to 1.88%.展开更多
Fractional pyrolysis and one-step pyrolysis of natural algae Cyanobacteria from Taihu Lake were comparatively studied from 200 to 500 ℃. One-step pyrolysis produced bio-oil with complex composition and low high heati...Fractional pyrolysis and one-step pyrolysis of natural algae Cyanobacteria from Taihu Lake were comparatively studied from 200 to 500 ℃. One-step pyrolysis produced bio-oil with complex composition and low high heating value (HHV〈30.9 MJ/kg). Fractional pyrolysis separated the degradation of different components in Cyanobacteria and improved the selectivity to products in bio-oil. That is, acids at 200 ℃, amides and acids at 300 ℃, phenols and nitriles at 400 ℃, and phenols at 500 ℃, were got as main products, respectively. HZSM-5 could promote the dehydration, cracking and aromatization of pyrolytic intermediates in fractional pyrolysis. At optimal HZSM-5 catalyst dosage of 1.0 g, the selectivity to products and the quality of bio-oil were improved obviously. The main products in bio-oil changed to nitriles (47.2%) at 300 ℃, indoles (51.3%) and phenols (36.3%) at 400 ℃. The oxygen content was reduced to 7.2 wt% and 9.4 wt%, and the HHV was raised to 38.1 and 37.3 MJ/kg at 300 and 400 ℃, respectively. Fractional catalytic pyrolysis was proposed to be an efficient method not only to provide a potential solution for alleviating environmental pressure from water blooms, but also to improve the selectivity to products and obtain high quality bio-oil.展开更多
Production of benzene, toluene and xylenes (BTX) from bio-oil can provide basic feedstocks for the petrochemical industry. Catalytic conversion of bio-oil into BTX was performed by using different pore characteristi...Production of benzene, toluene and xylenes (BTX) from bio-oil can provide basic feedstocks for the petrochemical industry. Catalytic conversion of bio-oil into BTX was performed by using different pore characteristics zeolites (HZSM-5, HY-zeolite, and MCM-41). Based on the yield and selectivity of BTX, the production of aromatics decreases in the following order: HZSM-5〉MCM-41〉HY-zeolite. The highest BTX yield from bio-oil using HZSM-5 reached 33.1% with aromatics selectivity of 86.4%. The reaction conditions and catalyst characterization were investigated in detail to make clear the optimal operating parameters and the relation between the catalyst structure and the production of BTX.展开更多
A model is proposed to describe soot formation and oxidation during bio-oil gasification.It is based on the description of bio-oil heating,devolatilization,reforming of gases and conversion of both char and soot solid...A model is proposed to describe soot formation and oxidation during bio-oil gasification.It is based on the description of bio-oil heating,devolatilization,reforming of gases and conversion of both char and soot solids.Detailed chemistry (159 species and 773 reactions) is used in the gas phase.Soot production is described by a single reaction based on C2H2species concentration and three heterogeneous soot oxidation reactions.To support the validation of the model,three sets of experiments were carried out in a lab-scale Entrained Flow Reactor (EFR) equipped with soot quantification device.The temperature was varied from 1000 to 1400 C and three gaseous atmospheres were considered:default of steam,large excess of steam(H2O/C=8),and the presence of oxygen in the O/C range of 0.075–0.5.The model is shown to accurately describe the evolution of the concentration of the main gas species and to satisfactorily describe the soot concentration under the three atmospheres using a single set of identified kinetic parameters.Thanks to this model the contribution of different mechanisms involved in soot formation and oxidation in various situations can be assessed.展开更多
Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided ...Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided catalysts. Effects of metal composition,reaction temperature,and hydrogen pressure on conversion and selectivity were investigated systematically. Among various compositions of catalysts,Ni Co/CNT exhibited best performance of guaiacol conversion with higher selectivity towards desired alcohols with higher H/Cefffactor. The reaction pathways of guaiacol in aqueous were proposed based on the product analyzed.Results show that metal composition and temperature have great effects on the conversion of guaiacol and the yields of desired products.展开更多
Bio-oil is a new liquid fuel produced by fast pyrolysis,which is a promising technology to convert bio-mass into liquid. Pyrolytic lignin extracted from bio-oil,a fine powder,contributes to the instability of bio-oil....Bio-oil is a new liquid fuel produced by fast pyrolysis,which is a promising technology to convert bio-mass into liquid. Pyrolytic lignin extracted from bio-oil,a fine powder,contributes to the instability of bio-oil. The paper presents the structural features of three kinds of pyrolytic lignin extracted from bio-oil with different methods(WIF,HMM,and LMM) . The pyrolytic lignin samples are characterized by Fourier transform infrared spectrometer(FTIR) and X-ray photoelectron spectroscopy(XPS) . FTIR data indicate that the three pyrolytic lignin samples have similar functional groups,while the absorption intensity is different,and show characteristic vibra-tions of typical lignocellulosic material groups O H(3340-3380 cm-1) ,C H(2912-2929 cm-1) and C O(1652-1725 cm-1) . Comparison in the region(3340-3380 cm-1) indicates that WIF has more O H stretch groups than HMM and LMM. The carbon spectra are fitted to four peaks:C1,C C or C H,BE 283.5 eV;C2,C OR or C OH,BE 284.5-285.8 eV;C3,C O or HO C OR,BE 286.10-287.10 eV;C4,O C O,BE 287.5-287.7 eV. The absence of C1,C C or C H indicates the dominant polymerization structure of aro-matic carbon in pyrolytic lignin samples. For HMM and WIF,C2a and C2b can not be separated,so there is no free hydroxyl group in the samples. The oxygen peaks are also fitted to four peaks:O1,OH,BE = 530.3 eV;O2,RC O,BE 531.45-531.72 eV;O3,O C O,BE = 532.73-533.74 eV;O4,H2O,BE 535 eV. The absence of O1 and O4 indicates that little hydroxyl groups and adsorbed water are present in the samples.展开更多
Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was ...Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.展开更多
The reactive O-containing species in bio-oil could induce the polymerization of bio-oil during its thermal treatment, which affects the relevant utilization of bio-oil significantly. Furans, as the highly reactive Oco...The reactive O-containing species in bio-oil could induce the polymerization of bio-oil during its thermal treatment, which affects the relevant utilization of bio-oil significantly. Furans, as the highly reactive Ocontaining species in bio-oil, play important roles during the thermal treatment of bio-oil. In this study,furfural was chosen as the representative of the furans in bio-oil to investigate its roles during the thermal treatment of bio-oil. The raw bio-oil with and without the addition of extra furfural(10 wt% of bio-oil) and pure furfural were pyrolyzed in a fixed-bed reactor at 200–500 ℃. The results show that the interactions among furfural and bio-oil components can take place prior to the evaporation of furfural(<140 ℃) to form the intermediates, then these intermediates could be further polymerized to form large molecular compounds, and coke can be formed via the interactions at temperatures ≥ 300 ℃. At temperatures ≤ 300 ℃, furfural mainly interacts with anhydrosugars. As the temperature further increases, the aromatics are involved in the interactions to form coke. The increased percentage of the coke formed via the interactions is in a linear relation with the conversion of furfural during the pyrolysis at 300–500 ℃(no coke formed at 200 ℃). Meanwhile, more non-aromatic light components(≤ C6) and less aromatics in the tars could be formed due to the interactions.展开更多
Bio-oil production via pyrolysis is one of promising technologies for renewable energy production from bio-wastes.However,the complicated biooil is still a challenge for high-valued application and during biomass pyro...Bio-oil production via pyrolysis is one of promising technologies for renewable energy production from bio-wastes.However,the complicated biooil is still a challenge for high-valued application and during biomass pyrolysis,the emission of non-cleaned aerosol,the potential emission,namely carbonaceous aerosol(CA)increased the difficulty of the commercial promotion.In this study,Rice husk pyrolysis was performed in a semi-continuous fluidized bed reactor coupled with fractional condensers.The effects of pyrolysis and condensation temperature on the properties of bio-oil and emission of CAwere investigated systemically.Results indicated that the in-situ separation of vapors was accomplished via condensers of different temperatures(85℃and−10℃).The bio-oil with different physiochemical properties were obtained in the high content of phenols and lower acids of BO1 and high content of acids and better liquidity.The size distribution of CA was found primarily classified as sub-micrometer grade particles,which have a diameter of less than 1.1μm.In particular,CA existed in three representative forms:bead,granular aggregate,and liquidoid.The results of light absorption of total organic carbon(TOC)and non-volatile organic carbon(NVOC)indicated that the absorption per mass increased in the single temperature with the decrement of wavelength and it improved as the pyrolysis temperature increased at the specified wavelength.The absorption per mass was to maximum value(3.7 m^(2)/g)at 360 nm wavelength and 600℃.TOC demonstrated a strong light absorption and a wide spectral range dependence(AAE:5.08-10.05)which enhanced the light absorption in the ultra-violet and low-visible regions.展开更多
Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biom...Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biomass into a more valuable product which is bio-oil. Bio-oil is a condensed liquid from the vapor phase of biomass pyrolysis such as coconut shells and coffee shells. Biomass composition consisting of hemicellulose, cellulose, and lignin will oxidize to phenol which is the main content in bio-oil. The total phenolic compounds contained in bio-oil are 47.03%(coconut shell) and 45%(coffee shell). The content of phenol compounds in corrosive bio-oils still quite high, the use of this bio-oil directly will cause various difficulties in the combustion system due to high viscosity, low calorific value, corrosivity, and instability. Phenol compounds have some benefits as one of the compounds for floor cleaners and disinfectants which are contained in bio-oil.The correlation between experimental data and calculations shows that the UNIQUAC Functional-group Activity Coefficients(UNIFAC) equilibrium model can be used to predict the liquid–liquid equilibrium in the phenol extraction process of the coconut shell pyrolysis bio-oil. While the Non-Random Two Liquid(NRTL) equilibrium model can be used to predict liquid–liquid equilibrium in the extraction process of phenol from bio-oil pyrolysis of coffee shells.展开更多
文摘The current energy crisis could be alleviated by enhancing energy generation using the abundant biomass waste resources. Agricultural and forest wastes are the leading organic waste streams that can be transformed into useful alternative energy resources. Pyrolysis is one of the technologies for converting biomass into more valuable products, such as bio-oil, bio-char, and syngas. This work investigated the production of bio-oil through batch pyrolysis technology. A fixed bed pyrolyzer was designed and fabricated for bio-oil production. The major components of the system include a fixed bed reactor, a condenser, and a bio-oil collector. The reactor was heated using a cylindrical biomass external heater. The pyrolysis process was carried out in a reactor at a pressure of 1atm and a varying operating temperature of 150˚C, 250˚C, 350˚C to 450˚C for 120 minutes. The mass of 1kg of coconut fiber was used with particle sizes between 2.36 mm - 4.75 mm. The results show that the higher the temperature, the more volume of bio-oil produced, with the highest yield being 39.2%, at 450˚C with a heating rate of 10˚C/min. The Fourier transformation Infrared (FTIR) Spectroscopy analysis was used to analyze the bio-oil components. The obtained bio-oil has a pH of 2.4, a density of 1019.385 kg/m<sup>3</sup>, and a calorific value of 17.5 MJ/kg. The analysis also showed the presence of high-oxygenated compounds;carboxylic acids, phenols, alcohols, and branched oxygenated hydrocarbons as the main compounds present in the bio-oil. The results inferred that the liquid product could be bestowed as an alternative resource for polycarbonate material production.
文摘A new kind of multiple metal (Cu, Mg, Ce) doped Ni based mixed oxide catalyst, synthesized by the co-precipitation method, was used for efficient production of hydrogen from bio-oil reforming at 250-500℃. Two reforming processes, the conventional steam reforming (CSR) and the electrochemical catalytic reforming (ECR), were performed for the bio-oil reforming. The catalyst with an atomic mol ratio of Ni:Cu:Mg:Ce:AI=5.6:1.1:1.9:1.0:9.9 exhibited very high reforming activity both in CSR and ECR processes, reaching 82.8% hydrogen yield at 500℃ in the CSR, yield of 91.1% at 400℃ and 3.1 A in the ECR, respectively. The influences of reforming temperature and the current through the catalyst in the ECR were investigated. It was observed that the reforming and decomposition of the bio-oil were significantly enhanced by the current. The promoting effects of current on the decomposition and reforming processes of bio-oil were further studied by using the model compounds of bio- oil (acetic acid and ethanol) under 101 kPa or low pressure (0.1 Pa) through the time of flight analysis. The catalyst also shows high water gas shift activity in the range of 300-600 ℃. The catalyst features and alterations in the bio-oil reforming were characterized by the ICP, XRD, XPS and BET measurements. The mechanism of bio-oil reforming was discussed based on the study of the elemental reactions and catalyst characterizations. The research catalyst, potentially, may be a practical catalyst for high efficient production of hydrogen from reforming of bio-oil at mild-temperature.
文摘Bio-oil recycled asphalt binders in road engineering can help solve the problem of oil shortage and reduce the environmental pollution and sustainability.This paper investigated the road performance of the aged asphalt binder by adding bio-oil so that the aged asphalt binder could be reused to reach purpose of reuse.The residual soybean oil was selected as rejuvenator and blended with aged asphalt binder at 0%,2%,4%,and 6%,respectively.The results showed that bio-oil increased the penetration of aged asphalt binder,the penetration of bio-oil recycled asphalt binder with a bio-oil content of 6%reached the standard of 70#matrix asphalt binder.The addition of bio-oil reduced the viscosity,mixing and compaction temperature of aged asphalt binder.As a common knowledge,bio-oil helps to increase the lightweight components of the aged asphalt binder,which diminishes the high-temperature rutting resistance of bio-oil recycled asphalt binders.The high-temperature deformation resistance of bio-oil recycled asphalt binders had not decreased linearly with the bio-oil dosage.Meanwhile,the hightemperature performance of the bio-oil recycled asphalt binder with a 6%bio-oil was superior to matrix asphalt binder.Bio-oil increased the light components of the aged asphalt binder,thus reducing the high-temperature rheological properties of bio-oil recycled asphalt binders as the bio-oil dosage increases.The above test results showed that the bio-oil could restore the aged asphalt binder to the initial level to reach the reuse target.
基金ACKNOWLEDGMENTS This work is supported by the National High Tech Research and Development Program (No.2009AA05Z435), the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), and the General Program of the National Natural Science Foundation of China (No.50772107).
文摘We investigated high catalytic activity of Ni/HZSM-5 catalysts synthesized by the impregnation method, which was successfully applied for low-temperature steam reforming of bio-oil. The influences of the catalyst composition, reforming temperature and the molar ratio of steam to carbon fed on the stream reforming process of bio-oil over the Ni/HZSM-5 catalysts were investigated in the reforming reactor. The promoting effects of current passing through the catalyst on the bio-oil reforming were also studied using the electrochemical catalytic reforming approach. By comparing Ni/HZSM-5 with commonly used Ni/Al2O3 catalysts, the Ni2O/ZSM catalyst with Ni-loading content of about 20% on the HZSM-5 support showed the highest catalytic activity. Even at 450 ℃, the hydrogen yield of about 90% with a near complete conversion of bio-oil was obtained using the Ni2O/ZSM catalyst. It was found that the performance of the bio-oil reforming was remarkably enhanced by the HZSM-5 supporter and the current through the catalyst. The features of the Ni/HZSM-5 catalysts were also investigated via X-ray diffraction, inductively coupled plasma and atomic emission spectroscopy, hydrogen temperature-programmed reduction, and Brunauer-Emmett-Teller methods.
基金This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Natural Science Foundation of China (No.50772107).
文摘We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.
基金This work is supported by the National Key Basic Program of China (No.2013CB228105) and the National Natural Science Foundation of China (No.51161140331).
文摘Low-carbon light olefins are the basic feedstocks for the petrochemical industry. Catalytic cracking of crude bio-oil and its model compounds (including methanol, ethanol, acetic acid, acetone, and phenol) to light olefins were performed by using the La/HZSM-5 catalyst. The highest olefins yield from crude bio-oil reached 0.19 kg/(kg crude bio-oil). The reaction conditions including temperature, weight hourly space velocity, and addition of La into the HZSM-5 zeolite can be used to control both olefins yield and selectivity. Moderate adjusting the acidity with a suitable ratio between the strong acid and weak acid sites through adding La to the zeolite effectively enhanced the olefins selectivity and improved the catalyst stability. The production of light olefins from crude bio-oil is closely associated with the chemical composition and hydrogen to carbon effective ratios of feedstock. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the bio-oil conversion to light olefins was also discussed.
基金supported by the National Hi-tech Research and Development Program of China(863 Program)(2012AA051801)the Fundamenta lResearch Funds for the Central Universities(No.CXZZ13 0112)
文摘A series of Cu-Mg-Al hydrotalcites derived oxides with a(Cu+Mg)/Al mole ratio of 3 and varied Cu/Mg mole ratio(from 0.07 to 0.30) were prepared by co-precipitation and calcination methods, then they were introduced to the hydrogenation of furfural in aqueous-phase. Effects of Cu/Mg mole ratio, reaction temperature, initial hydrogen pressure, reaction time and catalyst amount on the conversion rate of furfural as well as the selectivity toward desired product cyclopentanol were systematically investigated. The conversion of furfural over calcined hydrotalcite catalyst with a Cu/Mg mole ratio of 0.2 was up to 98.5% when the reaction was carried out under 140 ?C and the initial hydrogen pressure of 4 MPa for 10 h, while the selectivity toward cyclopentanol was up to 94.8%. The catalysts were characterized by XRD and SEM. XRD diffraction of all the samples showed characteristic pattern of hydrotalcite with varied peak intensity as a result of different Cu content. The catalytic activity was improved gradually with the increase of Cu component in the hydrotalcite.
基金ACKNOWLEDGMENTS This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Technology Research and Development Program (No.2009AA05Z435), the National Natural Science Foundation of China (No.50772107), and the Demonstration and Applied Investigation of Biomass Clean Energy Base (No.2007-15).
文摘High-efficient production of hydrogen from bio-oil was performed by electrochemical catalytic reforming method over the CoZnAl catalyst. The influence of current on the hydrogen yield, carbon conversion, and products distribution were investigated. Both the hydrogen yield and carbon conversion were remarkably enhanced by the current through the catalyst, reaching hydrogen yield of 70% and carbon conversion of 85% at a lower reforming temperature of 500 ℃. The influence of current on the properties of the CoZnAl catalyst was also characterized by X-ray diffraction, X-ray photoelectron spectroscopy, thermal gravimetric analysis, and Brunauer-Emmett-Teller measurements. The thermal electrons would play an important role in promoting the reforming reactions of the oxygenated-organic compounds in the bio-oil.
基金Supported by the International Science and Technology Cooperation Program of China(2009DFA61050) the National High Technology Research and Development Program of China(2009AA05Z407) the National Natural Science Foundation of China(50676085 90610035)
文摘Physicochemical properties of bio-oil obtained from fast pyrolysis of rice husk were studied in the present work.Molecular distillation was used to separate the crude bio-oil into three fractions viz.light fraction,middle fraction and heavy fraction.Their chemical composition was analyzed by gas chromatograph and mass spectrometer(GC-MS).The thermal behavior,including evaporation and decomposition,was investigated using thermogravimetric analyzer coupled with Fourier transform infrared spectrometer(TG-FTIR).The product distribution was significantly affected by contents of cellulose,hemicellulose and lignin.The bio-oil yield was 46.36%(by mass) and the yield of gaseous products was 27%(by mass).The chemicals in the bio-oil included acids,aldehydes,ketones,alcohols,phenols,sugars,etc.The light fraction was mainly composed of acids and compounds with lower boiling point temperature,the middle and heavy fractions were consisted of phenols and levoglucosan.The thermal stability of the bio-oil was determined by the interactions and intersolubility of compounds.It was found that the thermal stability of bio-oil was better than the light fraction,but worse than the middle and heavy fractions.
基金V. ACKNOWLEDGEMENTS This work was supported by the National Natural Science Foundation of China (No.51161140331) and the National High Technology Research and Development of Ministry of Science and Technology of China (No.2009AA05Z435).
文摘Catalytic conversion of bio-oil into light olefins was performed by a series of molecular sieve catalysts, including HZSM-5, MCM-41, SAPO-34 and Y-zeolite. Based on the light olefins yield and its carbon selectivity, the production of light olefins decreased in the following order: HZSM-5〉SAPO-34〉MCM-41〉Y-zeolite. The highest olefins yield from bio-oil using HZSM- 5 catalyst reached 0.22 kg/kgbio-oil with carbon selectivity of 50.7% and a nearly complete bio-oil conversion. The reaction conditions and catalyst characterization were investigated in detail to reveal the relationship between the catalyst structure and the production of olefins. The comparison between the pyrolysis and catalytic pyrolysis of bio-oil was also performed.
基金supported by the National Natural Science Foundation of China(No.51274066,51304048)the National Key Technology R&D Program of China(No.2013BAA03B03)the National Science Foundation for Post-doctoral Scientists of China(No.2013M541240)
文摘The steam reforming of four bio-oil model compounds(acetic acid,ethanol,acetone and phenol) was investigated over Ni-based catalysts supported on Al2O3 modified by Mg,Ce or Co in this paper.The activation process can improve the catalytic activity with the change of high-valence Ni(Ni2O3,NiO) to low-valence Ni(Ni,NiO).Among these catalysts after activation,the Ce-Ni/Co catalyst showed the best catalytic activity for the steam reforming of all the four model compounds.After long-term experiment at 700°C and the S/C ratio of 9,the Ce-Ni/Co catalyst still maintained excellent stability for the steam reforming of the simulated bio-oil(mixed by the four compounds with the equal masses).With CaO calcinated from calcium acetate as CO2 sorbent,the catalytic steam reforming experiment combined with continuous in situ CO2 adsorption was performed.With the comparison of the case without the adding of CO2 sorbent,the hydrogen concentration was dramatically improved from 74.8% to 92.3%,with the CO2 concentration obviously decreased from 19.90% to 1.88%.
基金supported by the National Basic Research Program of China(973 Program,No.2013CB228103)
文摘Fractional pyrolysis and one-step pyrolysis of natural algae Cyanobacteria from Taihu Lake were comparatively studied from 200 to 500 ℃. One-step pyrolysis produced bio-oil with complex composition and low high heating value (HHV〈30.9 MJ/kg). Fractional pyrolysis separated the degradation of different components in Cyanobacteria and improved the selectivity to products in bio-oil. That is, acids at 200 ℃, amides and acids at 300 ℃, phenols and nitriles at 400 ℃, and phenols at 500 ℃, were got as main products, respectively. HZSM-5 could promote the dehydration, cracking and aromatization of pyrolytic intermediates in fractional pyrolysis. At optimal HZSM-5 catalyst dosage of 1.0 g, the selectivity to products and the quality of bio-oil were improved obviously. The main products in bio-oil changed to nitriles (47.2%) at 300 ℃, indoles (51.3%) and phenols (36.3%) at 400 ℃. The oxygen content was reduced to 7.2 wt% and 9.4 wt%, and the HHV was raised to 38.1 and 37.3 MJ/kg at 300 and 400 ℃, respectively. Fractional catalytic pyrolysis was proposed to be an efficient method not only to provide a potential solution for alleviating environmental pressure from water blooms, but also to improve the selectivity to products and obtain high quality bio-oil.
文摘Production of benzene, toluene and xylenes (BTX) from bio-oil can provide basic feedstocks for the petrochemical industry. Catalytic conversion of bio-oil into BTX was performed by using different pore characteristics zeolites (HZSM-5, HY-zeolite, and MCM-41). Based on the yield and selectivity of BTX, the production of aromatics decreases in the following order: HZSM-5〉MCM-41〉HY-zeolite. The highest BTX yield from bio-oil using HZSM-5 reached 33.1% with aromatics selectivity of 86.4%. The reaction conditions and catalyst characterization were investigated in detail to make clear the optimal operating parameters and the relation between the catalyst structure and the production of BTX.
基金the financial support from EnerBio Program of Fondation Tuck France,and express their gratitude to Mr
文摘A model is proposed to describe soot formation and oxidation during bio-oil gasification.It is based on the description of bio-oil heating,devolatilization,reforming of gases and conversion of both char and soot solids.Detailed chemistry (159 species and 773 reactions) is used in the gas phase.Soot production is described by a single reaction based on C2H2species concentration and three heterogeneous soot oxidation reactions.To support the validation of the model,three sets of experiments were carried out in a lab-scale Entrained Flow Reactor (EFR) equipped with soot quantification device.The temperature was varied from 1000 to 1400 C and three gaseous atmospheres were considered:default of steam,large excess of steam(H2O/C=8),and the presence of oxygen in the O/C range of 0.075–0.5.The model is shown to accurately describe the evolution of the concentration of the main gas species and to satisfactorily describe the soot concentration under the three atmospheres using a single set of identified kinetic parameters.Thanks to this model the contribution of different mechanisms involved in soot formation and oxidation in various situations can be assessed.
基金support from the National Hi-tech Research and Development Program of China (863 Program) (2012AA051801)the Fundamental Research Funds for the Central Universities (No.CXZZ13_0112)the Scientific Research Foundation of Graduate School of Southeast University (YBPY1408)
文摘Guaiacol was chosen to represent O-containing chemicals with lower effective hydrogen carbon ratio(H/Ceff factor) in bio-oil,and the hydrodeoxygenation of guaiacol was investigated over non-precious and nonsulfided catalysts. Effects of metal composition,reaction temperature,and hydrogen pressure on conversion and selectivity were investigated systematically. Among various compositions of catalysts,Ni Co/CNT exhibited best performance of guaiacol conversion with higher selectivity towards desired alcohols with higher H/Cefffactor. The reaction pathways of guaiacol in aqueous were proposed based on the product analyzed.Results show that metal composition and temperature have great effects on the conversion of guaiacol and the yields of desired products.
基金Supported by State Key Development Program for Basic Research of China(2007CB210208)National Science and Technology Major Project of China(2008ZX07101)China Scholarship Council(CSC),Natural Science and Engineering Research Council of Canada(NSERC),BIOCAP,and Canadian Funding for Innovations(CFI)
文摘Bio-oil is a new liquid fuel produced by fast pyrolysis,which is a promising technology to convert bio-mass into liquid. Pyrolytic lignin extracted from bio-oil,a fine powder,contributes to the instability of bio-oil. The paper presents the structural features of three kinds of pyrolytic lignin extracted from bio-oil with different methods(WIF,HMM,and LMM) . The pyrolytic lignin samples are characterized by Fourier transform infrared spectrometer(FTIR) and X-ray photoelectron spectroscopy(XPS) . FTIR data indicate that the three pyrolytic lignin samples have similar functional groups,while the absorption intensity is different,and show characteristic vibra-tions of typical lignocellulosic material groups O H(3340-3380 cm-1) ,C H(2912-2929 cm-1) and C O(1652-1725 cm-1) . Comparison in the region(3340-3380 cm-1) indicates that WIF has more O H stretch groups than HMM and LMM. The carbon spectra are fitted to four peaks:C1,C C or C H,BE 283.5 eV;C2,C OR or C OH,BE 284.5-285.8 eV;C3,C O or HO C OR,BE 286.10-287.10 eV;C4,O C O,BE 287.5-287.7 eV. The absence of C1,C C or C H indicates the dominant polymerization structure of aro-matic carbon in pyrolytic lignin samples. For HMM and WIF,C2a and C2b can not be separated,so there is no free hydroxyl group in the samples. The oxygen peaks are also fitted to four peaks:O1,OH,BE = 530.3 eV;O2,RC O,BE 531.45-531.72 eV;O3,O C O,BE = 532.73-533.74 eV;O4,H2O,BE 535 eV. The absence of O1 and O4 indicates that little hydroxyl groups and adsorbed water are present in the samples.
文摘Hydrogen production by catalytic steam reforming of the bio-oil, naphtha, and CH4 was investigated over a novel metal-doped catalyst of (Ca24Al28O64)^4+·4O^-/Mg (C12A7-Mg). The catalytic steam reforming was investigated from 250 to 850℃ in the fixed-bed continuous flow reactor. For the reforming of bio-oil, the yield of hydrogen of 80% was obtained at 750℃, and the maximum carbon conversion is nearly close to 95% under the optimum steam reforming condition. For the reforming of naphtha and CH4, the hydrogen yield and carbon conversion are lower than that of bio-oil at the same temperature. The characteristics of catalyst were also investigated by XPS. The catalyst deactivation was mainly caused by the deposition of carbon in the catalytic steam reforming process.
基金the National Key R&D Program of China(No.2019YFB1503902)the National Natural Science Foundation of China(NSFC)(Nos.51976074,51950410757)。
文摘The reactive O-containing species in bio-oil could induce the polymerization of bio-oil during its thermal treatment, which affects the relevant utilization of bio-oil significantly. Furans, as the highly reactive Ocontaining species in bio-oil, play important roles during the thermal treatment of bio-oil. In this study,furfural was chosen as the representative of the furans in bio-oil to investigate its roles during the thermal treatment of bio-oil. The raw bio-oil with and without the addition of extra furfural(10 wt% of bio-oil) and pure furfural were pyrolyzed in a fixed-bed reactor at 200–500 ℃. The results show that the interactions among furfural and bio-oil components can take place prior to the evaporation of furfural(<140 ℃) to form the intermediates, then these intermediates could be further polymerized to form large molecular compounds, and coke can be formed via the interactions at temperatures ≥ 300 ℃. At temperatures ≤ 300 ℃, furfural mainly interacts with anhydrosugars. As the temperature further increases, the aromatics are involved in the interactions to form coke. The increased percentage of the coke formed via the interactions is in a linear relation with the conversion of furfural during the pyrolysis at 300–500 ℃(no coke formed at 200 ℃). Meanwhile, more non-aromatic light components(≤ C6) and less aromatics in the tars could be formed due to the interactions.
基金the support for this research from the Project supported by Shandong Provincial Natural Science Foundation of China[ZR2017MEE004]National Natural Science Foundation of China[51536009 and 51276103]+1 种基金Distinguished Expert of Taishan Scholars(Shandong Province)and Higher Education Superior Discipline Team Training Program of Shandong Province,China National Natural Science Fund[51606113]Key Research and Development Program of Shandong Province[2017GGX40108].
文摘Bio-oil production via pyrolysis is one of promising technologies for renewable energy production from bio-wastes.However,the complicated biooil is still a challenge for high-valued application and during biomass pyrolysis,the emission of non-cleaned aerosol,the potential emission,namely carbonaceous aerosol(CA)increased the difficulty of the commercial promotion.In this study,Rice husk pyrolysis was performed in a semi-continuous fluidized bed reactor coupled with fractional condensers.The effects of pyrolysis and condensation temperature on the properties of bio-oil and emission of CAwere investigated systemically.Results indicated that the in-situ separation of vapors was accomplished via condensers of different temperatures(85℃and−10℃).The bio-oil with different physiochemical properties were obtained in the high content of phenols and lower acids of BO1 and high content of acids and better liquidity.The size distribution of CA was found primarily classified as sub-micrometer grade particles,which have a diameter of less than 1.1μm.In particular,CA existed in three representative forms:bead,granular aggregate,and liquidoid.The results of light absorption of total organic carbon(TOC)and non-volatile organic carbon(NVOC)indicated that the absorption per mass increased in the single temperature with the decrement of wavelength and it improved as the pyrolysis temperature increased at the specified wavelength.The absorption per mass was to maximum value(3.7 m^(2)/g)at 360 nm wavelength and 600℃.TOC demonstrated a strong light absorption and a wide spectral range dependence(AAE:5.08-10.05)which enhanced the light absorption in the ultra-violet and low-visible regions.
基金the Ministry of Research,Technology and Higher Education,Indonesia,for the financial support of this work through the research grant of "Produk Terapan" Universitas Negeri Semarang,Nomor:084/SP2H/LT/DRPM/IV/2017
文摘Utilization of biomass as a new and renewable energy source is being actively conducted by various parties. One of the technologies for utilizing or converting biomass as an energy source is pyrolysis, to convert biomass into a more valuable product which is bio-oil. Bio-oil is a condensed liquid from the vapor phase of biomass pyrolysis such as coconut shells and coffee shells. Biomass composition consisting of hemicellulose, cellulose, and lignin will oxidize to phenol which is the main content in bio-oil. The total phenolic compounds contained in bio-oil are 47.03%(coconut shell) and 45%(coffee shell). The content of phenol compounds in corrosive bio-oils still quite high, the use of this bio-oil directly will cause various difficulties in the combustion system due to high viscosity, low calorific value, corrosivity, and instability. Phenol compounds have some benefits as one of the compounds for floor cleaners and disinfectants which are contained in bio-oil.The correlation between experimental data and calculations shows that the UNIQUAC Functional-group Activity Coefficients(UNIFAC) equilibrium model can be used to predict the liquid–liquid equilibrium in the phenol extraction process of the coconut shell pyrolysis bio-oil. While the Non-Random Two Liquid(NRTL) equilibrium model can be used to predict liquid–liquid equilibrium in the extraction process of phenol from bio-oil pyrolysis of coffee shells.