Density functional theory(DFT)-B3LYP level with the 6-311G**(d,p) basis set was used to calculate a set of molecular quantum chemical descriptors of 12 chloroanilines. Quantitative structure-activity relationshi...Density functional theory(DFT)-B3LYP level with the 6-311G**(d,p) basis set was used to calculate a set of molecular quantum chemical descriptors of 12 chloroanilines. Quantitative structure-activity relationship(QSAR) models of the bioconcentration factors(BCF) of the anilines in fish were established using some of the following calculated descriptors: EHOMO, ENHOMO, ELUMO, ENLUMO, ΔE1(= ELUMO- EHOMO), ΔE2(= ENLUMO- ENHOMO), dipole moment(μ), molecular volume(V), vibrational energy of 0 K(Ev), thermodynamic energy(E), heat capacity(Cv), entropy(Sm) and the charge of benzene ring(Qph). Using the variable selection and leaps-and-bounds regression, the quantum chemical descriptors derived directly from the molecular structures were employed to develop a linear QSAR model between the bioconcentration factors(BCF) and two descriptors(Sm, ENHOMO) of 12 chloroanilines. Statistically, the most significant one is a two-parameter linear equation with the correlation coefficient(R^2) of 0.981 and cross-validated correlation coefficient(Rcv^2) of 0.967. The established QSAR model has good stability and predictability based on the results from Rcv2 of leave-one-out cross-validation, AIC, FIT and tα/2. The quantum chemical analyses were performed from two aspects of frontier molecular orbital and entropy. The results show that two structural describers are crucial to the bioconcentration activity of chloroanilines.展开更多
Based on the characteristics of atom types, Hall's electrotopological state indices (En) are calculated for 165 nonionic organic compounds. On the basis of the characteristics of substituent and conjugated matrix, ...Based on the characteristics of atom types, Hall's electrotopological state indices (En) are calculated for 165 nonionic organic compounds. On the basis of the characteristics of substituent and conjugated matrix, a novel molecular structure parameter (G) is defined and calculated for 165 molecules in this paper. En and G show good structural selectivity for organic molecules. G, a satisfactory relationship between bioconcentration factor (BCF) and En, is expressed as: 1gBCF = -0.283 + 1.246G + 0.079E42 + 0.351E9- 0.063E17 (n' = 122, R = 0.967, F = 425.636, s = 0.394), which could provide estimation and prediction for the lgBCF of nonionic organic chemicals. Furthermore, the model is examined to validate overall robustness with Jackknife tests, and the independent variables in model do not exist cross correlation with VIF. All these regression results show that the new parameter G and electrotopological state index have good rationality and efficiency. It is concluded that the En and G will be used widely in quantitative structure-property/activity relationship (QSPR/QSAR) research.展开更多
The polycyclic aromatic hydrocarbons(PAHs) concentrations were determined in the root of three mangrove species(Kandelia candel, Avicennia marina and Bruguiera gymnorrhiza) and their growing environment(sediment) in m...The polycyclic aromatic hydrocarbons(PAHs) concentrations were determined in the root of three mangrove species(Kandelia candel, Avicennia marina and Bruguiera gymnorrhiza) and their growing environment(sediment) in mangrove wetlands of Jiulong River Estuary, Fujian, China. The total PAHs(16 parent PAHs) in mangrove sediments ranged from 193.44 to 270.53 ng/g dw, with a mean value of 231.76±31.78 ng/g dw. Compared with other mangrove and coastal marine sediments, the PAHs concentrations of all the sampling areas in this study were at relatively lower level. The total PAHs(13 parent PAHs) values varied from 30.83 to 62.73 ng/g dw in mangrove roots. Benzo[a]pyrene(five-ring), fluoranthene(four-ring) and pyrene(four-ring) dominated in mangrove sediments. Based on ratios of phenathrene/anthracene, fluoranthene/pyrene and fluoranthene/pyrene + fluoranthene, the main possible sources of surface sediment PAHs were identified as grass, wood or coal combustion for mangrove wetlands of Jiulong River Estuary. Naphthalene(two-ring) and phenathrene(three-ring) were the most abundant compounds in mangrove roots. Sediment-to-vegetation bioconcentration factors(BCF SV s) were calculated and their relationships with PAHs' physico-chemical properties were investigated. The average BCF SV s of PAHs for three mangrove species roots were almost all under the level of 1 except for naphthalene. Good linear relationship between BCF SV values for mangrove roots and PAHs water solubility, octanol-water partitioning coefficients was derived in present study. The solubility and the octanol-water partition coefficient were proved to be good predictors for the accumulation of PAHs in mangrove roots, respectively.展开更多
It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from...It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from the main rice producing areas in China were selected, and a pot-experiment was conducted to investigate transformation of Cd in paddy soil-rice system with 0 (CK), 0.3 mg kg–1 (T1) and 0.6 mg kg–1 (T2) Cd treatments in greenhouse. The results showed that Cd concentrations of rice grains existed signiifcant difference (P<0.05) in 20 rice cultivars under the same Cd level in soil. The Cd concentrations of rice grains of the CK, T1 and T2 treatments were in the range of 0.143–0.202, 0.128–0.458 and 0.332–0.806 mg kg–1, respectively. Marked differences of the ratios of Cd concentration for soil to rice grain (BCFs) and transfer factors (TFs, root to grain and straw to grain) among the tested cultivars were observed in this study. The bioconcentration factors (BCFgrain) and TFs of the 20 rice cultivars were 0.300–1.112 and 0.342–0.817, respectively. The TFs of Cd from straw to grain ranged from 0.366 to 1.71, with signiifcant differences among these 20 rice cultivars. The bioconcentration factors (BCFgrain) and TFs among the 20 rice cultivars ranged from 0.300–1.112 and 0.342–0.817, respectively. The species-sensitivity distribu-tion (SSD) of Cd sensitivity of the rice species could be iftted wel with Burr-III (R2=0.987) based on the data of BCFs. The toxicity threshold of Cd derived from SSD for the paddy soil was 0.507 mg kg–1 in the present study.展开更多
A long-term field experiment was carried out with a wheat-maize rotation system to investigate the accumulation and bioavailability of heavy metals in a calcareous soil at different rates of sewage sludge amendment. T...A long-term field experiment was carried out with a wheat-maize rotation system to investigate the accumulation and bioavailability of heavy metals in a calcareous soil at different rates of sewage sludge amendment. There are significant linear correlations between the contents of Hg, Zn, Cu, Pb, and Cd in soil and sewage sludge amendment rates. By increasing 1 ton of applied sludge per hectare per year in soil, the contents of Hg, Zn, Cu, Pb, and Cd in soil increased by 6.20, 619, 92.9, 49.2, and 0.500 μg kg–1, respectively. For Hg, sewage sludge could be safely applied to the soil for 18 years at an application rate of 7.5 t ha–1 before content exceeded the soil environmental quality standards in China(1 mg kg–1). The safe application period for Zn is 51 years and is even longer for other heavy metals(112 years for Cu, 224 years for Cd, and 902 years for Pb) at an application rate of 7.5 t ha–1 sewage sludge. The contents of Zn and Ni in wheat grains and Zn, Cu, and Cr in maize grains increased linearly with increasing sewage sludge amendment rates. The contents of Zn, Cr, and Ni in wheat straws and Zn, Cu, and As in maize straws were positively correlated with sewage sludge amendment rates, while the content of Cu in wheat straws and Cr in maize straws showed the opposite trend. The bioconcentration factors of the heavy metals in wheat and maize grains were found to be in the order of Zn>Cu>Cd>Hg>Cr=Ni>Pb>As. Furthermore, the bioconcentration factors of heavy metals in wheat were greater than those in maize, indicating that wheat is more sensitive than maize as an indicator plant. These results will be helpful in developing the critical loads for sewage sludge amendment in calcareous soils.展开更多
The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentr...The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentration and distribution of chlorobenzenes (CBs) in both water and waterweeds collected from 4 stations in the Xijiang River (Gangdong section) of the Pearl River in April and November were determined. The result showed that nearly every congener of CBs was detected. The total contents of CBs (ZCBs) in the river water ranged from 111.1 to 360.0 ng/L in April and from 151.9 to 481.7 ng/L in November, respectively. The pollution level of CBs in the water in April was higher than that in November. The contents of ZCBs in waterweeds ranged from 13.53×10^2μg/g to 38.27×10^2μg/g dry weight (dw). There was no significant difference between April and November in waterweeds. The distribution of CBs in roots, caulis, and leaves of Vallisneria spiralis L. showed different patterns. The leaves mainly contained low-molecular-weight CBs (DCBs), whereas the roots accumulated more PCBs and HCBs. The average lgBCFlip (bioconcentration factor) of CBs ranged from 0.64 to 3.57 in the waterweeds. The spatial distribution character of CBs in the Xijiang River was: Fengkai County 〈 Yunan County 〈 Yun'an County 〈 Gaoyao County according to the ZCBs, and the pollution deteriorated from the upstream to the downstream of the Xijiang River. Further analysis demonstrated that the discharge of waste containing CBs may be the main source of CBs pollution in the Xijiang River .展开更多
This study was conducted to assess availability, phytotoxicity and bioaccumulation of lead (Pb) to ryegrass (Lolium perenne L.) and millet (Echinochloa crusgalli) based on the 0.1 mol/L Ca(NO3)2 extraction. Ef...This study was conducted to assess availability, phytotoxicity and bioaccumulation of lead (Pb) to ryegrass (Lolium perenne L.) and millet (Echinochloa crusgalli) based on the 0.1 mol/L Ca(NO3)2 extraction. Effect of soil properties on availability, phytotoxicity and bioaccumulation of Pb to the two plants was also evaluated. Five soils with pH values varying from 3.8 to 7.3, organic carbon (OC) contents from 0.7% to 2.4%, and clay contents from 11.6% to 35.6% were selected. Soils were spiked with Pb to achieve a range of concentrations: 250, 500, 1000, 3000 and 5000 mg/kg. Pb availability in the spiked soils was estimated by extracting soil with 0.1 mol/L Ca(NO3)2. The results indicate that plants yield decreased with decreasing soil pH and increased with increasing soil clay and OC content. Negative relationship between available Pb and the relative dry matter growth (RDMG) of the two plants were significantly related. Available Pb used to assess EC20 (20% effective concentration) and EC50 (50% effective concentration) of millet was 119 and 300 mg/kg, respectively. Available Pb used to assess EC20 and EC50 of ryegrass was 63 and 157 mg/kg, respectively. Bioaccumulation, expressed as bioconcentration factors of Pb, was inversely related to soil pH, soil OC and clay content. Strong relationships were found between available lead and uptake by the two plants (P was 0.92 and 0.95 respectively). In general, 0.1 mol/L Ca(NO3)2 available Pb may be used to assess the availability, phytotoxicity and bioaccumulation of lead to the two plants tested.展开更多
Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies...Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies on the application of abandoned BR with massive consumption have been reported.In this study,the possibility of the revegetation using ryegrass growing on BR was discussed mainly through the growth indications and transfer of heavy metal ions in BR and plants.In the pot trails,ryegrass was seeded on BR,de-alkali BR,with(DBRO)or without(DBR)organic fertilizer,respectively.The results indicated that the remediation of bauxite residue can be achieved through de-alkali with acid neutralization.Elemental analysis indicated that the elements,except for Fe,Mn and Pb,were stable in plant roots,and ryegrass could hardly absorb Cd.But,some heavy metals such as Cu enriched in plants,which should be noted in revegetation on bauxite residue.展开更多
Abstract Zinc (Zn) and copper (Cu) concentrations were determined in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five commercial fish species (mullet Liza haematocheilus, flathead Platyceph...Abstract Zinc (Zn) and copper (Cu) concentrations were determined in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five commercial fish species (mullet Liza haematocheilus, flathead Platycephalus indicus, mackerel Scomberomorus niphonius, silver pomfret Pampus argenteus, and sea bass Lateolabrax japonicus) from Laizhou Bay in the Bohai Sea. Metal bioaccumulation was highest in the metabolically active tissues of the gonads and liver. Bioconcentration factors for Zn were higher in all tissues (gonads 44.35, stomach 7.73, gills 7.72, liver 5.61, skin 4.88, and muscle 1.63) than the corresponding values for Cu (gonads 3.50, stomach 3.00, gills 1.60, liver 5.43, skin 1.50, and muscle 0.93). Mackerel tissues accumulated metal to higher concentrations than did other fish species, but bioaccumulation levels were not significantly correlated with the trophic levels of the fish. Zn and Cu concentrations in the tissues were generally negatively correlated with fish length, except for a few tissues of sea bass. Risk assessment based on national and international permissible limits and provisional tolerances for weekly intake of Zn and Cu revealed that the concentrations of these two metals in muscle were relatively low and would not pose hazards to human health.展开更多
This paper reported the results of the determination of Ag, A1, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr and Zn in Common Chanterelles (Cantharellus cibarius) Fr. and surface soil layer (o-io cm...This paper reported the results of the determination of Ag, A1, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr and Zn in Common Chanterelles (Cantharellus cibarius) Fr. and surface soil layer (o-io cm) underneath the fruiting bodies. Mushrooms and soils were collected from a lowland site in the Hel Peninsula (Baltic Sea coast) and a high mountain site in the Tatra Mountains. The trace elements were determined using validated method and inductively coupled plasma - atomic emission spectroscopy (ICP-AES). Common Chanterelles that emerged at sites poor in mineral nutrients podzols of the Hel Peninsula forests efficiently bioeoncentrated several essential trace elements (K, P, Co, Cu, Mn, Na, Zn), while the abundance of those elements in carpophores was around half less compared to specimens from Zakopane region and which emerged in soils much richer in minerals. Common Chanterelles collected at two spatially distant background areas in Poland were only weakly contaminated with metals such as Ag, Cd, Hg and Pb. The maximum tolerable Cd and Pb contents of certain cultivated mushrooms are regulated in the European Union by law and these hazardous metals in C. cibarius were far below tolerance limits set.展开更多
In this study the transfer characteristics of mercury(Hg) from a wide range of Chinese soils to corn grain(cultivar Zhengdan 958) were investigated. Prediction models were developed for determining the Hg bioconce...In this study the transfer characteristics of mercury(Hg) from a wide range of Chinese soils to corn grain(cultivar Zhengdan 958) were investigated. Prediction models were developed for determining the Hg bioconcentration factor(BCF) of Zhengdan 958 from soil, including the soil properties, such as p H, organic matter(OM) concentration, cation exchange capacity(CEC), total nitrogen concentration(TN), total phosphorus concentration(TP), total potassium concentration(TK), and total Hg concentration(THg), using multiple stepwise regression analysis. These prediction models were applied to other non-model corn cultivars using a cross-species extrapolation approach. The results indicated that the soil p H was the most important factor associated with the transfer of Hg from soil to corn grain. Hg bioaccumulation in corn grain increased with the decreasing p H. No significant differences were found between two prediction models derived from different rates of Hg applied to the soil as HgCl2. The prediction models established in this study can be applied to other non-model corn cultivars and are useful for predicting Hg bioconcentration in corn grain and assessing the ecological risk of Hg in different soils.展开更多
To evaluate the zinc(Zn)remediation capacity of four alfalfa species,the effects of different concentrations of Zn on plant growth,Zn uptake and translocation as well as uptake of other nutrients were investigated.The...To evaluate the zinc(Zn)remediation capacity of four alfalfa species,the effects of different concentrations of Zn on plant growth,Zn uptake and translocation as well as uptake of other nutrients were investigated.The results showed that the Zn tolerance index of Aohan was significantly higher than other species.Among the four species,Aohan had the highest concentration of Zn in roots,followed by Golden Empress,Sanditi and Longxi.Aohan had the highest bioconcentration factor(BCF)in leaves.Whereas,Sanditi and Longxi had the lowest BCF in stem and roots,respectively.The translocation factor of Golden Empress was significantly lower than other species.The Zn accumulation rate of Aohan was higher than other species regardless of the concentration of Zn.Longxi had the lowest allocation of Zn in leaves and Golden Empress had the lowest allocation of Zn in roots.The concentrations of other elements(Fe and Mg)in leaves were decreased with Zn additions,but the interactions between Zn and other elements in roots varied with species.These results indicated that suitable species of alfalfa could successfully be used for the phytoremediation of Zn-contaminated soils.展开更多
We studied the rate of lead resoprtion in the gastrointestinal tract of the bird and accumulation of this element by organs and tissues different in their morphology and functions. The minimum lethal lead dosage makin...We studied the rate of lead resoprtion in the gastrointestinal tract of the bird and accumulation of this element by organs and tissues different in their morphology and functions. The minimum lethal lead dosage making 1.5 mg/kg of the live body weight leads to reduction of its mass recovering after its resoprtion in the stomach. Accumulation and elimination of lead from the body are related to dynamics of the body weight. The rate of these processes is in direct dependence and significantly different in various tissues and organs. Claws, kidneys, liver and feathers are characterized by very high rate of element accumulation and fat, heart and muscles - by the lowest rate. Intense elimination of lead from the body starts approximately in 2-2.5 months after the gastrointestinal tract is released from it.展开更多
Heavy metals are transferred from the abiotic environment to living organisms, accumulate in food, contaminate the food chain, and are an important route of human exposure involving a potential health risk. In this st...Heavy metals are transferred from the abiotic environment to living organisms, accumulate in food, contaminate the food chain, and are an important route of human exposure involving a potential health risk. In this study, the concentrations of heavy metals (Cd, Fe, Pb, Zn and As) in agricultural soils and tubers of <em>Solanum tuberosum spp. andigena</em> (native potato) were evaluated. Also, an assessment of the health risk associated with the daily intake by the local population was performed in the four districts of the department of Junín, between altitudes of 3800 m to 4200 m. The heavy metals concentrations in soils with native potato cultivation followed the following decreasing order of Fe > Zn > Pb > As > Cd, with values below national standards. The heavy metals content in native potatoes was below the limits recommended by international standards with the exception of Pb. The bioconcentration factor (BCF) for the two native potato varieties in decreasing order was Zn > Cd > Pb > As > Fe, all less than 0.5. The estimated daily intake of metals (EDIM) in adults and children through the consumption of native potatoes was higher for Fe and Zn. The threshold carcinogenic risk values (TCR) for As exceeded the safety limits 1 × 10<sup>-4</sup>. It is concluded that the residents in the four high Andean localities would be exposed to carcinogenic adverse health effects associated with the intake of native potatoes. It is important to monitor the concentration of As and other heavy metals in the Andean soils and crops in order to implement a soil and crop management program to ensure food quality.展开更多
Although pesticides have been widely used worldwide to enhance crop yield and product quality,most pesticides are harmful to the environment and human health.Plants absorb pesticides mainly from air and soil.Therefore...Although pesticides have been widely used worldwide to enhance crop yield and product quality,most pesticides are harmful to the environment and human health.Plants absorb pesticides mainly from air and soil.Therefore,the soil-plant pathway is essential for pesticide absorption.Bioconcentration factor(BCF)has extensively been applied to evaluate potential plant contamination by pesticides from soil.Hence,this study developed a simplified plant transpiration-based plant uptake model(PT-model)to estimate plant pesticides’BCF from soil based on plant transpiration.Remote sensing techniques were employed to generate spatiotemporal continuous plant transpiration via evapotranspiration.Pesticide BCF mapping was achieved by integrating PT-model with Moderate Resolution Imaging Spectroradiometer(MODIS)remotely sensed data.The results were compared with a verified model driven by relative humidity and air temperature(RA-model),which has been confirmed byfindings from previous studies.The estimated BCF was within the boundaries of the RA-model,indicating the simulation’s overall acceptability.In this study,the BCF temporal trend estimated by the proposed method agreed with the RA-model assimilating meteorology datasets,while the spatial distribution was partially inconsistent.Overall,the proposed method generates the spatiotemporal patterns of pesticide BCF with relatively consistent results supported by previous records andfindings.展开更多
In some densely-populated countries, farmland has been widely cadmium (Cd) contaminated, and the utilization of the contaminated farmland for crop production is currently unavoidable. This necessitates the use of low-...In some densely-populated countries, farmland has been widely cadmium (Cd) contaminated, and the utilization of the contaminated farmland for crop production is currently unavoidable. This necessitates the use of low-Cd crops (i.e., pollution-safe cultivars, the crop varieties with the ability to accumulate a low level of Cd in their edible parts when grown on polluted soil) in these areas and highlights the importance of knowledge on phenotypic variation in crop Cd accumulation for food Cd risk control. Studies on phenotypic variation in heavy metal accumulation started decades ago for a wide range of crops, and synthesis of the scattered experimental results in the literature is in need. We built a Low-Cd Crops Database based on literature research, and relevant meta-analysis was performed to quantitatively explore the phenotypic variation in Cd uptake and translocation of rice and wheat. Considerable variability existed among rice (median grain Cd bioconce nt ration factor (BCF) of 0.10) and wheat (median grain Cd BCF of 0.21) phenotypes in grain Cd accumulation, and this variability was labile to soil pH and the level of Cd stress. Wheat statistically had a higher root-to-shoot Cd-translocating ability than rice, highlighting potential food Cd risks and the importance of growing low-Cd wheat in slightly Cd-contaminated regions. Meanwhile, no correlations were detected among soil-to-root, root-to-shoot, and shoot-to-grain translocation factors, implying that Cd uptake and internal translocation in crops were probably controlled by different underlying gene tic mechanisms. Root-to-shoot Cd transport could be a favorable target trait for selecting and breeding low-Cd rice and wheat. In all, this review provides a comprehensive low-Cd crop list for remediation practice and a systematic meta-analysis inferring food Cd risks based on plant capacity for Cd accumulation and desired traits for low-Cd crop breeding.展开更多
Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N...Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N2 and N5,were subjected to six cadmium(Cd) concentrations(0,5,25,50,100 and 200 mg L1) to investigate Cd tolerance and accumulation.After 21 days of growth,the effects of Cd on growth,chlorophyll content,net photosynthetic rate,intercellular CO2 concentration and malondialdehyde content were evaluated.Most growth parameters were reduced under Cd stress.The two Jerusalem artichoke cultivars had relatively high Cd tolerance and accumulation capacity(> 100 mg kg1),with N5 being more tolerant and having higher Cd accumulation than N2.Roots accumulated more Cd than stems and leaves.The bioconcentration factors(far higher than 1) and translocation factors(lower than 1) decreased with an increase in Cd applied.The results suggested that Jerusalem artichoke could be grown at relatively high Cd loads,and N5 could be an excellent candidate for phytoremediation of Cd-contaminated soils.展开更多
Soil contamination by metals from anthropogenic activities (e.g., mining and smelting) is a major concern for the environment and human health. Environmental availability of cadmium (Cd), lead (Pb), zinc (Zn),...Soil contamination by metals from anthropogenic activities (e.g., mining and smelting) is a major concern for the environment and human health. Environmental availability of cadmium (Cd), lead (Pb), zinc (Zn), copper (Cu), and indium (In) in 27 urban soils located around two former Pb and Zn smelters in Northern France were studied by analysing the chemical forms of these metals and evaluating their phytoavailability. These metals were determined using flame or electrothermal absorption atomic spectrometry (FAAS or ETAAS), depending on their concentration levels. After optimisation of the ETAAS method, characteristic mass of In in water and aqua regia were 9.9 and 18 pg, respectively, showing the high sensitivity of the analytical procedure. Metal partitioning was conducted using a four-step sequential extraction procedure. The results showed that Cd and Zn were mainly in the acid-extractable and reducible forms in the urban soils studied. In contrast, Pb and In were largely in the reducible fraction. However, in some samples, the amount of In extracted in the residual or exchangeable fraction was higher than that in the reducible fraction. Copper was mainly found in the reducible and residual fractions. A pot experiment was conducted in a glasshouse with seven soils (six contaminated and one uncontaminated) and two plant species, ryegrass and lettuce. The results showed transfer of metals from the contaminated soils to the shoots of ryegrass and the edible part of lettuce. The metal bioconcentration factor was in the order of Cd 〉〉 Cu 〉 In 〉 Zn 〉〉 Pb for lettuce leaves, whereas for ryegrass shoots, three orders were found, Cd 〉 Zn 〉 Cu 〉〉 In 〉 Pb, Cd 〉〉 In 〉 Zn 〉 Cu 〉〉Pb, and Zn 〉 Cd 〉 Cu 〉 In 〉〉 Pb, depending on the physico-chemical properties of the soils, such as pH, cation exchange capacity, carbonates, and organic matter. It was established that the metal toxicity was related to the contamination levels and the physico-chemical properties, including pH, organic matter, and in a lesser extent, Ca, Mg, and phosphorus contents, of the soils. However, it was shown that lettuce could grow on soils having high Cd and CaCO3 contents. Cadmium was one of the most available metals while Pb was always the least available in the soils studied.展开更多
Persistent organic pollutants (POPs) in soils are an environmental concern due to their long-term bioavailability, which could be reduced by adding adsorbents. However, testing of these adsorbents is necessary prior...Persistent organic pollutants (POPs) in soils are an environmental concern due to their long-term bioavailability, which could be reduced by adding adsorbents. However, testing of these adsorbents is necessary prior to widespread field application. The effects of three adsorbents, nano-organic montmorillonite, nano-organic silicon dioxide (SiOs), and activated carbon, on hexachlorobenzene (HCB) and pentachlorobenzene (PeCB) accumulation in rice (Oryza sativa L.) plants were tested in a greenhouse experiment using two soils, a Hydragric Acrisol (Ac) and a Gleyi-Stagnic Anthrosol (An). The bioconcentration factors (BCFs) of HCB and PeCB to rice roots were 2.3-3.7 and 2.0 3.0 times those to rice shoots, respectively. The applications of the three adsorbents decreased HCB and PeCB extractability in Ac, while only the application of activated carbon decreased their extractability in An. The bioavailability of HCB and PeCB to rice plants in Ac was higher than that in An. In Ac, the applications of nano-organic SiOs and activated carbon decreased the BCF of HCB to rice roots by 16.1% and 26.8%, respectively, whereas only the application of activated carbon decreased the BCF of PeCB to rice roots by 31.4%, compared to the control. In An, only the application of activated carbon decreased the BCFs of HCB and PeCB to rice roots by 22.9% and 18.2%, respectively, compared to the control. However, the application of nano-organic montmorillonite inhibited rice growth in both soils. The results of this study suggested that the effectiveness of adsorbents would vary with pollutant and soil types, providing a reference point for developing efficient adsorbents to reduce the ecological risk of POPs.展开更多
The toxicity of trace elements (TEs), such as copper (Cu), zinc (Zn), and cadmium (Cd), often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs...The toxicity of trace elements (TEs), such as copper (Cu), zinc (Zn), and cadmium (Cd), often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs in SS from field experiments in China. In this study pot and field experiments were carried out for 2 years to investigate the phytoavailability of TEs in calcareous soils amended with SS. The results of the pot experiment showed that the phytoavailability of Zn and Cu in the SS was equal to 53.4%-80.9% and 54.8%-91.1% of corresponding water-soluble metal salts, respectively. The results from the field experiment showed that the contents of total Zn, Cu, and Cd in the soils increased linearly with SS application rates. With increasing SS application rates, the contents of Zn and Cu in the wheat grains initially increased and then reached a plateau, while there was no significant change of Cd content in the maize grains. The bioconcentration factors of the metals in the grains of wheat and maize were found to he in the order of Zn 〉 Cu 〉 Cd, but for the straw the order was Cd 〉 Cu 〉 Zn. It was also found that wheat grains could accumulate more metals compared with maize grains. The results will be helpful in developing the critical loads of sewage sludge applied to calcareous soils.展开更多
基金co-financed by the National Natural Science Foundation of China(21075138)special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control(13K02ESPCT)
文摘Density functional theory(DFT)-B3LYP level with the 6-311G**(d,p) basis set was used to calculate a set of molecular quantum chemical descriptors of 12 chloroanilines. Quantitative structure-activity relationship(QSAR) models of the bioconcentration factors(BCF) of the anilines in fish were established using some of the following calculated descriptors: EHOMO, ENHOMO, ELUMO, ENLUMO, ΔE1(= ELUMO- EHOMO), ΔE2(= ENLUMO- ENHOMO), dipole moment(μ), molecular volume(V), vibrational energy of 0 K(Ev), thermodynamic energy(E), heat capacity(Cv), entropy(Sm) and the charge of benzene ring(Qph). Using the variable selection and leaps-and-bounds regression, the quantum chemical descriptors derived directly from the molecular structures were employed to develop a linear QSAR model between the bioconcentration factors(BCF) and two descriptors(Sm, ENHOMO) of 12 chloroanilines. Statistically, the most significant one is a two-parameter linear equation with the correlation coefficient(R^2) of 0.981 and cross-validated correlation coefficient(Rcv^2) of 0.967. The established QSAR model has good stability and predictability based on the results from Rcv2 of leave-one-out cross-validation, AIC, FIT and tα/2. The quantum chemical analyses were performed from two aspects of frontier molecular orbital and entropy. The results show that two structural describers are crucial to the bioconcentration activity of chloroanilines.
基金the State Key Laboratory of Pollution Control and Reuse of China Project Proposal (PCRRF07009)the University Natural Science Foundation of Jiangsu Province (05KJD150221)Natural Science Incubation Foundation of Xuzhou Normal University (05PLY04)
文摘Based on the characteristics of atom types, Hall's electrotopological state indices (En) are calculated for 165 nonionic organic compounds. On the basis of the characteristics of substituent and conjugated matrix, a novel molecular structure parameter (G) is defined and calculated for 165 molecules in this paper. En and G show good structural selectivity for organic molecules. G, a satisfactory relationship between bioconcentration factor (BCF) and En, is expressed as: 1gBCF = -0.283 + 1.246G + 0.079E42 + 0.351E9- 0.063E17 (n' = 122, R = 0.967, F = 425.636, s = 0.394), which could provide estimation and prediction for the lgBCF of nonionic organic chemicals. Furthermore, the model is examined to validate overall robustness with Jackknife tests, and the independent variables in model do not exist cross correlation with VIF. All these regression results show that the new parameter G and electrotopological state index have good rationality and efficiency. It is concluded that the En and G will be used widely in quantitative structure-property/activity relationship (QSPR/QSAR) research.
文摘The polycyclic aromatic hydrocarbons(PAHs) concentrations were determined in the root of three mangrove species(Kandelia candel, Avicennia marina and Bruguiera gymnorrhiza) and their growing environment(sediment) in mangrove wetlands of Jiulong River Estuary, Fujian, China. The total PAHs(16 parent PAHs) in mangrove sediments ranged from 193.44 to 270.53 ng/g dw, with a mean value of 231.76±31.78 ng/g dw. Compared with other mangrove and coastal marine sediments, the PAHs concentrations of all the sampling areas in this study were at relatively lower level. The total PAHs(13 parent PAHs) values varied from 30.83 to 62.73 ng/g dw in mangrove roots. Benzo[a]pyrene(five-ring), fluoranthene(four-ring) and pyrene(four-ring) dominated in mangrove sediments. Based on ratios of phenathrene/anthracene, fluoranthene/pyrene and fluoranthene/pyrene + fluoranthene, the main possible sources of surface sediment PAHs were identified as grass, wood or coal combustion for mangrove wetlands of Jiulong River Estuary. Naphthalene(two-ring) and phenathrene(three-ring) were the most abundant compounds in mangrove roots. Sediment-to-vegetation bioconcentration factors(BCF SV s) were calculated and their relationships with PAHs' physico-chemical properties were investigated. The average BCF SV s of PAHs for three mangrove species roots were almost all under the level of 1 except for naphthalene. Good linear relationship between BCF SV values for mangrove roots and PAHs water solubility, octanol-water partitioning coefficients was derived in present study. The solubility and the octanol-water partition coefficient were proved to be good predictors for the accumulation of PAHs in mangrove roots, respectively.
基金support of the National Natural Science Foundation of China (41271490, 21077131)
文摘It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from the main rice producing areas in China were selected, and a pot-experiment was conducted to investigate transformation of Cd in paddy soil-rice system with 0 (CK), 0.3 mg kg–1 (T1) and 0.6 mg kg–1 (T2) Cd treatments in greenhouse. The results showed that Cd concentrations of rice grains existed signiifcant difference (P<0.05) in 20 rice cultivars under the same Cd level in soil. The Cd concentrations of rice grains of the CK, T1 and T2 treatments were in the range of 0.143–0.202, 0.128–0.458 and 0.332–0.806 mg kg–1, respectively. Marked differences of the ratios of Cd concentration for soil to rice grain (BCFs) and transfer factors (TFs, root to grain and straw to grain) among the tested cultivars were observed in this study. The bioconcentration factors (BCFgrain) and TFs of the 20 rice cultivars were 0.300–1.112 and 0.342–0.817, respectively. The TFs of Cd from straw to grain ranged from 0.366 to 1.71, with signiifcant differences among these 20 rice cultivars. The bioconcentration factors (BCFgrain) and TFs among the 20 rice cultivars ranged from 0.300–1.112 and 0.342–0.817, respectively. The species-sensitivity distribu-tion (SSD) of Cd sensitivity of the rice species could be iftted wel with Burr-III (R2=0.987) based on the data of BCFs. The toxicity threshold of Cd derived from SSD for the paddy soil was 0.507 mg kg–1 in the present study.
基金the National Key Research and Development Program of China (2016YFD0800406) for financial support
文摘A long-term field experiment was carried out with a wheat-maize rotation system to investigate the accumulation and bioavailability of heavy metals in a calcareous soil at different rates of sewage sludge amendment. There are significant linear correlations between the contents of Hg, Zn, Cu, Pb, and Cd in soil and sewage sludge amendment rates. By increasing 1 ton of applied sludge per hectare per year in soil, the contents of Hg, Zn, Cu, Pb, and Cd in soil increased by 6.20, 619, 92.9, 49.2, and 0.500 μg kg–1, respectively. For Hg, sewage sludge could be safely applied to the soil for 18 years at an application rate of 7.5 t ha–1 before content exceeded the soil environmental quality standards in China(1 mg kg–1). The safe application period for Zn is 51 years and is even longer for other heavy metals(112 years for Cu, 224 years for Cd, and 902 years for Pb) at an application rate of 7.5 t ha–1 sewage sludge. The contents of Zn and Ni in wheat grains and Zn, Cu, and Cr in maize grains increased linearly with increasing sewage sludge amendment rates. The contents of Zn, Cr, and Ni in wheat straws and Zn, Cu, and As in maize straws were positively correlated with sewage sludge amendment rates, while the content of Cu in wheat straws and Cr in maize straws showed the opposite trend. The bioconcentration factors of the heavy metals in wheat and maize grains were found to be in the order of Zn>Cu>Cd>Hg>Cr=Ni>Pb>As. Furthermore, the bioconcentration factors of heavy metals in wheat were greater than those in maize, indicating that wheat is more sensitive than maize as an indicator plant. These results will be helpful in developing the critical loads for sewage sludge amendment in calcareous soils.
基金Project supported by the Second Period of"985"Project of Ministry of Education of China (No.32000-3253282).
文摘The Xijiang River is the major source of water for about 4.5 millions of urban population and 28.7 millions of rural population. The water quality is very important for the health of the rural population. The concentration and distribution of chlorobenzenes (CBs) in both water and waterweeds collected from 4 stations in the Xijiang River (Gangdong section) of the Pearl River in April and November were determined. The result showed that nearly every congener of CBs was detected. The total contents of CBs (ZCBs) in the river water ranged from 111.1 to 360.0 ng/L in April and from 151.9 to 481.7 ng/L in November, respectively. The pollution level of CBs in the water in April was higher than that in November. The contents of ZCBs in waterweeds ranged from 13.53×10^2μg/g to 38.27×10^2μg/g dry weight (dw). There was no significant difference between April and November in waterweeds. The distribution of CBs in roots, caulis, and leaves of Vallisneria spiralis L. showed different patterns. The leaves mainly contained low-molecular-weight CBs (DCBs), whereas the roots accumulated more PCBs and HCBs. The average lgBCFlip (bioconcentration factor) of CBs ranged from 0.64 to 3.57 in the waterweeds. The spatial distribution character of CBs in the Xijiang River was: Fengkai County 〈 Yunan County 〈 Yun'an County 〈 Gaoyao County according to the ZCBs, and the pollution deteriorated from the upstream to the downstream of the Xijiang River. Further analysis demonstrated that the discharge of waste containing CBs may be the main source of CBs pollution in the Xijiang River .
基金The Strategic Environment Research and Development Program(SERDP), USA Project and the Alcoa Foundations Conservation andSustainability Fellowship Program (SDRAC)
文摘This study was conducted to assess availability, phytotoxicity and bioaccumulation of lead (Pb) to ryegrass (Lolium perenne L.) and millet (Echinochloa crusgalli) based on the 0.1 mol/L Ca(NO3)2 extraction. Effect of soil properties on availability, phytotoxicity and bioaccumulation of Pb to the two plants was also evaluated. Five soils with pH values varying from 3.8 to 7.3, organic carbon (OC) contents from 0.7% to 2.4%, and clay contents from 11.6% to 35.6% were selected. Soils were spiked with Pb to achieve a range of concentrations: 250, 500, 1000, 3000 and 5000 mg/kg. Pb availability in the spiked soils was estimated by extracting soil with 0.1 mol/L Ca(NO3)2. The results indicate that plants yield decreased with decreasing soil pH and increased with increasing soil clay and OC content. Negative relationship between available Pb and the relative dry matter growth (RDMG) of the two plants were significantly related. Available Pb used to assess EC20 (20% effective concentration) and EC50 (50% effective concentration) of millet was 119 and 300 mg/kg, respectively. Available Pb used to assess EC20 and EC50 of ryegrass was 63 and 157 mg/kg, respectively. Bioaccumulation, expressed as bioconcentration factors of Pb, was inversely related to soil pH, soil OC and clay content. Strong relationships were found between available lead and uptake by the two plants (P was 0.92 and 0.95 respectively). In general, 0.1 mol/L Ca(NO3)2 available Pb may be used to assess the availability, phytotoxicity and bioaccumulation of lead to the two plants tested.
基金Projects(51704329,51705540)supported by the National Natural Science Foundation of ChinaProject(2018JJ3671)supported by the Hunan Provincial Natural Science Foundation,China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(B14034)supported by the National 111 Project,China
文摘Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies on the application of abandoned BR with massive consumption have been reported.In this study,the possibility of the revegetation using ryegrass growing on BR was discussed mainly through the growth indications and transfer of heavy metal ions in BR and plants.In the pot trails,ryegrass was seeded on BR,de-alkali BR,with(DBRO)or without(DBR)organic fertilizer,respectively.The results indicated that the remediation of bauxite residue can be achieved through de-alkali with acid neutralization.Elemental analysis indicated that the elements,except for Fe,Mn and Pb,were stable in plant roots,and ryegrass could hardly absorb Cd.But,some heavy metals such as Cu enriched in plants,which should be noted in revegetation on bauxite residue.
基金Supported by the National Natural Science Foundation of China for Creative Research Group(No.41121064)the International or Regional Research Cooperation and Exchange Project(No.31061160187)
文摘Abstract Zinc (Zn) and copper (Cu) concentrations were determined in the tissues (muscle, stomach, liver, gills, skin, and gonads) of five commercial fish species (mullet Liza haematocheilus, flathead Platycephalus indicus, mackerel Scomberomorus niphonius, silver pomfret Pampus argenteus, and sea bass Lateolabrax japonicus) from Laizhou Bay in the Bohai Sea. Metal bioaccumulation was highest in the metabolically active tissues of the gonads and liver. Bioconcentration factors for Zn were higher in all tissues (gonads 44.35, stomach 7.73, gills 7.72, liver 5.61, skin 4.88, and muscle 1.63) than the corresponding values for Cu (gonads 3.50, stomach 3.00, gills 1.60, liver 5.43, skin 1.50, and muscle 0.93). Mackerel tissues accumulated metal to higher concentrations than did other fish species, but bioaccumulation levels were not significantly correlated with the trophic levels of the fish. Zn and Cu concentrations in the tissues were generally negatively correlated with fish length, except for a few tissues of sea bass. Risk assessment based on national and international permissible limits and provisional tolerances for weekly intake of Zn and Cu revealed that the concentrations of these two metals in muscle were relatively low and would not pose hazards to human health.
基金supported by the Ministry of Science and Higher Education, Poland (Grant No.DS-8130-4-0092-1)in part by Chinese Academy of Science (Grant No 2010T1Z26)
文摘This paper reported the results of the determination of Ag, A1, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, Rb, Sr and Zn in Common Chanterelles (Cantharellus cibarius) Fr. and surface soil layer (o-io cm) underneath the fruiting bodies. Mushrooms and soils were collected from a lowland site in the Hel Peninsula (Baltic Sea coast) and a high mountain site in the Tatra Mountains. The trace elements were determined using validated method and inductively coupled plasma - atomic emission spectroscopy (ICP-AES). Common Chanterelles that emerged at sites poor in mineral nutrients podzols of the Hel Peninsula forests efficiently bioeoncentrated several essential trace elements (K, P, Co, Cu, Mn, Na, Zn), while the abundance of those elements in carpophores was around half less compared to specimens from Zakopane region and which emerged in soils much richer in minerals. Common Chanterelles collected at two spatially distant background areas in Poland were only weakly contaminated with metals such as Ag, Cd, Hg and Pb. The maximum tolerable Cd and Pb contents of certain cultivated mushrooms are regulated in the European Union by law and these hazardous metals in C. cibarius were far below tolerance limits set.
基金supported by the Special Fund of Public Industry in China (Agriculture, 200903015)the Science and Technology Project of Hebei Province, China (15227504D)
文摘In this study the transfer characteristics of mercury(Hg) from a wide range of Chinese soils to corn grain(cultivar Zhengdan 958) were investigated. Prediction models were developed for determining the Hg bioconcentration factor(BCF) of Zhengdan 958 from soil, including the soil properties, such as p H, organic matter(OM) concentration, cation exchange capacity(CEC), total nitrogen concentration(TN), total phosphorus concentration(TP), total potassium concentration(TK), and total Hg concentration(THg), using multiple stepwise regression analysis. These prediction models were applied to other non-model corn cultivars using a cross-species extrapolation approach. The results indicated that the soil p H was the most important factor associated with the transfer of Hg from soil to corn grain. Hg bioaccumulation in corn grain increased with the decreasing p H. No significant differences were found between two prediction models derived from different rates of Hg applied to the soil as HgCl2. The prediction models established in this study can be applied to other non-model corn cultivars and are useful for predicting Hg bioconcentration in corn grain and assessing the ecological risk of Hg in different soils.
基金Supported by Natural Science Foundation of Shannxi Province,China(15JK1121,2015JM3086)the Open Fund of Cultivation State Key Laboratory of Qinba Biological Resources and Ecological Environment of Shaanxi University of Technology,China(SLGPT2019KF04-02)+1 种基金Scientific research project of City-University co-construction of Shaanxi Province,China(SXJ-2101)The Project of Foreign Experts Bureau of Shaanxi Province of China(G2021041011L,2022WGZJ-20,G20200241015)。
文摘To evaluate the zinc(Zn)remediation capacity of four alfalfa species,the effects of different concentrations of Zn on plant growth,Zn uptake and translocation as well as uptake of other nutrients were investigated.The results showed that the Zn tolerance index of Aohan was significantly higher than other species.Among the four species,Aohan had the highest concentration of Zn in roots,followed by Golden Empress,Sanditi and Longxi.Aohan had the highest bioconcentration factor(BCF)in leaves.Whereas,Sanditi and Longxi had the lowest BCF in stem and roots,respectively.The translocation factor of Golden Empress was significantly lower than other species.The Zn accumulation rate of Aohan was higher than other species regardless of the concentration of Zn.Longxi had the lowest allocation of Zn in leaves and Golden Empress had the lowest allocation of Zn in roots.The concentrations of other elements(Fe and Mg)in leaves were decreased with Zn additions,but the interactions between Zn and other elements in roots varied with species.These results indicated that suitable species of alfalfa could successfully be used for the phytoremediation of Zn-contaminated soils.
文摘We studied the rate of lead resoprtion in the gastrointestinal tract of the bird and accumulation of this element by organs and tissues different in their morphology and functions. The minimum lethal lead dosage making 1.5 mg/kg of the live body weight leads to reduction of its mass recovering after its resoprtion in the stomach. Accumulation and elimination of lead from the body are related to dynamics of the body weight. The rate of these processes is in direct dependence and significantly different in various tissues and organs. Claws, kidneys, liver and feathers are characterized by very high rate of element accumulation and fat, heart and muscles - by the lowest rate. Intense elimination of lead from the body starts approximately in 2-2.5 months after the gastrointestinal tract is released from it.
文摘Heavy metals are transferred from the abiotic environment to living organisms, accumulate in food, contaminate the food chain, and are an important route of human exposure involving a potential health risk. In this study, the concentrations of heavy metals (Cd, Fe, Pb, Zn and As) in agricultural soils and tubers of <em>Solanum tuberosum spp. andigena</em> (native potato) were evaluated. Also, an assessment of the health risk associated with the daily intake by the local population was performed in the four districts of the department of Junín, between altitudes of 3800 m to 4200 m. The heavy metals concentrations in soils with native potato cultivation followed the following decreasing order of Fe > Zn > Pb > As > Cd, with values below national standards. The heavy metals content in native potatoes was below the limits recommended by international standards with the exception of Pb. The bioconcentration factor (BCF) for the two native potato varieties in decreasing order was Zn > Cd > Pb > As > Fe, all less than 0.5. The estimated daily intake of metals (EDIM) in adults and children through the consumption of native potatoes was higher for Fe and Zn. The threshold carcinogenic risk values (TCR) for As exceeded the safety limits 1 × 10<sup>-4</sup>. It is concluded that the residents in the four high Andean localities would be exposed to carcinogenic adverse health effects associated with the intake of native potatoes. It is important to monitor the concentration of As and other heavy metals in the Andean soils and crops in order to implement a soil and crop management program to ensure food quality.
基金supported by the Natural Resources of Guangdong[No.[2023]-25]National Natural Science Foundation of China[No.42171400]+1 种基金Natural Science.Foundation of Guangdong Province[No.2021A1515011324]Henan Institute of Sun Yat-sen University[No.2021-006].
文摘Although pesticides have been widely used worldwide to enhance crop yield and product quality,most pesticides are harmful to the environment and human health.Plants absorb pesticides mainly from air and soil.Therefore,the soil-plant pathway is essential for pesticide absorption.Bioconcentration factor(BCF)has extensively been applied to evaluate potential plant contamination by pesticides from soil.Hence,this study developed a simplified plant transpiration-based plant uptake model(PT-model)to estimate plant pesticides’BCF from soil based on plant transpiration.Remote sensing techniques were employed to generate spatiotemporal continuous plant transpiration via evapotranspiration.Pesticide BCF mapping was achieved by integrating PT-model with Moderate Resolution Imaging Spectroradiometer(MODIS)remotely sensed data.The results were compared with a verified model driven by relative humidity and air temperature(RA-model),which has been confirmed byfindings from previous studies.The estimated BCF was within the boundaries of the RA-model,indicating the simulation’s overall acceptability.In this study,the BCF temporal trend estimated by the proposed method agreed with the RA-model assimilating meteorology datasets,while the spatial distribution was partially inconsistent.Overall,the proposed method generates the spatiotemporal patterns of pesticide BCF with relatively consistent results supported by previous records andfindings.
基金?nancially supported by the National Key Research and Development Program of China (No.2018YFD0800306)the Hebei Science Fund for Distinguished Young Scholars,China (No.D2018503005)
文摘In some densely-populated countries, farmland has been widely cadmium (Cd) contaminated, and the utilization of the contaminated farmland for crop production is currently unavoidable. This necessitates the use of low-Cd crops (i.e., pollution-safe cultivars, the crop varieties with the ability to accumulate a low level of Cd in their edible parts when grown on polluted soil) in these areas and highlights the importance of knowledge on phenotypic variation in crop Cd accumulation for food Cd risk control. Studies on phenotypic variation in heavy metal accumulation started decades ago for a wide range of crops, and synthesis of the scattered experimental results in the literature is in need. We built a Low-Cd Crops Database based on literature research, and relevant meta-analysis was performed to quantitatively explore the phenotypic variation in Cd uptake and translocation of rice and wheat. Considerable variability existed among rice (median grain Cd bioconce nt ration factor (BCF) of 0.10) and wheat (median grain Cd BCF of 0.21) phenotypes in grain Cd accumulation, and this variability was labile to soil pH and the level of Cd stress. Wheat statistically had a higher root-to-shoot Cd-translocating ability than rice, highlighting potential food Cd risks and the importance of growing low-Cd wheat in slightly Cd-contaminated regions. Meanwhile, no correlations were detected among soil-to-root, root-to-shoot, and shoot-to-grain translocation factors, implying that Cd uptake and internal translocation in crops were probably controlled by different underlying gene tic mechanisms. Root-to-shoot Cd transport could be a favorable target trait for selecting and breeding low-Cd rice and wheat. In all, this review provides a comprehensive low-Cd crop list for remediation practice and a systematic meta-analysis inferring food Cd risks based on plant capacity for Cd accumulation and desired traits for low-Cd crop breeding.
基金Supported by the Program of Introducing International Advanced Agricultural Science and Technologies(948 Program) of Ministry of Agriculture of China(No.2009-Z9)the National Key Technology R&D Program of China(Nos.2009BADA3B048 and 2011BAD13B09)+3 种基金the Jiangsu Provincial Key Technology R&D Program of China(No.BE2010305)the Ph.D.Programs Foundation of Ministry of Education of China(No.20100097120016)the Special Fund for Public Welfare Technology Research of Agricultural Industry(No.200903001-5)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Jerusalem artichoke(Helianthus tuberosus L.) not just can be used for bioethanol production but may be potentially used in phytoremediation for the removal of heavy metal pollutants.Two Jerusalem artichoke cultivars,N2 and N5,were subjected to six cadmium(Cd) concentrations(0,5,25,50,100 and 200 mg L1) to investigate Cd tolerance and accumulation.After 21 days of growth,the effects of Cd on growth,chlorophyll content,net photosynthetic rate,intercellular CO2 concentration and malondialdehyde content were evaluated.Most growth parameters were reduced under Cd stress.The two Jerusalem artichoke cultivars had relatively high Cd tolerance and accumulation capacity(> 100 mg kg1),with N5 being more tolerant and having higher Cd accumulation than N2.Roots accumulated more Cd than stems and leaves.The bioconcentration factors(far higher than 1) and translocation factors(lower than 1) decreased with an increase in Cd applied.The results suggested that Jerusalem artichoke could be grown at relatively high Cd loads,and N5 could be an excellent candidate for phytoremediation of Cd-contaminated soils.
文摘Soil contamination by metals from anthropogenic activities (e.g., mining and smelting) is a major concern for the environment and human health. Environmental availability of cadmium (Cd), lead (Pb), zinc (Zn), copper (Cu), and indium (In) in 27 urban soils located around two former Pb and Zn smelters in Northern France were studied by analysing the chemical forms of these metals and evaluating their phytoavailability. These metals were determined using flame or electrothermal absorption atomic spectrometry (FAAS or ETAAS), depending on their concentration levels. After optimisation of the ETAAS method, characteristic mass of In in water and aqua regia were 9.9 and 18 pg, respectively, showing the high sensitivity of the analytical procedure. Metal partitioning was conducted using a four-step sequential extraction procedure. The results showed that Cd and Zn were mainly in the acid-extractable and reducible forms in the urban soils studied. In contrast, Pb and In were largely in the reducible fraction. However, in some samples, the amount of In extracted in the residual or exchangeable fraction was higher than that in the reducible fraction. Copper was mainly found in the reducible and residual fractions. A pot experiment was conducted in a glasshouse with seven soils (six contaminated and one uncontaminated) and two plant species, ryegrass and lettuce. The results showed transfer of metals from the contaminated soils to the shoots of ryegrass and the edible part of lettuce. The metal bioconcentration factor was in the order of Cd 〉〉 Cu 〉 In 〉 Zn 〉〉 Pb for lettuce leaves, whereas for ryegrass shoots, three orders were found, Cd 〉 Zn 〉 Cu 〉〉 In 〉 Pb, Cd 〉〉 In 〉 Zn 〉 Cu 〉〉Pb, and Zn 〉 Cd 〉 Cu 〉 In 〉〉 Pb, depending on the physico-chemical properties of the soils, such as pH, cation exchange capacity, carbonates, and organic matter. It was established that the metal toxicity was related to the contamination levels and the physico-chemical properties, including pH, organic matter, and in a lesser extent, Ca, Mg, and phosphorus contents, of the soils. However, it was shown that lettuce could grow on soils having high Cd and CaCO3 contents. Cadmium was one of the most available metals while Pb was always the least available in the soils studied.
基金supported by the Open Fund Project of Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science and Technology, China (No. JKLAM1605)
文摘Persistent organic pollutants (POPs) in soils are an environmental concern due to their long-term bioavailability, which could be reduced by adding adsorbents. However, testing of these adsorbents is necessary prior to widespread field application. The effects of three adsorbents, nano-organic montmorillonite, nano-organic silicon dioxide (SiOs), and activated carbon, on hexachlorobenzene (HCB) and pentachlorobenzene (PeCB) accumulation in rice (Oryza sativa L.) plants were tested in a greenhouse experiment using two soils, a Hydragric Acrisol (Ac) and a Gleyi-Stagnic Anthrosol (An). The bioconcentration factors (BCFs) of HCB and PeCB to rice roots were 2.3-3.7 and 2.0 3.0 times those to rice shoots, respectively. The applications of the three adsorbents decreased HCB and PeCB extractability in Ac, while only the application of activated carbon decreased their extractability in An. The bioavailability of HCB and PeCB to rice plants in Ac was higher than that in An. In Ac, the applications of nano-organic SiOs and activated carbon decreased the BCF of HCB to rice roots by 16.1% and 26.8%, respectively, whereas only the application of activated carbon decreased the BCF of PeCB to rice roots by 31.4%, compared to the control. In An, only the application of activated carbon decreased the BCFs of HCB and PeCB to rice roots by 22.9% and 18.2%, respectively, compared to the control. However, the application of nano-organic montmorillonite inhibited rice growth in both soils. The results of this study suggested that the effectiveness of adsorbents would vary with pollutant and soil types, providing a reference point for developing efficient adsorbents to reduce the ecological risk of POPs.
基金Supported by the Beijing Drainage Group Co. Ltd. and the Special Fund for Agro-Scientific Research in the Public Interest of China (No. 200903015)
文摘The toxicity of trace elements (TEs), such as copper (Cu), zinc (Zn), and cadmium (Cd), often restrict land application of sewage sludge (SS) and there was little information about soil-plant transfer of TEs in SS from field experiments in China. In this study pot and field experiments were carried out for 2 years to investigate the phytoavailability of TEs in calcareous soils amended with SS. The results of the pot experiment showed that the phytoavailability of Zn and Cu in the SS was equal to 53.4%-80.9% and 54.8%-91.1% of corresponding water-soluble metal salts, respectively. The results from the field experiment showed that the contents of total Zn, Cu, and Cd in the soils increased linearly with SS application rates. With increasing SS application rates, the contents of Zn and Cu in the wheat grains initially increased and then reached a plateau, while there was no significant change of Cd content in the maize grains. The bioconcentration factors of the metals in the grains of wheat and maize were found to he in the order of Zn 〉 Cu 〉 Cd, but for the straw the order was Cd 〉 Cu 〉 Zn. It was also found that wheat grains could accumulate more metals compared with maize grains. The results will be helpful in developing the critical loads of sewage sludge applied to calcareous soils.