Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios.Unlike the more moderate radiant fluxes in conventional hydrocarbon fires,...Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios.Unlike the more moderate radiant fluxes in conventional hydrocarbon fires,extreme events such as strong explosion,concentrated sunlight and directed energy can generate dynamic radiant fluxes at the MW/m^(2) level,creating a unique threat to materials.This study investigates the pyrolysis and spontaneous ignition behaviors of corrugated cardboard by using both experimental and numerical methods,under 10-cm dynamic high radiant fluxes ranging from 0.2 to 1.25 MW/m^(2) for 10 s.The spontaneous ignition process at dynamic high radiant fluxes was recorded and quantified.Two ignition modes were found at the critical radiant flux of 0.4 MW/m^(2),namely hot-gas spontaneous ignition and hot-residue piloted ignition.The latter is not the focus of this paper due to its extremely small probability of occurrence.The research reveals that the increase in flux intensity induces shorter delay times for both pyrolysis and ignition,lower ignition energy density,along with a corresponding rise in the critical mass flux and surface temperature at ignition moment.The simulation results are generally aligned with the experimental findings,despite some divergences may be attributed to model simplifications and parameter assumptions.The work contributes to a deeper insight into material behavior under extreme radiation,with valuable implications for fire safety and hazard assessment.展开更多
A modified analytical procedure has been developed to test for 5 organic pollutants [benzophenone, 2 diisopropylnaphthalenes (DIPNs) {2,6- and 2,7-diisopropylnapthalene} and 2 hydrogenated terphenyls (HTPs) {m-terphen...A modified analytical procedure has been developed to test for 5 organic pollutants [benzophenone, 2 diisopropylnaphthalenes (DIPNs) {2,6- and 2,7-diisopropylnapthalene} and 2 hydrogenated terphenyls (HTPs) {m-terphenyl and o-terphenyl}] that can be found as residues in recycled cardboards intended for use as food packaging materials and to test for migration levels of these compounds in a food simulant (Tenax). A main objective was to develop a modified rapid and reliable method for the identification and quantification of these compounds at low concentrations. The method was based on ultrasound-assisted solvent extraction (UAE) followed by gas chromatography-mass spectrometry (GC-MS) analysis. The developed method was applied to analyze 3 commercially available recycled carton board food-packaging materials and also to study the potential migration of the 5 organic pollutants from these materials into Tenax to check if these recycled cardboards can be considered as suitable for use in direct contact with foodstuffs. The limits of detection (LODs) of standard solutions of the 5 compounds were determined at a signal-to-noise ratio of 3. The LODs and the limits of quantification (LOQs) of examined pollutants ranged between 0.005 to 0.5 mg/kg, and 0.1 to 1 mg/kg, respectively. The extremely low amounts of most contaminants that migrate from packaging materials to Tenax indicate that the recycled cardboards tested can be safely used for direct food contact applications.展开更多
Hydrothermal liquefaction (HTL) processing of lignocellulosic biomass to bio-oil produces aqueous co-product (AP) which contains significant (~40 wt%) carbon from the original feedstock. This study evaluates macro and...Hydrothermal liquefaction (HTL) processing of lignocellulosic biomass to bio-oil produces aqueous co-product (AP) which contains significant (~40 wt%) carbon from the original feedstock. This study evaluates macro and micronutrient composition of AP from Ca(NO3)2 catalyzed HTL of cardboard (CbAP) to cultivate bacteria. HPLC, GC-MS and ICP-MS analysis of CbAP revealed presence of C1-C3 carboxylic acids, aldehydes, ketones, phenolics, sub-optimal phosphorous and bio-incompatible levels of calcium. Dilutions (5 - 80 vol%) of detoxified CbAP (DTP-CbAP) in potassium phosphate buffer (pH 7.2) were supplemented with 50 mg·mL-1 of yeast extract and inoculated with metabolically versatile Enterobacter species. The cultures were incubated at 25°C under aerobic conditions. A maximum 9.4 fold increase in the dry cell weight was observed in DTP-CbAP-15 vol%. Co-liquefaction of the bacteria with cardboard in 1:1 and 1:3 weight ratios each produced ~33% more total bio-oil. These had higher HHVs of 34.11 and 31.05 MJ·kg-1, respectively compared with bio-oil from cardboard feedstock alone which had HHV of 30.61 MJ·kg-1. The study highlights the challenges in cultivating microbes in AP from HTL of lignocellulosic biomass (LCB) and the possibility to integrate microbial capture and recycle of the AP carbon for enhanced bio-oil production and quality.展开更多
<strong>Objective: </strong>To 1) characterize the decay curve of infective SARS-CoV-2 over time on the surface of cardboard packaging and plastic mailer packaging;2) characterize the transferability over ...<strong>Objective: </strong>To 1) characterize the decay curve of infective SARS-CoV-2 over time on the surface of cardboard packaging and plastic mailer packaging;2) characterize the transferability over time of virus-inoculated cardboard packaging and plastic mailer packaging to skin. <strong>Methods: </strong>We inoculated samples of plastic and cardboard packaging with a titer of SARS-CoV-2 > 10<sup>6</sup> TCID<sub>50</sub>/ mL to evaluate the survivability and transferability to the skin (pig skin) over time. A cell culture-based infectivity assay (TCID<sub>50</sub>) was used to determine viral titers. Regression analysis was used to characterize decay curves. <strong>Results:</strong> The time that SARS-CoV-2 remained transferable to skin was reduced on both packaging substrates compared to the total time of survivability, though cardboard demonstrated a substantially larger reduction. Virus inoculated plastic substrates continued to transfer the virus to the skin after 7 hours of holding time and regression analysis predicts this transferability would remain detectable up to 9.5 hours of holding time. Inoculated cardboard substrates demonstrated detectable transfer at 15 minutes of holding time, but no viable virus could be detected on the skin after 30 minutes of holding time. <strong>Conclusions:</strong> The type of material used as a packaging substrate substantially modifies the potential for SARS-CoV-2 fomite transmission. The use of materials that limit fomite transmission from packaging should be considered among strategies to reduce the transmission of SARS-CoV-2. Future research should investigate the generalizability of these findings for other viral pathogens that potentially transmit via fomite.展开更多
Different coastal sands of the city of El Jadida are used to filter wastewater from a cardboard manufacturing plant combined with fly ash and bottom ash (by-products of a local power plant). The performances of five...Different coastal sands of the city of El Jadida are used to filter wastewater from a cardboard manufacturing plant combined with fly ash and bottom ash (by-products of a local power plant). The performances of five matrices of these elements are compared in infiltration-percolation in vertical columns. The study of particle size sand is performed beforehand. The chemical and mineralogical composition of fly ash and bottom ash are produced by X-ray fluorescence and X-ray diffraction respectively. The wastewater samples were collected during a complete cycle of production of the cardboard. The heavy metals content before and after filtration was obtained by atomic emission spectrometry with inductively coupled plasma (ICP-AES). The parameters analyzed were: total suspended solids (TSS), organic matter COD, BODs, the potential hydrogen pH and heavy metals (iron, zinc and arsenic). The results are very conclusive and respect the essence of control required by Moroccan regulations (law 1606-06) related to discharges from the papermaking and cardboard industry.展开更多
This paper presents the furniture design in the face of resource, energy consumption and environment accelerate the lasting damage to low carbon economy circumstances, human face the challenges of survival, should con...This paper presents the furniture design in the face of resource, energy consumption and environment accelerate the lasting damage to low carbon economy circumstances, human face the challenges of survival, should consider how to meet the low carbon era of mankind to the demand for the use of green furniture. Through the low carbon economy society demand, I think the current board furniture is under low carbon economy best green furniture, in the current, the cardboard furniture design of the low carbon times in addition to meet the use function, we should pay more attention to environmental protection and resource utilization, reduce the damage to the environment, with cardboard furniture design scientifically, reduce waste.展开更多
Biofouling, the accumulation of microorganisms, is a major problem in paper mills processing paper and cardboard. This leads to the production of lower quality recycled products. Several studies have focused on the mi...Biofouling, the accumulation of microorganisms, is a major problem in paper mills processing paper and cardboard. This leads to the production of lower quality recycled products. Several studies have focused on the microbial content in the paper mill and the final products. Our aim was to determine the microbial biota in a bale of collected cardboard prior to entering the paper mill. Total genomic DNA was isolated and analyzed using two different methods for comparison purposes: 454 pyrosequencing and clone library. A total of 3268 V6-V8 454 pyrosequencing reads and 322 cloned V6-V8 16S rRNA nucleotide sequences were obtained. Both methods showed the presence of three major bacterial genera: Bacillus, Solibacillus and Paenibacillus, all members of the spore-forming phylum Firmicutes. Pyrosequencing, however, revealed a richer and more diverse bacterial community than clone library. It showed the presence of additional minor Firmicute genera and of a small number of Proteobacteria. The sorting at the recycling plant, the storing, and the processing at the paper mill, the end uses, will all contribute to the bacterial microbiota present in a bale of collected cardboard as revealed here.展开更多
基金the Presidential Foundation of CAEP(Grant No.YZJJZQ2023008)the National Natural Science Foundation of China(Grant No.NSFC 12372342)for financial support of this work.
文摘Understanding the response of solid combustibles under high radiant fluxes is critical in predicting the thermal damage from extreme scenarios.Unlike the more moderate radiant fluxes in conventional hydrocarbon fires,extreme events such as strong explosion,concentrated sunlight and directed energy can generate dynamic radiant fluxes at the MW/m^(2) level,creating a unique threat to materials.This study investigates the pyrolysis and spontaneous ignition behaviors of corrugated cardboard by using both experimental and numerical methods,under 10-cm dynamic high radiant fluxes ranging from 0.2 to 1.25 MW/m^(2) for 10 s.The spontaneous ignition process at dynamic high radiant fluxes was recorded and quantified.Two ignition modes were found at the critical radiant flux of 0.4 MW/m^(2),namely hot-gas spontaneous ignition and hot-residue piloted ignition.The latter is not the focus of this paper due to its extremely small probability of occurrence.The research reveals that the increase in flux intensity induces shorter delay times for both pyrolysis and ignition,lower ignition energy density,along with a corresponding rise in the critical mass flux and surface temperature at ignition moment.The simulation results are generally aligned with the experimental findings,despite some divergences may be attributed to model simplifications and parameter assumptions.The work contributes to a deeper insight into material behavior under extreme radiation,with valuable implications for fire safety and hazard assessment.
文摘A modified analytical procedure has been developed to test for 5 organic pollutants [benzophenone, 2 diisopropylnaphthalenes (DIPNs) {2,6- and 2,7-diisopropylnapthalene} and 2 hydrogenated terphenyls (HTPs) {m-terphenyl and o-terphenyl}] that can be found as residues in recycled cardboards intended for use as food packaging materials and to test for migration levels of these compounds in a food simulant (Tenax). A main objective was to develop a modified rapid and reliable method for the identification and quantification of these compounds at low concentrations. The method was based on ultrasound-assisted solvent extraction (UAE) followed by gas chromatography-mass spectrometry (GC-MS) analysis. The developed method was applied to analyze 3 commercially available recycled carton board food-packaging materials and also to study the potential migration of the 5 organic pollutants from these materials into Tenax to check if these recycled cardboards can be considered as suitable for use in direct contact with foodstuffs. The limits of detection (LODs) of standard solutions of the 5 compounds were determined at a signal-to-noise ratio of 3. The LODs and the limits of quantification (LOQs) of examined pollutants ranged between 0.005 to 0.5 mg/kg, and 0.1 to 1 mg/kg, respectively. The extremely low amounts of most contaminants that migrate from packaging materials to Tenax indicate that the recycled cardboards tested can be safely used for direct food contact applications.
文摘Hydrothermal liquefaction (HTL) processing of lignocellulosic biomass to bio-oil produces aqueous co-product (AP) which contains significant (~40 wt%) carbon from the original feedstock. This study evaluates macro and micronutrient composition of AP from Ca(NO3)2 catalyzed HTL of cardboard (CbAP) to cultivate bacteria. HPLC, GC-MS and ICP-MS analysis of CbAP revealed presence of C1-C3 carboxylic acids, aldehydes, ketones, phenolics, sub-optimal phosphorous and bio-incompatible levels of calcium. Dilutions (5 - 80 vol%) of detoxified CbAP (DTP-CbAP) in potassium phosphate buffer (pH 7.2) were supplemented with 50 mg·mL-1 of yeast extract and inoculated with metabolically versatile Enterobacter species. The cultures were incubated at 25°C under aerobic conditions. A maximum 9.4 fold increase in the dry cell weight was observed in DTP-CbAP-15 vol%. Co-liquefaction of the bacteria with cardboard in 1:1 and 1:3 weight ratios each produced ~33% more total bio-oil. These had higher HHVs of 34.11 and 31.05 MJ·kg-1, respectively compared with bio-oil from cardboard feedstock alone which had HHV of 30.61 MJ·kg-1. The study highlights the challenges in cultivating microbes in AP from HTL of lignocellulosic biomass (LCB) and the possibility to integrate microbial capture and recycle of the AP carbon for enhanced bio-oil production and quality.
文摘<strong>Objective: </strong>To 1) characterize the decay curve of infective SARS-CoV-2 over time on the surface of cardboard packaging and plastic mailer packaging;2) characterize the transferability over time of virus-inoculated cardboard packaging and plastic mailer packaging to skin. <strong>Methods: </strong>We inoculated samples of plastic and cardboard packaging with a titer of SARS-CoV-2 > 10<sup>6</sup> TCID<sub>50</sub>/ mL to evaluate the survivability and transferability to the skin (pig skin) over time. A cell culture-based infectivity assay (TCID<sub>50</sub>) was used to determine viral titers. Regression analysis was used to characterize decay curves. <strong>Results:</strong> The time that SARS-CoV-2 remained transferable to skin was reduced on both packaging substrates compared to the total time of survivability, though cardboard demonstrated a substantially larger reduction. Virus inoculated plastic substrates continued to transfer the virus to the skin after 7 hours of holding time and regression analysis predicts this transferability would remain detectable up to 9.5 hours of holding time. Inoculated cardboard substrates demonstrated detectable transfer at 15 minutes of holding time, but no viable virus could be detected on the skin after 30 minutes of holding time. <strong>Conclusions:</strong> The type of material used as a packaging substrate substantially modifies the potential for SARS-CoV-2 fomite transmission. The use of materials that limit fomite transmission from packaging should be considered among strategies to reduce the transmission of SARS-CoV-2. Future research should investigate the generalizability of these findings for other viral pathogens that potentially transmit via fomite.
文摘Different coastal sands of the city of El Jadida are used to filter wastewater from a cardboard manufacturing plant combined with fly ash and bottom ash (by-products of a local power plant). The performances of five matrices of these elements are compared in infiltration-percolation in vertical columns. The study of particle size sand is performed beforehand. The chemical and mineralogical composition of fly ash and bottom ash are produced by X-ray fluorescence and X-ray diffraction respectively. The wastewater samples were collected during a complete cycle of production of the cardboard. The heavy metals content before and after filtration was obtained by atomic emission spectrometry with inductively coupled plasma (ICP-AES). The parameters analyzed were: total suspended solids (TSS), organic matter COD, BODs, the potential hydrogen pH and heavy metals (iron, zinc and arsenic). The results are very conclusive and respect the essence of control required by Moroccan regulations (law 1606-06) related to discharges from the papermaking and cardboard industry.
文摘This paper presents the furniture design in the face of resource, energy consumption and environment accelerate the lasting damage to low carbon economy circumstances, human face the challenges of survival, should consider how to meet the low carbon era of mankind to the demand for the use of green furniture. Through the low carbon economy society demand, I think the current board furniture is under low carbon economy best green furniture, in the current, the cardboard furniture design of the low carbon times in addition to meet the use function, we should pay more attention to environmental protection and resource utilization, reduce the damage to the environment, with cardboard furniture design scientifically, reduce waste.
基金supported in part by the Natural Sciences and Engineering Research Council of Canada(grant EGP 436904-12).
文摘Biofouling, the accumulation of microorganisms, is a major problem in paper mills processing paper and cardboard. This leads to the production of lower quality recycled products. Several studies have focused on the microbial content in the paper mill and the final products. Our aim was to determine the microbial biota in a bale of collected cardboard prior to entering the paper mill. Total genomic DNA was isolated and analyzed using two different methods for comparison purposes: 454 pyrosequencing and clone library. A total of 3268 V6-V8 454 pyrosequencing reads and 322 cloned V6-V8 16S rRNA nucleotide sequences were obtained. Both methods showed the presence of three major bacterial genera: Bacillus, Solibacillus and Paenibacillus, all members of the spore-forming phylum Firmicutes. Pyrosequencing, however, revealed a richer and more diverse bacterial community than clone library. It showed the presence of additional minor Firmicute genera and of a small number of Proteobacteria. The sorting at the recycling plant, the storing, and the processing at the paper mill, the end uses, will all contribute to the bacterial microbiota present in a bale of collected cardboard as revealed here.