期刊文献+
共找到3,731篇文章
< 1 2 187 >
每页显示 20 50 100
Preparation and Characterization of Carbon Nanotubes-Coated Cordierite for Catalyst Supports 被引量:4
1
作者 Jianmei Wang Rong Wang Xiujin Yu Jianxin Lin Feng Xie Kemei Wei 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第3期211-216,共6页
The carbon nanotubes-coated cordierite (CNTs-cordierite) was fabricated by pyrolysis of ethine on cordierite with iron catalyst, which was penetrated into the cordierite substrate by vacuum impregnation. The cordier... The carbon nanotubes-coated cordierite (CNTs-cordierite) was fabricated by pyrolysis of ethine on cordierite with iron catalyst, which was penetrated into the cordierite substrate by vacuum impregnation. The cordierite substrate, carbon naontubes, and CNTs-cordierite were characterized by SEM, TEM/HREM, BET, and TGA. The results show that the carbon nanotubes were distributed uniformly on the surface of cordierite. A significant increase in BET surface area and pore volume was observed, and a suitable pore-size distribution was obtained. On the CNTs-cordierite, carbon nanotubes penetrated into the cordierite substrate, which led to a remarkable stability of the CNTs against ultrasound maltreatment. Growth time is an important factor for thermostability and texture of the sample. The mass increased but the purity decreased with the growth time, which caused the exothermic peak shift to low temperature, and the corresponding full width half maximum (FWHM) of the peak in DTG increased. 展开更多
关键词 carbon nanotube CORDIERITE PYROLYSIS ethine catalyst support
下载PDF
Hydrothermal treatment of metallic-monolith catalyst support with self-growing porous anodic-alumina film 被引量:3
2
作者 Chuanqi Zhang Yuanjing Pu +3 位作者 Feng Wang Hecheng Ren Hua Ma Yu Guo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第5期1311-1319,共9页
Metallic-monolith catalyst support with self-growing porous anodic alumina(PAA)film was prepared by anodizing Al plate.The effect of hydrothermal treatment(HTT)on the crystalline state and textural properties of PAA f... Metallic-monolith catalyst support with self-growing porous anodic alumina(PAA)film was prepared by anodizing Al plate.The effect of hydrothermal treatment(HTT)on the crystalline state and textural properties of PAA film was investigated by XRD,BET,SEM and TG.The HTT treatment above 50°C and the subsequent calcination above 300°C could convert the amorphous skeleton alumina intoγ-alumina and increase the specific surface area(SBET).However,SEM images showed the HTT modification was a non-uniform process along the thickness of PAA film.The promotion effect of HTT on SBETwas non-linear,and the slope of SBETgradually decreased with the HTT temperature or time increased.The limited HTT effect should be attributed to a changed pore structure caused by an unfavorable pore sealing limitation.Pore widening treatment(PWT)before HTT could break the pore sealing limitation,because of the reduced internal diffusion resistance of hydrothermal reaction.The synergistic combination of PWT and HTT developed a PAA support with a large SBETcomparable to commercialγ-alumina.In the catalytic combustion of toluene,the Pt-based catalyst prepared by using the PWT and HTT comodified PAA support gave higher Pt dispersion and more favorable catalytic activity than that treated by HTT alone.The presence of a bimodal pore structure was suggested to be a decisive reason. 展开更多
关键词 ALUMINA catalyst support HYDROTHERMAL Pore widening treatment Anodization
下载PDF
The surface properties of aluminated meso–macroporous silica and its catalytic performance as hydrodesulfurization catalyst support 被引量:2
3
作者 Zhi-Gang Wang Jia-Ning Pei +5 位作者 Sheng-Li Chen Zheng Zhou Gui-Mei Yuan Zhi-Qing Wang Guo-Qiang Ren Hong-Jun Jiang 《Petroleum Science》 SCIE CAS CSCD 2017年第2期424-433,共10页
Aluminated mesoporous silica was prepared by multiple post-grafting of alumina onto uniform mesoporous SiO2 ,which was assembled from monodisperse SiO2 microspheres.Hydrodesulfurization(HDS)catalyst was prepared by ... Aluminated mesoporous silica was prepared by multiple post-grafting of alumina onto uniform mesoporous SiO2 ,which was assembled from monodisperse SiO2 microspheres.Hydrodesulfurization(HDS)catalyst was prepared by loading Ni and Mo active components onto the aluminated uniform mesoporous SiO2 ,and its HDS catalytic performance was evaluated using hydrodesulfurization of dibenzothiophene as the probe reaction at 300℃ and 6.0 MPa in a tubular reactor.The samples were characterized by N2 physisorption,scanning electronic microscopy,Fourier transform infrared spectrum,X-ray diffraction(XRD),temperature-programmed desorption of ammonia(NH3-TPD),^27Al nuclear magnetic resonance(^27Al-NMR)and high-resolution transmission electron microscopy(HRTEM).The results showed that the Si–OH group content of SiO2 was mainly dependent on the pretreatment conditions and had significant influence on the activity of the Ni Mo catalyst.The surface properties of the aluminated SiO2 varied with the Al2O3-grafting cycles.Generally after four cycles of grafting,the aluminated SiO2 behaved like amorphous alumina.In addition,plotting of activity of Ni Mo catalysts supported on aluminated meso–macroporous silica materials against the Al2O3-grafting cycle yields a volcano curve. 展开更多
关键词 Aluminum grafting Hydrodesulfurization Surface properties catalyst support SIO2
下载PDF
Electronic Effect of Carbon Support on Pt Catalyst Supported on Graphite Intercalation Compound
4
作者 WEI Ang WANG Qing-jing ZHAO Xiao-hui ZHANG Shu-yong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第3期465-471,共7页
Graphite intercalation compounds(GIC) were tested as an experimental model for studying the electronic effect of carbon support on the catalytic activity and poisoning tolerance of Pt catalyst for direct methanol fu... Graphite intercalation compounds(GIC) were tested as an experimental model for studying the electronic effect of carbon support on the catalytic activity and poisoning tolerance of Pt catalyst for direct methanol fuel cells. The GIC samples with different intercalation degrees were prepared by electrolyzing graphite flake in H2SO4 for varying the periods of time. The GIC-supported Pt catalyst was deposited electrochemically. The catalytic activity and poisoning tolerance of the GIC-supported Pt catalysts were evaluated. It was found that GIC with sulfate anion as intercalate was able to catalyze methanol electrooxidation, which could be related to the positive charges generated on the graphite layer upon intercalation. As intercalation degree increased, the catalytic activity of the GIC-supported Pt catalyst decreased while the poisoning tolerance improved. This suggests that electron donation from support to catalyst had great effect on both catalytic activity and poisoning tolerance of Pt catalyst. And intercalation can be adopted as another important way to make modification on carboneous catalyst support. 展开更多
关键词 catalyst support Electronic effect Graphite intercalation compound Catalytic activity Poisoning tolerance
下载PDF
Study on Performance of Laminated Porous Metal Fiber Sintered Felt as Catalyst Support for Methanol Steam Reforming Microreactor
5
作者 Ke Yuzhi Zhou Wei +3 位作者 Tang Xiaojin Zhang Jinlei Yu Wei Zhang Junpeng 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2017年第1期63-71,共9页
In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricat... In this study, the laminated porous metal fiber sintered felt(PMFSF) functioning as catalyst support was used in a cylindrical methanol steam reforming(MSR) microreactor for hydrogen production. The PMFSF was fabricated by the low temperature solid-phase sintering method using metal fibers such as copper fibers and aluminum fibers which are obtained by the multi-tooth cutting method. The two-layer impregnation method was employed to coat Cu/Zn/Al/Zr catalyst on the PMFSF. The effect of fiber material, uniform porosity and gradient porosity on the performance of methano steam reforming microreactor was studied by varying the gas hourly space velocity(GHSV) and reaction temperature. Our results showed that the loading strength of porous copper fiber sintered felt(PCFSF) was better than porous aluminum fiber sintered felt(PAFSF). Under the same reaction conditions, the PCFSF showed higher methanol conversion and more H_2 output than PAFSF. Moreover, the gradient porosity(Type 5: 90%×80%×70%) of PMFSF used as the catalyst support in microreactor demonstrated a best reaction performance for hydrogen production. 展开更多
关键词 MICROREACTOR methanol steam reforming catalyst support metal fber hydrogen production
下载PDF
Liquid Phase Hydrogenation of Benzalacet0phen0ne:Effect of Solvent,Catalyst Support,Catalytic M etal and Reaction Conditions 被引量:1
6
作者 Achim STOLLE Christine SCHM?GER +3 位作者 Bernd ONDRUSCHKA Werner BONRATH Thomas F.KELLER Klaus D.JANDT 《催化学报》 SCIE EI CAS CSCD 北大核心 2011年第8期1312-1322,共11页
Innovative catalysts based on a "porous glass" support material were developed and investigated for the reduction of benzalace-tophenone. The easy preparation conditions and possibility to use different meta... Innovative catalysts based on a "porous glass" support material were developed and investigated for the reduction of benzalace-tophenone. The easy preparation conditions and possibility to use different metals (e.g. Pd, Pt, Rh) for impregnation gave a broad variety of these catalysts. Hydrogenation experiments with these supported catalysts were carried out under different hydrogen pressures and temperatures. Porous glass catalysts with Pd as the active component gave chemoselective hydrogenation of benzalacetophenone, while Pt- and Rh-catalysts tended to further reduce the carbonyl group, especially at elevated hydrogen pressures and temperatures. Kinetic analysis of the reactions revealed these had zero order kinetics, which was independent of the type of porous glass support and solvent used. 展开更多
关键词 CHALCONE HYDROGENATION porous glass supported catalyst
下载PDF
A Novel Catalyst Supported on Stainless Steel Pretreated by Anodic Oxidation for Control of Volatile Organic Compound Emissions 被引量:1
7
作者 LI Huiqing, CHEN Min, ZHENG Xiaoming (Institute of Catalysis, Zhejiang University, Hangzhou 310028, Zhejiang, China) 《催化学报》 SCIE CAS CSCD 北大核心 2003年第11期807-808,共2页
关键词 催化剂 不锈钢 预处理 阳极氧化 挥发性有机化合物 腐蚀 防治
下载PDF
Characteristics of Titanocene Catalyst Supported on Palygorskite for Ethylene Polymerization
8
作者 Xiao Wei YAN Jing Dai WANG Yi Bing SHAN Yong Rong YANG 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第5期653-656,共4页
A series of heterogeneous catalysts with Cp2TiCl2 supported on palygorskite were prepared and evaluated by ethylene slurry polymerizations. The so-called direct supported catalyst, for which the pretreatment of palygo... A series of heterogeneous catalysts with Cp2TiCl2 supported on palygorskite were prepared and evaluated by ethylene slurry polymerizations. The so-called direct supported catalyst, for which the pretreatment of palygorskite with MAO or Al(i-Bu)3 was not necessary, gave the highest activity among these supported catalysts and could be more robust than homogeneous Cp2TiCl2. With the direct supported catalyst, no significant activity loss was observed under low Al/Ti molar ratios (Al/Ti=300) and the decay of polymerization rate was slower when compared to the other supported catalysts. It was found that the surface Lewis acidity of palygorskite after thermal treatment played an important role in activation of metallocene compound and resulted in high catalyst activity. 展开更多
关键词 Playgorskite supported catalyst ethylene polymerization Lewis acidity.
下载PDF
Catalyst–Support Interaction in Polyaniline‑Supported Ni_(3)Fe Oxide to Boost Oxygen Evolution Activities for Rechargeable Zn‑Air Batteries
9
作者 Xiaohong Zou Qian Lu +8 位作者 Mingcong Tang Jie Wu Kouer Zhang Wenzhi Li Yunxia Hu Xiaomin Xu Xiao Zhang Zongping Shao Liang An 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期176-190,共15页
Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3... Catalyst–support interaction plays a crucial role in improving the catalytic activity of oxygen evolution reaction(OER).Here we modulate the catalyst–support interaction in polyaniline-supported Ni_(3)Fe oxide(Ni_(3)Fe oxide/PANI)with a robust hetero-interface,which significantly improves oxygen evolution activities with an overpotential of 270 mV at 10 mA cm^(-2)and specific activity of 2.08 mA cm_(ECSA)^(-2)at overpotential of 300 mV,3.84-fold that of Ni_(3)Fe oxide.It is revealed that the catalyst–support interaction between Ni_(3)Fe oxide and PANI support enhances the Ni–O covalency via the interfacial Ni–N bond,thus promoting the charge and mass transfer on Ni_(3)Fe oxide.Considering the excellent activity and stability,rechargeable Zn-air batteries with optimum Ni_(3)Fe oxide/PANI are assembled,delivering a low charge voltage of 1.95 V to cycle for 400 h at 10 mA cm^(-2).The regulation of the effect of catalyst–support interaction on catalytic activity provides new possibilities for the future design of highly efficient OER catalysts. 展开更多
关键词 catalyst-support interaction supported catalysts HETEROINTERFACE Oxygen evolution reaction Zn-air batteries
下载PDF
Enhanced stability of nitrogen-doped carbon-supported palladium catalyst for oxidative carbonylation of phenol
10
作者 Xiaojing Liu Ruohan Zhao +4 位作者 Hao Zhao Zhimiao Wang Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期19-28,共10页
Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticle... Enhancing the stability of supported noble metal catalysts emerges is a major challenge in both science and industry.Herein,a heterogeneous Pd catalyst(Pd/NCF)was prepared by supporting Pd ultrafine metal nanoparticles(NPs)on nitrogen-doped carbon;synthesized by using F127 as a stabilizer,as well as chitosan as a carbon and nitrogen source.The Pd/NCF catalyst was efficient and recyclable for oxidative carbonylation of phenol to diphenyl carbonate,exhibiting higher stability than Pd/NC prepared without F127 addition.The hydrogen bond between chitosan(CTS)and F127 was enhanced by F127,which anchored the N in the free amino group,increasing the N content of the carbon material and ensuring that the support could provide sufficient N sites for the deposition of Pd NPs.This process helped to improve metal dispersion.The increased metal-support interaction,which limits the leaching and coarsening of Pd NPs,improves the stability of the Pd/NCF catalyst.Furthermore,density functional theory calculations indicated that pyridine N stabilized the Pd^(2+)species,significantly inhibiting the loss of Pd^(2+)in Pd/NCF during the reaction process.This work provides a promising avenue towards enhancing the stability of nitrogen-doped carbon-supported metal catalysts. 展开更多
关键词 supported Pd catalyst N-doped carbon Amphiphilic triblock copolymer Pyridinic nitrogen STABILITY
下载PDF
Bimetallic CoNi single atoms supported on three-dimensionally ordered mesoporous chromia:highly active catalysts for n-hexane combustion
11
作者 Xiuqing Hao Yuxi Liu +4 位作者 Jiguang Deng Lin Jing Jia Wang Wenbo Pei Hongxing Dai 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1122-1137,共16页
Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile... Developing the alternative supported noble metal catalysts with low cost,high catalytic efficiency,and good resistance toward carbon dioxide and water vapor is critically demanded for the oxidative removal of volatile organic compounds(VOCs).In this work,we prepared the mesoporous chromia-supported bimetallic Co and Ni single-atom(Co_(1)Ni_(1)/meso-Cr_(2)O_(3))and bimetallic Co and Ni nanoparticle(Co_(NP)Ni_(NP)/mesoCr_(2)O_(3))catalysts adopting the one-pot polyvinyl pyrrolidone(PVP)-and polyvinyl alcohol(PVA)-protecting approaches,respectively.The results indicate that the Co_(1)Ni_(1)/meso-Cr_(2)O_(3)catalyst exhibited the best catalytic activity for n-hexane(C_(6)H_(14))combustion(T_(50%)and T_(90%)were 239 and 263℃ at a space velocity of 40,000 mL g^(-1)h^(-1);apparent activation energy and specific reaction rate at 260℃ were 54.7 kJ mol^(-1)and 4.3×10^(-7)mol g^(-1)_(cat)s^(-1),respectively),which was associated with its higher(Cr^(5+)+Cr^(6+))amount,large n-hexane adsorption capacity,and good lattice oxygen mobility that could enhance the deep oxidation of n-hexane,in which Ni_(1) was beneficial for the enhancements in surface lattice oxygen mobility and low-temperature reducibility,while Co_(1) preferred to generate higher contents of the high-valence states of chromium and surface oxygen species as well as adsorption and activation of n-hexane.n-Hexane combustion takes place via the Mars van Krevelen(MvK)mechanism,and its reaction pathways are as follows:n-hexane→olefins or 3-hexyl hydroperoxide→3-hexanone,2-hexanone or 2,5-dimethyltetrahydrofuran→2-methyloxirane or 2-ethyl-oxetane→acrylic acid→CO_x→CO_(2)and H_(2)O. 展开更多
关键词 Three-dimensional ordered mesoporous chromium oxide supported bimetallic single-atom catalyst Cobalt-nickel single atoms n-Hexane combustion Catalytic reaction mechanism
下载PDF
Catalytic removal of volatile organic compounds using ordered porous transition metal oxide and supported noble metal catalysts 被引量:27
12
作者 刘雨溪 邓积光 +2 位作者 谢少华 王治伟 戴洪兴 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第8期1193-1205,共13页
Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalys... Most of volatile organic compounds (VOCs) are harmful to the atmosphere and human health. Cata‐lytic combustion is an effective way to eliminate VOCs. The key issue is the availability of high per‐formance catalysts. Many catalysts including transition metal oxides, mixed metal oxides, and sup‐ported noble metals have been developed. Among these catalysts, the porous ones attract much attention. In this review, we focus on recent advances in the synthesis of ordered mesoporous and macroporous transition metal oxides, perovskites, and supported noble metal catalysts and their catalytic oxidation of VOCs. The porous catalysts outperformed their bulk counterparts. This excel‐lent catalytic performance was due to their high surface areas, high concentration of adsorbed oxy‐gen species, low temperature reducibility, strong interaction between noble metal and support and highly dispersed noble metal nanoparticles and unique porous structures. Catalytic oxidation of carbon monoxide over typical catalysts was also discussed. We made conclusive remarks and pro‐posed future work for the removal of VOCs. 展开更多
关键词 Volatile organic compound Catalytic combustion Porous transition metal oxide Perovskite-type oxide supported noble metal catalyst
下载PDF
A Novel Carbon Nanotube-Supported NiP Amorphous Alloy Catalyst and Its Hydrogenation Activity 被引量:8
13
作者 Yan Ju Fengyi Li 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第4期313-318,共6页
A carbon nanotube-supported NiP amorphous catalyst (NiP/CNT) was prepared by induced reduction. Benzene hydrogenation was used as a probe reaction for the study of catalytic activity. The effects of the support on t... A carbon nanotube-supported NiP amorphous catalyst (NiP/CNT) was prepared by induced reduction. Benzene hydrogenation was used as a probe reaction for the study of catalytic activity. The effects of the support on the activity and thermal stability of the supported catalyst were discussed based on various characterizations, including XRD, TEM, ICP, XPS, H2-TPD, and DTA. In comparison with the NiP amorphous alloy, the benzene conversion on NiP/CNT catalyst was lower, but the specific activity of NiP/CNT was higher, which is attributed to the dispersion produced by the support, an electron-donating effect, and the hydrogen-storage ability of CNT. The NiP/CNT thermal stability was improved because of the dispersion and electronic effects and the good heat-conduction ability of the CNT support. 展开更多
关键词 carbon nanotube catalyst support catalytic property NI P HYDROGENATION BENZENE
下载PDF
MoS2-rGO hybrid architecture as durable support for cathode catalyst in proton exchange membrane fuel cells 被引量:5
14
作者 Muhammad Tuoqeer Anwar Xiaohui Yan +6 位作者 Muhammad Rehman Asghar Naveed Husnain Shuiyun Shen Liuxuan Luo Xiaojing Cheng Guanghua Wei Junliang Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第8期1160-1167,共8页
Carbon black is utilized as a conventional electrocatalyst support material for proton exchange membrane fuel cells. However, this support is prone to corrosion under oxidative and harsh environments, thus limiting th... Carbon black is utilized as a conventional electrocatalyst support material for proton exchange membrane fuel cells. However, this support is prone to corrosion under oxidative and harsh environments, thus limiting the durability of the fuel cells. Meanwhile, carbon corrosion would also weaken the linkage between Pt and the support material, which causes Pt agglomeration, and consequently, deterioration of the cell performance. To overcome the drawbacks of a Pt/C electrocatalyst, a hybrid support material comprising molybdenum disulfide and reduced graphene oxide is proposed and synthesized in this study to exploit the graphitic nature of graphene and the availability of the exposed edges of MoS2. TEM results show the uniform dispersion of Pt nanoparticles over the MoS2-rGO surface. Electrochemical measurements indicate higher ECSA retention and better ORR activity after 10000 potential cycles for Pt/MoS2-rGO as compared to Pt/C, demonstrating the improved durability for this hybrid support material. 展开更多
关键词 Fuel cell Hybrid catalyst support Carbon corrosion supported catalyst Pt-based electrocatalyst
下载PDF
Ultrafine Pt nanoparticles supported on double-shelled C/TiO2 hollow spheres material as highly efficient methanol oxidation catalysts 被引量:5
15
作者 Xiaoyu Yue Yuguang Pu +2 位作者 Wen Zhang Ting Zhang Wei Gao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期275-282,共8页
Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination o... Catalyst support is extremely important for future fuel cell devices.In this work,we developed doubleshelled C/TiO2(DSCT)hollow spheres as an excellent catalyst support via a template-directed method.The combination of hollow structure,TiO2 shell and carbon layer results in excellent electron conductivity,electrocatalytic activity,and chemical stability.These uniformed DSCT hollow spheres are used as catalyst support to synthesize Pt/DSCT hollow spheres electrocatalyst.The resulting Pt/DSCT hollow spheres exhibited high catalytic performance with a current density of 462 mA mg^-1 for methanol oxidation reaction,which is 2.52 times higher than that of the commercial Pt/C.Furthermore,the increased tolerance to carbonaceous poisoning with a higher If/Ibratio and a better long-term stability in acid media suggests that the DSCT hollow sphere is a promising C/TiO2-based catalyst support for direct methanol fuel cells applications. 展开更多
关键词 catalyst support C/TiO2 hollow sphere Metal-support interactions Methanol oxidation reaction
下载PDF
Highly selective supported gold catalyst for CO-driven reduction of furfural in aqueous media 被引量:1
16
作者 董静 朱明明 +4 位作者 张高硕 刘永梅 曹勇 刘苏 王仰东 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1669-1675,共7页
The reductive transformation of furfural (FAL) into furfuryl alcohol (FOL) is an attractive route for the use of renewable bio‐sources but it suffers from the heavy use of H2. We describe here a highly efficient ... The reductive transformation of furfural (FAL) into furfuryl alcohol (FOL) is an attractive route for the use of renewable bio‐sources but it suffers from the heavy use of H2. We describe here a highly efficient reduction protocol for converting aqueous FAL to FOL. A single phase rutile TiO2 support with a gold catalyst (Au/TiO2‐R) that used CO/H2O as the hydrogen source catalyze this reduction efficiently under mild conditions. By eliminating the consumption of fossil fuel‐derived H2, our pro‐cess has the benefit afforded by using CO as a convenient and cost competitive reducing reagent. 展开更多
关键词 Furfural Reduction supported gold catalyst Carbon monoxide AQUEOUS
下载PDF
Synthesis and functionalization of carbon xerogels to be used as supports for fuel cell catalysts 被引量:1
17
作者 Jos L. Figueiredo Manuel F. R. Pereira 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期195-201,共7页
The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electroca... The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electrocatalysts for fuel cells. In particular, the role played by the surface functional groups in determining the loading, dispersion, oxidation state and stability of the metal phases is addressed. 展开更多
关键词 carbon xerogels fuel cells ELECTROcatalystS surface chemistry catalyst supports
下载PDF
Cerium phosphate-supported Au catalysts for CO oxidation 被引量:1
18
作者 Yulin Wang Huan Liu Zhen Ma 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第10期2055-2063,共9页
LaPO_4 and hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2)are typical metal phosphates recently found to be useful for making supported metal or metal oxide catalysts,but CePO_4(also belonging to the metal phosphate family)has ... LaPO_4 and hydroxyapatite(Ca_(10)(PO_4)_6(OH)_2)are typical metal phosphates recently found to be useful for making supported metal or metal oxide catalysts,but CePO_4(also belonging to the metal phosphate family)has been rarely used to make supported catalysts.It would be interesting to develop CePO_4-supported catalysts and explore their catalytic applications.Herein,hexagonal CePO_4 nanorods(denoted as CePO_4-H),hexagonal CePO_4 nanowires(CePO_4-HNW),monoclinic CePO_4 nanoparticles(CePO_4-M),and monoclinic CePO_4 nanowires(CePO_4-MNW)prepared by different methods were used to support gold via deposition-precipitation with urea(DPU).The gold contents of these catalysts were all around 1 wt%.The catalytic activities of these Au/CePO_4 catalysts in CO oxidation were found to follow the sequence of Au/CePO_4-MNW>Au/CePO_4-HNW> Au/CePO_4-M>Au/CePO_4-H.These catalysts were characterized by inductively coupled plasma-optical emission spectroscopy(ICP-OES),N_2 adsorption–desorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),oxygen temperature-programmed desorption(O_2-TPD),and CO_2 temperature-programmed desorption(CO_2-TPD)to find possible correlations between the physicochemical properties and catalytic activities of these catalysts. 展开更多
关键词 GOLD CATALYSIS catalyst support CEPO4 Carbon monoxide OXIDATION
下载PDF
Catalytic methanation of syngas over Ni-based catalysts with different supports 被引量:3
19
作者 Yincong Liu Lingjun Zhu +5 位作者 Xiaoliu Wang Shi Yin Furong Leng Fan Zhang Haizhou Lin Shurong Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第5期602-608,共7页
Co-precipitation method was selected for the preparation of Ni/Al_2O_3, Ni/ZrO_2 and Ni/CeO_2 catalysts, and their performances in methanation were investigated in this study. The structure and surface properties of t... Co-precipitation method was selected for the preparation of Ni/Al_2O_3, Ni/ZrO_2 and Ni/CeO_2 catalysts, and their performances in methanation were investigated in this study. The structure and surface properties of these catalysts were characterized by BET, XRD, H_2-TPD, TEM and H_2-TPR. The results showed that the catalytic activity at low temperature followed the order: Ni/Al_2O_3>Ni/ZrO_2>Ni/CeO_2. Ni/Al_2O_3 catalyst presented the best catalytic performance with the highest CH_4 selectivity of 94.5%. The characterization results indicated that the dispersion of the active component Ni was the main factor affecting the catalytic activity and the one with higher dispersion gave better performance. 展开更多
关键词 Methanation Ni dispersion Catalytic activity catalyst support Stability
下载PDF
Chemoselective Transfer Hydrogenation of Cinnamaldehyde over Activated Charcoal Supported Pt/Fe3O4 Catalyst 被引量:1
20
作者 张勇 陈春 +5 位作者 龚万兵 宋杰瑶 苏燕平 张海民 汪国忠 赵惠军 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第4期467-473,I0002,共8页
A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potenti... A variety of spherical and structured activated charcoal supported Pt/Fe3O4 composites with an average particle size of ~100 nm have been synthesized by a self-assembly method using the difference of reduction potential between Pt (Ⅳ) and Fe (Ⅱ) precursors as driving force. The formed Fe3O4 nanoparticles (NPs) effectively prevent the aggregation of Pt nanocrystallites and promote the dispersion of Pt NPs on the surface of catalyst, which will be favorable for the exposure of Pt active sites for high-efficient adsorption and contact of substrate and hydrogen donor. The electron-enrichment state of Pt NPs donated by Fe304 nanocrystallites is corroborated by XPS measurement, which is responsible for promoting and activating the terminal C=O bond of adsorbed substrate via a vertical configuration. The experimental results show that the activated charcoal supported Pt/Fe3O4 catalyst exhibits 94.8% selectivity towards cinnamyl alcohol by the transfer hydrogenation of einnamaldehyde with Pt loading of 2.46% under the optimum conditions of 120 ℃ for 6 h, and 2-propanol as a hydrogen donor. Additionally, the present study demonstrates that a high-efficient and recyclable catalyst can be rapidly separated from the mixture due to its natural magnetism upon the application of magnetic field. 展开更多
关键词 Activated charcoal supported Pt/Fe3O4 catalysts Redox method Transfer hydrogenation Cinnamaldehyde Cinnamyl alcohol
下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部