The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to ...The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to fully contact the stones and form a stable and well-bonded slab with large particle stones.As large particle stones replace a certain volume of cement concrete,they have good economic performance and are a low-cost form of cement concrete pavement.This study researches the use of ANSYS tools to analyze the influence of geometric dimensions and material properties of rigid pavement structural layers on the mechanical properties of pavement structures.展开更多
In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue ...In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue life are deduced. And then, the fatigue damage probability densities of the Miner and Chaboche-Zhao models are deduced. By virtue of laboratory fatigue test results, the fatigue damage probability density functions of the two models can be obtained, considering different stress ratios. Finally, substituting load cycles into them, the change law of cement concrete fatigue reliability about load cycles can be acquired. The results show that under the same stress ratio, with the increase in the load cycle, the fatigue reliability declines from almost 100% to 0% gradually. No matter under what stress ratio, during the initial stage of the load action, there is always a relatively stable phase for fatigue reliability. With the increase in the stress ratio, the stable phase gradually shortens and the load cycle corresponding to the reliability of 0% also decreases. In the descent phase of reliability, the higher the stress ratio is, the lower the concrete reliability is for the same load cycle. Besides, compared with the Chaboche-Zhao fatigue damage model, the Miner fatigue damage model is safer.展开更多
The performance of magnesium oxychloride cement concrete(MOCC)in road engineering in the arid region in northwest China was investigated over a two-year period.Two categories of MOCC pavement,light-burnt magnesia conc...The performance of magnesium oxychloride cement concrete(MOCC)in road engineering in the arid region in northwest China was investigated over a two-year period.Two categories of MOCC pavement,light-burnt magnesia concrete road(Road-L)and dolomite concrete road(Road-D),were prepared with light-burnt magnesia and a mixture of light-burnt magnesia and caustic dolomite(1:3 by mass),respectively.Variations in the properties of the MOCC pavement,such as compressive and flexural strength,mineralogical phase,and microstructure,after being exposed to two rainy seasons in the field were monitored.The compressive strength of the cored samples were conducted after being aged for 28 d,and the compressive and flexural strength were tested at ages of 1,2,3,28,90,180,270,360 and 720 d.The mineralogical phase and microstructure of the pavement were also analyzed by X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results demonstrate that MOCC pavement obtained desirable compressive and flexural strengths after curing for 3 d for Road-L and 28 d for Road-D.Both of the compressive and flexural strength of Road-L and Road-D decreased slightly after experiencing two rainy seasons,with the major hydration products being 5Mg(OH)2 MgCl28H2O(Phase 5)and 3Mg(OH)2 MgCl28H2O(Phase 3).The decomposition of Phase 5 is mainly responsible for reducing the mechanical strength of the MOCC pavement.展开更多
The workability,mechanical and physical properties are investigated,based on the requirements of the high properties of polymer cement concrete (PCC).The research results reveal that PCC is greatly improved and streng...The workability,mechanical and physical properties are investigated,based on the requirements of the high properties of polymer cement concrete (PCC).The research results reveal that PCC is greatly improved and strengthened by adding appropriate polymer.At polymer/cement=0-0.15,its porosity decreases greatly due to the improved pore structure.The weak area at interface is strengthened.The workability,mechanical and physical properties are obviously enhanced with the proportion of polymer and cement.At the same time the properties are much improved under the adequate curing conditions and admixture (0-10%).展开更多
Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of c...Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of concrete road pavement.This paper presents a state-of-the-art review of toughness improvement mechanisms and evaluation methods of cement concrete for road pavement.The review indicates that(i)The performance of concrete material depends on its material composition and internal structure.Aggregate size,cement properties and admixtures are the main factors of concrete toughness.(ii)The incorporation of rubber or fiber in pavement concrete improves the toughness of concrete materials.However,these additions must be maintained within a reasonable range.The amount of rubber and fiber are encouraged not more than 30%of the volume of fine aggregate and 2%of the volume of concrete,respectively.(iii)The toughness of pavement concrete material includes the toughness regarding bending,impact and fracture.The toughness of cement concrete for highway and municipal pavement is generally evaluated by bending and fracture toughness,while the toughness of airfield pavement concrete is more focused on impact toughness.(iv)The toughening measures of cement concrete for road pavement are mainly mixed with rubber or fiber,while these two materials have their defects,and the application of hightoughness cement concrete in the actual road still faces many challenges.For example,the synergistic effect of rubber and fiber,the development and application of new flexible admixtures,and the formulation of the toughness index of pavement cement concrete materials need further research.展开更多
Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely ...Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely based on the theoretical or simulation analysis.Ther efore,in-situ health monitoring is particularly si gnificant to obtain the stress or strain information for the assessment on structural perfor mance of cement concrete pavements.To contribute this topic,different kinds of FBG based sensors have been specially designed to measure the tem-perature,pressure and deformation in cement concrete pavements.A relatively long-term monitoring has been aonducted to collect the effective data after the solidification of the pavement lasts for about 15 d.Data analysis indicates that the temperature variation inside the pavement was very stable,with maximum ampltude smaller than 2.25°C in Sep.2020.The longitudinal,transverse and ver tical deformations of the pavement behaved in non-umniform distribution,and partial me asuring points suffered from large tensile force.The concrete course had better deformation resi stance than that of the soil base,and local interfacial micro void defects existed in the soil base.The preliminary results can help to understand the actual structural performance of cement concrete pavements based on the optical fiber sensing sys tem.展开更多
The poor fatigue properties and high rigidity of cement asphalt emulsion treated mis(CETM) have for a long time been problems restricting its further development making it impossible for C-ETMto be used as surface lay...The poor fatigue properties and high rigidity of cement asphalt emulsion treated mis(CETM) have for a long time been problems restricting its further development making it impossible for C-ETMto be used as surface layer materials. In this paper, a new kind of cement asphalt emulsion composite-rubberized asphalt emulsion modified Portland cement concrete (RACC) was proposed, which was formed by dispersing rubberized aSPhalt emulsion coated coarse aggregates into cement mortar matrix. In order to evaluate systematically the performance of RACC, laboratory tests with nearly one thousand SPecimen were conducted for resilient modulus, fatigue properties, ultimate ban and length,abrasion, temperature contraction, and dry shrinkage. The experimental results show that the problems existed in C-ETM have to a great extends been solved by RACc. To verify the field performance and inquire into paving technology, teSt road appearsatlsfactory it is concluded that when thed ape surface laycr of semi-rigid base course, RACC is more for surface layer material than both Portland cement concrete(PCC) and asphalt concrete(AC)展开更多
F mineral admixture (FMA) is made of the fin- ely divided powder of natural zeolite with a bit of other agent. When FMA is used to displace about 10% (by weight) of the ordinary portland cement (OPC) (strength grade 5...F mineral admixture (FMA) is made of the fin- ely divided powder of natural zeolite with a bit of other agent. When FMA is used to displace about 10% (by weight) of the ordinary portland cement (OPC) (strength grade 575#) in concrete and mixed with a suitable amount of super plasticizer (w/c =0.31-0.35), then a high-strength concrete with compressive strength about 80 MPa and slump about 180 MM can be obtained. The strength of this concrete is about 10-15% higher than that of the corresponding concrete mixing with pure OPC, and its bleeding decreases greatly. It makes no segre- gation and separation, and thus it satisfies the requirement of pumping concrete in construction.展开更多
Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stre...Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stress concentrations at the sharp comers and loss of the membrane effect at the fiat sides of the cross-section. Shape modification can eliminate the effects of column comers and flat sides, and thereby restore the membrane effect and improve the compressive behavior of FRP-confined square and rectangular concrete columns. Shape modification using chemical post-tensioning, achieved by using expansive cement concrete, is described and several mix designs for obtaining the optimal level of expansion are presented. In addition, parametric studies regarding the optimal geometry of the shape-modified cross-section are presented utilizing the analytical model.展开更多
The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of t...The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of the effective ways to open traffic rapidly.In this study,a novel type of rapid repair material,basalt fiber reinforced polymer modified magnesium phosphate cement(BFPMPC),is used to rapidly repair PCCP.Notably,the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones(ITZs)formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair.The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined.The experimental results show that the elastic modulus of ITZ-1 with a width of about20μm can be regarded as 0.098 times of the aggregate,and 0.51 times of the ordinary Portland cement(OPC)mortar.The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC.A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method(XFEM)to study the mechanical properties of the repair interface.The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure,which is consistent with the nano-indentation experimental results.展开更多
Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as ...Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as the precast pavement features.The previous research indicates that:(1)both super-slab and Michigan systems are recommended with the satisfied road performance close to the cast-in-place;(2)flexible base material is suggested for the fabricated pavement for the satisfied leveling and stress distribution;(3)to prevent the voiding phenomenon of the fabricated pavement,the sand cushion course,dry mixed mortar or self-leveling mortar,and other flowable materials could be used for the secondary leveling of the base after the pavement splicing;(4)two-direction dowel bars are recommended for slab connections of the fabricated pavement,which helps to improve the load transfer capacity of the joints and enhance the durability of the fabricated pavement structure;(5)the sealing treatment of precast slab joints needs strengthening to reduce the impact of surface runoff on the base course;(6)the further research focuses are designing with functional,composite,mechanized,intelligent,lightweight,and flexible pavement slabs.Besides,pavement mechanical properties induced by temperature overlapping traffic loads need to be revealed.展开更多
Carbon materials engineered electrically conductive cement concrete(ECCC)is typically prepared by directly adding carbon-based conductive filler into the cement matrix and then mixing cement with aggregates.With such ...Carbon materials engineered electrically conductive cement concrete(ECCC)is typically prepared by directly adding carbon-based conductive filler into the cement matrix and then mixing cement with aggregates.With such a strategy,ECCC possesses a high conductivity and strain/stress sensitivity and thus can be used for snow and ice melting,ohmic heating,cathodic protection system,electromagnetic shielding,structural health monitoring,and traffic detection.This paper aims to provide a systematic review on the development and applications of ECCC,especially the progress made in the past decade(from 2012 to 2022).The composition and manufacture of ECCC are first introduced.Then,the electrical performance of ECCC and its potential applications are reviewed.Finally,the remaining challenges for future work are discussed.展开更多
Regenerate utilization of worn cement concrete is the key technical problem to be solved in traffic field while the cement concrete pavement built long ago durative disrepair. The study aimed at the worn cement concre...Regenerate utilization of worn cement concrete is the key technical problem to be solved in traffic field while the cement concrete pavement built long ago durative disrepair. The study aimed at the worn cement concrete which can not be reused in site,get recycled aggregate according to the practically technics of regenerate,and then carry out test study on the aggregate and recycle aggregate cement concrete. Test results show recycled fine aggregate is about 26% of recycled aggregate,and substantive sand pulps are adhere on the surface of recycled while the distinct crackle appears on this sand pulp surface. relative to the natural aggregate,one of the remarkable characters of the recycled aggregate is that the inartificial water ratio is relatively low and the water-absorbing ratio can reach 4%~12%,and the water-absorbing ratio increased while the grain getting fine. the second remarkable characters of recycled coarse aggregate is that the weared stone value and crushed stone value of recycled coarse aggregate are both bigger,the Los-angeles weared stone value is 32.7,the crushed stone value is 26.5. So,the recycled aggregate can not meet the criterion,but after mixed into 40% natural aggregate,it can meet. The mixture ratio test results proved that based on the dosage of cement we can through reduce water cement ratio and augment water quantity to improve the working performance of recycled concrete. The destroy form of recycled concrete goes all the way with natural concrete,the recycled aggregate can absolutely used in cement concrete under C50.展开更多
This paper presents quantitatively the results of an experimental investigation on influence of mineral admixtures and superplasticizers on Vickers micro hardness(HV) of aggregate-paste interface in cement concrete. T...This paper presents quantitatively the results of an experimental investigation on influence of mineral admixtures and superplasticizers on Vickers micro hardness(HV) of aggregate-paste interface in cement concrete. The HV was measured by Vickers hardness testing equipment.The results indicate that addition of fly ash decreases HV of the concrete.Although it decreases with the increase of ground granulated blast furnace slag (GGBS) replacement,the HV is higher than that of concrete containing fly ash at all replacements.The flying ash and GGBS composition increases HV in later curing ages,but does not improve it in early curing ages.Aminosulfonic acid based superplasticizer and aliphatic hydroxy sulphonate condensate superplasticizer can enhance HV in early curing ages.The HV of concrete with polycarboxylic acid superplasticizer is higher in later curing ages.展开更多
With the great impetus of energy conservation and emission reduction policies in various countries,the proposal of concepts such as“Sponge City”and“Eco-City”,and the emphasis on restoration and governance of ecolo...With the great impetus of energy conservation and emission reduction policies in various countries,the proposal of concepts such as“Sponge City”and“Eco-City”,and the emphasis on restoration and governance of ecological environment day by day,portland cement porous concrete(PCPC),as a novel building material,has attracted more and more attention from scientific researchers and engineers.PCPC possesses the peculiar pore structure,which owns numerous functions like river embankment protection,vegetation greening as well as air-cleaning,and has been of wide application in different engineering fields.This paper reviews the salient properties of PCPC,detailedly expounds the research progress of domestic and foreign literature about this subject in the past ten years(2010–2020),conducts the statistical analysis of the distribution rule of its major properties around the world,combines with the engineering application to summarize the excellent properties of PCPC,and makes a forecast of future research direction.展开更多
Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others,...Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others, are constructed using concrete. Sadly, the failure of buildings and other concrete structures is very common in Kenya. Blended Portland cement type 32.5 N/mm<sup>2</sup> is the most widely used concrete binder material and is found in all parts of the country. Despite blended cement CEM 32.5 being the most commonly used cement type in construction industry in Kenya and most developing countries as a result of its low price and availability locally, its strength gain has been proven to be lower compared to when other types of cement are used due to quantity of pozzolanic material added to the blend. This paper outlines findings of an experimental investigation on the use of cypress tree extract as an accelerator to enhance rate of gain of strength on Kenyan blended cements. Six different blended cement brands locally available were used during the study. Cement chemical analysis was done using X-ray diffraction method while for the cypress extract, Atomic Absorption Spectrometer machine was used. Physical and mechanical properties were checked based on the British standards. The generation of the concrete mix design was done using the British DOE method and concrete was tested for the compressive strength at 7, 14, 21, 28, 56 and 90 days. It was observed that 15% dosage of the extract expressed as a mass percentage of the cement content gives the most improved compressive strength of concrete, 10.4% at 7 days and 9.5% at 28 days hence the optimum. It was further noted that when Cypress tree extract is used as an accelerator in the mix, the blended cement concrete achieves the design strength at 27 days saving 10 days of the project duration compared to when no accelerator is used while the ultimate strength is achieved at 67 days. The study therefore recommends the use of the cypress tree bark extract at a dosage of 15%, by mass, of the cement content as an accelerator when the structure is to be loaded at 28 days and waiting up to 39 days before loading the structure if no accelerator is used for blended cement concrete.展开更多
Electrical emission (EM) signals, which are generated from the concrete specimens under three-point bending tests, were conducted. It is shown that electrical emission phenomena are related to cracking of the specimen...Electrical emission (EM) signals, which are generated from the concrete specimens under three-point bending tests, were conducted. It is shown that electrical emission phenomena are related to cracking of the specimens, cohesive failure, contact-separation etc. The simultaneous appearance of electric emission signals and visible cracks during the flexure loading of beams was also observed.展开更多
The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to th...The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to the differences of chain sections, functional groups, eic, polyacrylic acid superplasticizer could be divided into A, B, C three parts. Among them, A chain section included sulfonic acid groups, B chain section carboxyl groups, C chain section polyester. Polyacrylic acid superplasticizers with different matching of A, B, C chain sections, different length of C chain section and different molecular weights were synthesized by acrylic acid, polyethylene glycol, sodium methyl allylsulfonate; the relation between the molecular structure and perfolxnance was also studied. The expetimental results indicate that the water-reduction ratio increases obviously with the increment of the proportion of sodium methyl allylsulfonate chain section in the molecular; the slump retention increases greatly with the increment of the proportion of acrylic acid chain section; the dispersion of cement particles increases with the increment of the chain length of polyethylene glycol; when the molecular weight is in the range of 5000, the dispersion and slump retentibity increase with the increment of the average molecular weight of polymers.展开更多
This paper presents a comprehensive review of historical theory development and current construction practice of pavement engineering in China. Mechanical models, design guides, construction techniques, evaluation met...This paper presents a comprehensive review of historical theory development and current construction practice of pavement engineering in China. Mechanical models, design guides, construction techniques, evaluation methods and maintenance standards are elaborated for Portland cement concrete (PCC) pavements methodology among pavements of rural highways, urban roads and asphalt concrete (AC) pavements. Differences in design and airport fields are discussed based on service requirements. Lessons and experiences based on the past 20 years' construction practice and pavement performance are summarized. Current research areas in pavement engineering associated with unconventional geological and/or landscaping in China's highway construction and national strategic plan for pavement engineering are also covered.展开更多
In view of the increasing cement concrete pavement in China,the proportion of road non-slip surface layer is large,the winter slippery performance is insufficient and the later non-slip treatment is difficult. Through...In view of the increasing cement concrete pavement in China,the proportion of road non-slip surface layer is large,the winter slippery performance is insufficient and the later non-slip treatment is difficult. Through the concrete construction and post-application and development of the anti-skid sand in the road and bridge,the feasible anti-skid optimization measures are put forward.展开更多
文摘The suitable cement concrete pavement for mountainous areas is a form of low-cost cement concrete pavement that uses unconventional graded stones in different proportions in ordinary concrete,allowing the concrete to fully contact the stones and form a stable and well-bonded slab with large particle stones.As large particle stones replace a certain volume of cement concrete,they have good economic performance and are a low-cost form of cement concrete pavement.This study researches the use of ANSYS tools to analyze the influence of geometric dimensions and material properties of rigid pavement structural layers on the mechanical properties of pavement structures.
基金The National Natural Science Foundation of China(No. 51008071 )the Natural Science Foundation of Jiangsu Province(No. BK2010413)
文摘In order to obtain the change law of the fatigue reliability of cement concrete for highway pavement under high stress ratios, first, the probability densities of monotonic random variables including concrete fatigue life are deduced. And then, the fatigue damage probability densities of the Miner and Chaboche-Zhao models are deduced. By virtue of laboratory fatigue test results, the fatigue damage probability density functions of the two models can be obtained, considering different stress ratios. Finally, substituting load cycles into them, the change law of cement concrete fatigue reliability about load cycles can be acquired. The results show that under the same stress ratio, with the increase in the load cycle, the fatigue reliability declines from almost 100% to 0% gradually. No matter under what stress ratio, during the initial stage of the load action, there is always a relatively stable phase for fatigue reliability. With the increase in the stress ratio, the stable phase gradually shortens and the load cycle corresponding to the reliability of 0% also decreases. In the descent phase of reliability, the higher the stress ratio is, the lower the concrete reliability is for the same load cycle. Besides, compared with the Chaboche-Zhao fatigue damage model, the Miner fatigue damage model is safer.
基金Project(2014–GX-A2A)supported by Major Science and Technology Projects of Qinghai Province,ChinaProjects(2018-NN-152,2019-GX-165)supported by Science and Technology Achievements Transformation Project of Qinghai Province,ChinaProjects(2018467,2019423)supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences project supported by the High-end innovative talents Thousand talents Plan of Qinghai Province,China
文摘The performance of magnesium oxychloride cement concrete(MOCC)in road engineering in the arid region in northwest China was investigated over a two-year period.Two categories of MOCC pavement,light-burnt magnesia concrete road(Road-L)and dolomite concrete road(Road-D),were prepared with light-burnt magnesia and a mixture of light-burnt magnesia and caustic dolomite(1:3 by mass),respectively.Variations in the properties of the MOCC pavement,such as compressive and flexural strength,mineralogical phase,and microstructure,after being exposed to two rainy seasons in the field were monitored.The compressive strength of the cored samples were conducted after being aged for 28 d,and the compressive and flexural strength were tested at ages of 1,2,3,28,90,180,270,360 and 720 d.The mineralogical phase and microstructure of the pavement were also analyzed by X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results demonstrate that MOCC pavement obtained desirable compressive and flexural strengths after curing for 3 d for Road-L and 28 d for Road-D.Both of the compressive and flexural strength of Road-L and Road-D decreased slightly after experiencing two rainy seasons,with the major hydration products being 5Mg(OH)2 MgCl28H2O(Phase 5)and 3Mg(OH)2 MgCl28H2O(Phase 3).The decomposition of Phase 5 is mainly responsible for reducing the mechanical strength of the MOCC pavement.
文摘The workability,mechanical and physical properties are investigated,based on the requirements of the high properties of polymer cement concrete (PCC).The research results reveal that PCC is greatly improved and strengthened by adding appropriate polymer.At polymer/cement=0-0.15,its porosity decreases greatly due to the improved pore structure.The weak area at interface is strengthened.The workability,mechanical and physical properties are obviously enhanced with the proportion of polymer and cement.At the same time the properties are much improved under the adequate curing conditions and admixture (0-10%).
基金This research is financially supported by the Research Program of China Railway Siyuan Survey and Design Group Co.,Ltd.(Grant number 2021K066).
文摘Traditional cement concrete has the disadvantages of low tensile strength,poor toughness,and rapid development of cracks while cracking,which causes a significantly negative influence on the safety and durability of concrete road pavement.This paper presents a state-of-the-art review of toughness improvement mechanisms and evaluation methods of cement concrete for road pavement.The review indicates that(i)The performance of concrete material depends on its material composition and internal structure.Aggregate size,cement properties and admixtures are the main factors of concrete toughness.(ii)The incorporation of rubber or fiber in pavement concrete improves the toughness of concrete materials.However,these additions must be maintained within a reasonable range.The amount of rubber and fiber are encouraged not more than 30%of the volume of fine aggregate and 2%of the volume of concrete,respectively.(iii)The toughness of pavement concrete material includes the toughness regarding bending,impact and fracture.The toughness of cement concrete for highway and municipal pavement is generally evaluated by bending and fracture toughness,while the toughness of airfield pavement concrete is more focused on impact toughness.(iv)The toughening measures of cement concrete for road pavement are mainly mixed with rubber or fiber,while these two materials have their defects,and the application of hightoughness cement concrete in the actual road still faces many challenges.For example,the synergistic effect of rubber and fiber,the development and application of new flexible admixtures,and the formulation of the toughness index of pavement cement concrete materials need further research.
基金supported by the National Natural Science Foundation of China(Grant No.51908263,11932008,DL2021175003L and G2021175026L)Provincial Projects(2020-0624-RCC-0013 and JK2021-18)。
文摘Premature stress of cement concrete pavements i the coupled action of construction technique,structural ma-terial and environmental action.It is quite diffiault to accurately get the actual stress distribution merely based on the theoretical or simulation analysis.Ther efore,in-situ health monitoring is particularly si gnificant to obtain the stress or strain information for the assessment on structural perfor mance of cement concrete pavements.To contribute this topic,different kinds of FBG based sensors have been specially designed to measure the tem-perature,pressure and deformation in cement concrete pavements.A relatively long-term monitoring has been aonducted to collect the effective data after the solidification of the pavement lasts for about 15 d.Data analysis indicates that the temperature variation inside the pavement was very stable,with maximum ampltude smaller than 2.25°C in Sep.2020.The longitudinal,transverse and ver tical deformations of the pavement behaved in non-umniform distribution,and partial me asuring points suffered from large tensile force.The concrete course had better deformation resi stance than that of the soil base,and local interfacial micro void defects existed in the soil base.The preliminary results can help to understand the actual structural performance of cement concrete pavements based on the optical fiber sensing sys tem.
文摘The poor fatigue properties and high rigidity of cement asphalt emulsion treated mis(CETM) have for a long time been problems restricting its further development making it impossible for C-ETMto be used as surface layer materials. In this paper, a new kind of cement asphalt emulsion composite-rubberized asphalt emulsion modified Portland cement concrete (RACC) was proposed, which was formed by dispersing rubberized aSPhalt emulsion coated coarse aggregates into cement mortar matrix. In order to evaluate systematically the performance of RACC, laboratory tests with nearly one thousand SPecimen were conducted for resilient modulus, fatigue properties, ultimate ban and length,abrasion, temperature contraction, and dry shrinkage. The experimental results show that the problems existed in C-ETM have to a great extends been solved by RACc. To verify the field performance and inquire into paving technology, teSt road appearsatlsfactory it is concluded that when thed ape surface laycr of semi-rigid base course, RACC is more for surface layer material than both Portland cement concrete(PCC) and asphalt concrete(AC)
文摘F mineral admixture (FMA) is made of the fin- ely divided powder of natural zeolite with a bit of other agent. When FMA is used to displace about 10% (by weight) of the ordinary portland cement (OPC) (strength grade 575#) in concrete and mixed with a suitable amount of super plasticizer (w/c =0.31-0.35), then a high-strength concrete with compressive strength about 80 MPa and slump about 180 MM can be obtained. The strength of this concrete is about 10-15% higher than that of the corresponding concrete mixing with pure OPC, and its bleeding decreases greatly. It makes no segre- gation and separation, and thus it satisfies the requirement of pumping concrete in construction.
文摘Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stress concentrations at the sharp comers and loss of the membrane effect at the fiat sides of the cross-section. Shape modification can eliminate the effects of column comers and flat sides, and thereby restore the membrane effect and improve the compressive behavior of FRP-confined square and rectangular concrete columns. Shape modification using chemical post-tensioning, achieved by using expansive cement concrete, is described and several mix designs for obtaining the optimal level of expansion are presented. In addition, parametric studies regarding the optimal geometry of the shape-modified cross-section are presented utilizing the analytical model.
基金financially supported by the Fundamental Research Funds for the Central Universities(DUT20JC50,DUT17RC(3)006)the National Natural Science Foundation of China(51508137)the Research Center of Civil Aviation Airport Safety and Operation Engineering Technology(KFKT2021-01)。
文摘The Portland cement concrete pavement(PCCP)often suffers from different environmental distresses and vehicle load failure,resulting in slab corner fractures,potholes,and other diseases.Rapid repair has become one of the effective ways to open traffic rapidly.In this study,a novel type of rapid repair material,basalt fiber reinforced polymer modified magnesium phosphate cement(BFPMPC),is used to rapidly repair PCCP.Notably,the mechanical properties and characteristics of the repair interfaces which are named interfacial transition zones(ITZs)formed by BFPMPC and cement concrete are focused on as a decisive factor for the performance of the rapid repair.The changing trend of the elastic moduli was studied by nanoindentation experiments in the ITZs with the deconvolution analysis that the elastic moduli of certain kinds of substances can be determined.The experimental results show that the elastic modulus of ITZ-1 with a width of about20μm can be regarded as 0.098 times of the aggregate,and 0.51 times of the ordinary Portland cement(OPC)mortar.The BFPMPC-OPC mortar ITZ has roughly the same mechanical properties as the ITZ between aggregate and BFPMPC.A multi-scale representative two-dimensional model was established by random aggregate and a two-dimensional extended finite element method(XFEM)to study the mechanical properties of the repair interface.The simulation results show that the ITZ formed by the interface of BFPMPC and OPC mortar and basalt aggregate is the most vulnerable to failure,which is consistent with the nano-indentation experimental results.
基金financially and jointly supported by the R&D Program of Department of Housing and Urban-Rural Development of Hubei Province(Grant No.202023)Wuhan Municipal Engineering Group(Grant No.202105)。
文摘Prefabricated pavement is increasingly applied worldwide due to the rapid construction on-site.This paper presents a state-of-the-art review of the precast systems and assembly connection of concrete slabs,as well as the precast pavement features.The previous research indicates that:(1)both super-slab and Michigan systems are recommended with the satisfied road performance close to the cast-in-place;(2)flexible base material is suggested for the fabricated pavement for the satisfied leveling and stress distribution;(3)to prevent the voiding phenomenon of the fabricated pavement,the sand cushion course,dry mixed mortar or self-leveling mortar,and other flowable materials could be used for the secondary leveling of the base after the pavement splicing;(4)two-direction dowel bars are recommended for slab connections of the fabricated pavement,which helps to improve the load transfer capacity of the joints and enhance the durability of the fabricated pavement structure;(5)the sealing treatment of precast slab joints needs strengthening to reduce the impact of surface runoff on the base course;(6)the further research focuses are designing with functional,composite,mechanized,intelligent,lightweight,and flexible pavement slabs.Besides,pavement mechanical properties induced by temperature overlapping traffic loads need to be revealed.
基金The authors would like to acknowledge the financial support by the National Natural Science Foundation of China(Grant Nos.52278164 and 51878224)the National Key Research and Development Program of China(Gant No.2022YFB3706503).
文摘Carbon materials engineered electrically conductive cement concrete(ECCC)is typically prepared by directly adding carbon-based conductive filler into the cement matrix and then mixing cement with aggregates.With such a strategy,ECCC possesses a high conductivity and strain/stress sensitivity and thus can be used for snow and ice melting,ohmic heating,cathodic protection system,electromagnetic shielding,structural health monitoring,and traffic detection.This paper aims to provide a systematic review on the development and applications of ECCC,especially the progress made in the past decade(from 2012 to 2022).The composition and manufacture of ECCC are first introduced.Then,the electrical performance of ECCC and its potential applications are reviewed.Finally,the remaining challenges for future work are discussed.
文摘Regenerate utilization of worn cement concrete is the key technical problem to be solved in traffic field while the cement concrete pavement built long ago durative disrepair. The study aimed at the worn cement concrete which can not be reused in site,get recycled aggregate according to the practically technics of regenerate,and then carry out test study on the aggregate and recycle aggregate cement concrete. Test results show recycled fine aggregate is about 26% of recycled aggregate,and substantive sand pulps are adhere on the surface of recycled while the distinct crackle appears on this sand pulp surface. relative to the natural aggregate,one of the remarkable characters of the recycled aggregate is that the inartificial water ratio is relatively low and the water-absorbing ratio can reach 4%~12%,and the water-absorbing ratio increased while the grain getting fine. the second remarkable characters of recycled coarse aggregate is that the weared stone value and crushed stone value of recycled coarse aggregate are both bigger,the Los-angeles weared stone value is 32.7,the crushed stone value is 26.5. So,the recycled aggregate can not meet the criterion,but after mixed into 40% natural aggregate,it can meet. The mixture ratio test results proved that based on the dosage of cement we can through reduce water cement ratio and augment water quantity to improve the working performance of recycled concrete. The destroy form of recycled concrete goes all the way with natural concrete,the recycled aggregate can absolutely used in cement concrete under C50.
基金the Special Foundation for Basic Scientific Research of Central Colleges of China (No:CHD2011ZD011)the Special Foundation of Basic Research for Chang'an University
文摘This paper presents quantitatively the results of an experimental investigation on influence of mineral admixtures and superplasticizers on Vickers micro hardness(HV) of aggregate-paste interface in cement concrete. The HV was measured by Vickers hardness testing equipment.The results indicate that addition of fly ash decreases HV of the concrete.Although it decreases with the increase of ground granulated blast furnace slag (GGBS) replacement,the HV is higher than that of concrete containing fly ash at all replacements.The flying ash and GGBS composition increases HV in later curing ages,but does not improve it in early curing ages.Aminosulfonic acid based superplasticizer and aliphatic hydroxy sulphonate condensate superplasticizer can enhance HV in early curing ages.The HV of concrete with polycarboxylic acid superplasticizer is higher in later curing ages.
基金supported by the Jiangsu Water Conservancy Science and Technology Project of China(2016036).
文摘With the great impetus of energy conservation and emission reduction policies in various countries,the proposal of concepts such as“Sponge City”and“Eco-City”,and the emphasis on restoration and governance of ecological environment day by day,portland cement porous concrete(PCPC),as a novel building material,has attracted more and more attention from scientific researchers and engineers.PCPC possesses the peculiar pore structure,which owns numerous functions like river embankment protection,vegetation greening as well as air-cleaning,and has been of wide application in different engineering fields.This paper reviews the salient properties of PCPC,detailedly expounds the research progress of domestic and foreign literature about this subject in the past ten years(2010–2020),conducts the statistical analysis of the distribution rule of its major properties around the world,combines with the engineering application to summarize the excellent properties of PCPC,and makes a forecast of future research direction.
文摘Concrete is the most widely used construction material in the world. The situation in the country is not an exception as most of the infrastructures in Kenya such as buildings, bridges, concrete drainage among others, are constructed using concrete. Sadly, the failure of buildings and other concrete structures is very common in Kenya. Blended Portland cement type 32.5 N/mm<sup>2</sup> is the most widely used concrete binder material and is found in all parts of the country. Despite blended cement CEM 32.5 being the most commonly used cement type in construction industry in Kenya and most developing countries as a result of its low price and availability locally, its strength gain has been proven to be lower compared to when other types of cement are used due to quantity of pozzolanic material added to the blend. This paper outlines findings of an experimental investigation on the use of cypress tree extract as an accelerator to enhance rate of gain of strength on Kenyan blended cements. Six different blended cement brands locally available were used during the study. Cement chemical analysis was done using X-ray diffraction method while for the cypress extract, Atomic Absorption Spectrometer machine was used. Physical and mechanical properties were checked based on the British standards. The generation of the concrete mix design was done using the British DOE method and concrete was tested for the compressive strength at 7, 14, 21, 28, 56 and 90 days. It was observed that 15% dosage of the extract expressed as a mass percentage of the cement content gives the most improved compressive strength of concrete, 10.4% at 7 days and 9.5% at 28 days hence the optimum. It was further noted that when Cypress tree extract is used as an accelerator in the mix, the blended cement concrete achieves the design strength at 27 days saving 10 days of the project duration compared to when no accelerator is used while the ultimate strength is achieved at 67 days. The study therefore recommends the use of the cypress tree bark extract at a dosage of 15%, by mass, of the cement content as an accelerator when the structure is to be loaded at 28 days and waiting up to 39 days before loading the structure if no accelerator is used for blended cement concrete.
文摘Electrical emission (EM) signals, which are generated from the concrete specimens under three-point bending tests, were conducted. It is shown that electrical emission phenomena are related to cracking of the specimens, cohesive failure, contact-separation etc. The simultaneous appearance of electric emission signals and visible cracks during the flexure loading of beams was also observed.
基金the Western Region Traffic Construction Technology Program of the Ministry of Communications of China(No.2007-088)
文摘The effects of structure parameters, such as molecular structure, segment kinds, molecular weight, and organic functional groups, on the performance of polyacrylic acid superplasticizer were discussed. According to the differences of chain sections, functional groups, eic, polyacrylic acid superplasticizer could be divided into A, B, C three parts. Among them, A chain section included sulfonic acid groups, B chain section carboxyl groups, C chain section polyester. Polyacrylic acid superplasticizers with different matching of A, B, C chain sections, different length of C chain section and different molecular weights were synthesized by acrylic acid, polyethylene glycol, sodium methyl allylsulfonate; the relation between the molecular structure and perfolxnance was also studied. The expetimental results indicate that the water-reduction ratio increases obviously with the increment of the proportion of sodium methyl allylsulfonate chain section in the molecular; the slump retention increases greatly with the increment of the proportion of acrylic acid chain section; the dispersion of cement particles increases with the increment of the chain length of polyethylene glycol; when the molecular weight is in the range of 5000, the dispersion and slump retentibity increase with the increment of the average molecular weight of polymers.
文摘This paper presents a comprehensive review of historical theory development and current construction practice of pavement engineering in China. Mechanical models, design guides, construction techniques, evaluation methods and maintenance standards are elaborated for Portland cement concrete (PCC) pavements methodology among pavements of rural highways, urban roads and asphalt concrete (AC) pavements. Differences in design and airport fields are discussed based on service requirements. Lessons and experiences based on the past 20 years' construction practice and pavement performance are summarized. Current research areas in pavement engineering associated with unconventional geological and/or landscaping in China's highway construction and national strategic plan for pavement engineering are also covered.
文摘In view of the increasing cement concrete pavement in China,the proportion of road non-slip surface layer is large,the winter slippery performance is insufficient and the later non-slip treatment is difficult. Through the concrete construction and post-application and development of the anti-skid sand in the road and bridge,the feasible anti-skid optimization measures are put forward.