Performance of the proton exchange membrane fuel cell(PEMFC)is appreciably affected by the channel geometry.The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in...Performance of the proton exchange membrane fuel cell(PEMFC)is appreciably affected by the channel geometry.The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in the respective systems.The same nutrient transport system can be mimicked in the flow channel design of a PEMFC,to aid even reactant distribution and better water management.In this work,the effect of bio-inspired flow field designs such as lung and leaf channel design bipolar plates,on the performance of a PEMFC was examined experimentally at various operating conditions.A PEMFC of 49 cm2 area,with a Nafion 212 membrane with a 40%catalyst loading of 0.4 mg·cm-2 on the anode side and also 0.6 mg·cm-2 on the cathode side is assembled by incorporating the bio-inspired channel bipolar plate,and was tested on a programmable fuel-cell test station.The impact of the working parameters like reactants’relative humidity(RH),back pressure and fuel cell temperature on the performance of the fuel cell was examined;the operating pressure remains constant at 0.1 MPa.It was observed that the best performance was attained at a back pressure of 0.3 MPa,75°C operating temperature and 100%RH.The three flow channels were also compared at different operating pressures ranging from 0.1 MPa to 0.3 MPa,and the other parameters such as operating temperature,RH and back pressure were set as 75°C,100%and 0.3 MPa.The experimental outcomes of the PEMFC with bio-inspired channels were compared with the experimental results of a conventional triple serpentine flow field.It was observed that among the different flow channel designs considered,the leaf channel design gives the best output in terms of power density.Further,the experimental results of the leaf channel design were compared with those of the interdigitated leaf channel design.The PEMFC with the interdigitated leaf channel design was found to generate 6.72%more power density than the non-interdigitated leaf channel design.The fuel cell with interdigitated leaf channel design generated5.58%more net power density than the fuel cell with non-interdigitated leaf channel design after considering the parasitic losses.展开更多
Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct en...Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct end-to-end suture repair,is possible.The problem arises when there is significant segmental loss,which can occur following trauma as well as oncological procedures.展开更多
The subliminal channel is used to send a secret message to an authorized receiver; the message cannot he discovered by any unauthorized receivers. Designated verifier signature (DVS) provide authentication of a mess...The subliminal channel is used to send a secret message to an authorized receiver; the message cannot he discovered by any unauthorized receivers. Designated verifier signature (DVS) provide authentication of a message, we design a DVS scheme with message recovery mechanism and use it as a subliminal channel. In order to share a message among n users securely and allows t or more users can reconstruct the secret in dynamic groups, we combine both subliminal channel and (t, n) threshold cryptography. Then we proposed a threshold subliminal channel which can convey a subliminal message to a group of users based on message-recovery designated verifier signatures. Reconstructing the subliminal message relies on the cooperation of t or more users in the group and they can verify the validity of the subliminal message. Security and performance analysis show that the proposed scheme is secure and efficient.展开更多
We propose a method to estimate the average fidelity using the unitary 2t-design of a twirled noisy channel, which is suitable for large-scale quantum circuits. Compared with the unitary 2-design in randomized benchma...We propose a method to estimate the average fidelity using the unitary 2t-design of a twirled noisy channel, which is suitable for large-scale quantum circuits. Compared with the unitary 2-design in randomized benchmarking, the unitary2t-design for the twirling of noisy channels is more flexible in construction and can provide more information. In addition,we prove that the proposed method provides an efficient and reliable estimation of the average fidelity in benchmarking multistage quantum gates and estimating the weakly gate-and time-dependent noise. For time-dependent noise, we provide a scheme of moment superoperator to analyze the noise in different experiments. In particular, we give a lower bound on the average fidelity of a channel with imperfect implementation of benchmarking and state preparation and measurement errors(SPAM).展开更多
There are two main opposing views in the wireless industry on the feasibility of developing 5th generation(5G) cellular networks in mm-Wave bands. The optimistic view is based on the fact that the path loss in mm Wave...There are two main opposing views in the wireless industry on the feasibility of developing 5th generation(5G) cellular networks in mm-Wave bands. The optimistic view is based on the fact that the path loss in mm Wave bands is not significantly worse than that in cellular bands when beamforming gain is also considered. The cautious view points out the significant blockage issues due to the lack of diffraction and adequate penetration in mm Wave bands. The implementation of 5G mm Wave cellular networks also faces major challenges due to the high link budget needed for long- range communication and the strong dependency on beamforming technology. This paper addresses some of these fundamental technology issues, from mm Wave channel characters and channel modeling to the implications on system and network architecture design.Although we believe that mm Wave can be used for 5G networks, we show that the air interface, device and network design will be very different from existing cellular design.展开更多
This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited commu...This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.展开更多
Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments...Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).展开更多
A design procedure is presented to estimate the load carrying capacity of beam-column channel sections. A reduced cross-section is used to compensate for the reduction in the post-buckling stiffness. The non-linear st...A design procedure is presented to estimate the load carrying capacity of beam-column channel sections. A reduced cross-section is used to compensate for the reduction in the post-buckling stiffness. The non-linear stress distribution acting on the entire channel width is replaced by simplified linear distributions. Using this simplified concept, the maximum stress in the post-buckling state, is assumed to be carried entirely by both edges while the central region of the channel remains unstressed. Thus a fraction of the channel section is considered in resisting the applied loading. This approximation enables the structural engineer to deal with a simplified stress distribution to compute the ultimate strength instead of the non-linear one.展开更多
In the last few decades, dedicated wireless channels were specifically allocated to enable the development and implementation of vehicular communication systems. The two main protocol stacks, the WAVE stan- dards prop...In the last few decades, dedicated wireless channels were specifically allocated to enable the development and implementation of vehicular communication systems. The two main protocol stacks, the WAVE stan- dards proposed by the IEEE in the United States and the ETSI ITS-G5 in Europe, reserved 10 MHz wide channels in the 5.9 GHz spectrum band. Despite the exclusive use of these frequencies for vehicular com- munication purposes, there are still cross channel interference problems that have been widely reported in the literature. In order to mitigate these issues, this paper presents the design of a two-stage FIR low-pass filter, targeting the integration with a digital baseband receiver chain of a custom vehicular communications platform. The filter was tested, evaluated and optimized, with the simulation results proving the effectiveness of the proposed method and the low delay introduced in the overall operation of the receiver chain. 2016 Chongqing University of Posts and Telecommunications. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license展开更多
To provide quality-of service (QoS) guarantees for heterogeneous applications, most recent wireless communications technologies and standards combine the error-correcting capability of hybrid automatic repeat request ...To provide quality-of service (QoS) guarantees for heterogeneous applications, most recent wireless communications technologies and standards combine the error-correcting capability of hybrid automatic repeat request (HARQ) schemes at the data link layer (DLL) with the adaptation ability of the adaptive modulation and coding (AMC) modes at the physical layer (PHY) layer. This paper aims to investigate the aggregated system capacity as well as the breakdown of this capacity for different ACM modes in each HARQ scheme. This investigation was done by using maximum weighted capacity (MWC) resource allocation at the PHY layer in conjunction with a novel packet error rate (PER)-based scheduling at the medium access control (MAC) layer. As a result, the dominant AMC mode corresponding to channel SNR was available.展开更多
In order to improve the performance of linear time-varying(LTV)channel estimation,based on the sparsity of channel taps in time domain,a sparse recovery method of LTV channel in orthogonal frequency division multipl...In order to improve the performance of linear time-varying(LTV)channel estimation,based on the sparsity of channel taps in time domain,a sparse recovery method of LTV channel in orthogonal frequency division multiplexing(OFDM)system is proposed.Firstly,based on the compressive sensing theory,the average of the channel taps over one symbol duration in the LTV channel model is estimated.Secondly,in order to deal with the inter-carrier interference(ICI),the group-pilot design criterion is used based on the minimization of mutual coherence of the measurement.Finally,an efficient pilot pattern optimization algorithm is proposed by a dual layer loops iteration.The simulation results show that the new method uses less pilots,has a smaller bit error ratio(BER),and greater ability to deal with Doppler frequency shift than the traditional method does.展开更多
Epilepsy is described as the most common chronic brain disorder. A typical symptom of epilepsy results in uncontrolled convulsions caused by temporary excessive neuronal discharges. Although several new anticon-vulsan...Epilepsy is described as the most common chronic brain disorder. A typical symptom of epilepsy results in uncontrolled convulsions caused by temporary excessive neuronal discharges. Although several new anticon-vulsants have been introduced, some types of seizures have still not been adequately controlled with these new and current therapies. There is an urgent need to develop new anticonvulsant drugs to control the many different types of seizures. Many studies have shown that the epilepsies involve more than one mechanism and therefore may be responsible for the various types of observed seizures. Recently reported studies have shown that a group of newly synthesized 6 Hz active anticonvulsant fluorinated N-benzamide enaminones exhibited selective inhibitions of voltage-gated sodium (Nav) channels. Nav channels are responsible for the initial inward currents during the depolarization phases of the action potential in excitable cells. The activation and opening of Nav channels result in the initial phases of action potentials. We hypothesize that there is an essential pharmacophore model for the interactions between these enaminones and the active sites of Nav channels. The research reported here is focused on molecular docking studies of the interactions that occur between the fluorinated N-benzamide enaminones and the Nav channels. These studies may open an avenue for designing anticonvulsant drugs by inhibiting Nav channels.展开更多
文摘Performance of the proton exchange membrane fuel cell(PEMFC)is appreciably affected by the channel geometry.The branching structure of a plant leaf and human lung is an efficient network to distribute the nutrients in the respective systems.The same nutrient transport system can be mimicked in the flow channel design of a PEMFC,to aid even reactant distribution and better water management.In this work,the effect of bio-inspired flow field designs such as lung and leaf channel design bipolar plates,on the performance of a PEMFC was examined experimentally at various operating conditions.A PEMFC of 49 cm2 area,with a Nafion 212 membrane with a 40%catalyst loading of 0.4 mg·cm-2 on the anode side and also 0.6 mg·cm-2 on the cathode side is assembled by incorporating the bio-inspired channel bipolar plate,and was tested on a programmable fuel-cell test station.The impact of the working parameters like reactants’relative humidity(RH),back pressure and fuel cell temperature on the performance of the fuel cell was examined;the operating pressure remains constant at 0.1 MPa.It was observed that the best performance was attained at a back pressure of 0.3 MPa,75°C operating temperature and 100%RH.The three flow channels were also compared at different operating pressures ranging from 0.1 MPa to 0.3 MPa,and the other parameters such as operating temperature,RH and back pressure were set as 75°C,100%and 0.3 MPa.The experimental outcomes of the PEMFC with bio-inspired channels were compared with the experimental results of a conventional triple serpentine flow field.It was observed that among the different flow channel designs considered,the leaf channel design gives the best output in terms of power density.Further,the experimental results of the leaf channel design were compared with those of the interdigitated leaf channel design.The PEMFC with the interdigitated leaf channel design was found to generate 6.72%more power density than the non-interdigitated leaf channel design.The fuel cell with interdigitated leaf channel design generated5.58%more net power density than the fuel cell with non-interdigitated leaf channel design after considering the parasitic losses.
文摘Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct end-to-end suture repair,is possible.The problem arises when there is significant segmental loss,which can occur following trauma as well as oncological procedures.
基金Supported by the National Natural Science Foun-dation of China (60403027)
文摘The subliminal channel is used to send a secret message to an authorized receiver; the message cannot he discovered by any unauthorized receivers. Designated verifier signature (DVS) provide authentication of a message, we design a DVS scheme with message recovery mechanism and use it as a subliminal channel. In order to share a message among n users securely and allows t or more users can reconstruct the secret in dynamic groups, we combine both subliminal channel and (t, n) threshold cryptography. Then we proposed a threshold subliminal channel which can convey a subliminal message to a group of users based on message-recovery designated verifier signatures. Reconstructing the subliminal message relies on the cooperation of t or more users in the group and they can verify the validity of the subliminal message. Security and performance analysis show that the proposed scheme is secure and efficient.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61372076 and 61701375)the 111 Project,China(Grant No.B08038)+1 种基金the Key Research and Development Plan of Shannxi Province,China(Grant No.BBD24017290001)the Foundation of Science and Technology on Communication Networks Laboratory,China(Grant No.KX172600031)
文摘We propose a method to estimate the average fidelity using the unitary 2t-design of a twirled noisy channel, which is suitable for large-scale quantum circuits. Compared with the unitary 2-design in randomized benchmarking, the unitary2t-design for the twirling of noisy channels is more flexible in construction and can provide more information. In addition,we prove that the proposed method provides an efficient and reliable estimation of the average fidelity in benchmarking multistage quantum gates and estimating the weakly gate-and time-dependent noise. For time-dependent noise, we provide a scheme of moment superoperator to analyze the noise in different experiments. In particular, we give a lower bound on the average fidelity of a channel with imperfect implementation of benchmarking and state preparation and measurement errors(SPAM).
文摘There are two main opposing views in the wireless industry on the feasibility of developing 5th generation(5G) cellular networks in mm-Wave bands. The optimistic view is based on the fact that the path loss in mm Wave bands is not significantly worse than that in cellular bands when beamforming gain is also considered. The cautious view points out the significant blockage issues due to the lack of diffraction and adequate penetration in mm Wave bands. The implementation of 5G mm Wave cellular networks also faces major challenges due to the high link budget needed for long- range communication and the strong dependency on beamforming technology. This paper addresses some of these fundamental technology issues, from mm Wave channel characters and channel modeling to the implications on system and network architecture design.Although we believe that mm Wave can be used for 5G networks, we show that the air interface, device and network design will be very different from existing cellular design.
基金supported by the Funds for Creative Research Groups of China(No.60821063)the State Key Program of National Natural Science of China(No.60534010)+3 种基金the National 973 Program of China(No.2009CB320604)the Funds of National Science of China(No.60674021,60804024)the 111 Project(No.B08015)the Funds of PhD program of MOE,China(No.20060145019)
文摘This paper studies the problems of H-infinity performance optimization and controller design for continuous-time NCSs with both sensor-to-controller and controller-to-actuator communication constraints (limited communication channels). By taking the derivative character of network-induced delay into full consideration and defining new Lyapunov functions, linear matrix inequalities (LMIs)-based H-infinity performance optimization and controller design are presented for NCSs with limited communication channels. If there do not exist any constraints on the communication channels, the proposed design methods are also applicable. The merit of the proposed methods lies in their Jess conservativeness, which is achieved by avoiding the utilization of bounding inequalities for cross products of vectors. The simulation results illustrate the merit and effectiveness of the proposed H-infinity controller design for NCSs with limited communication channels.
文摘Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).
文摘A design procedure is presented to estimate the load carrying capacity of beam-column channel sections. A reduced cross-section is used to compensate for the reduction in the post-buckling stiffness. The non-linear stress distribution acting on the entire channel width is replaced by simplified linear distributions. Using this simplified concept, the maximum stress in the post-buckling state, is assumed to be carried entirely by both edges while the central region of the channel remains unstressed. Thus a fraction of the channel section is considered in resisting the applied loading. This approximation enables the structural engineer to deal with a simplified stress distribution to compute the ultimate strength instead of the non-linear one.
文摘In the last few decades, dedicated wireless channels were specifically allocated to enable the development and implementation of vehicular communication systems. The two main protocol stacks, the WAVE stan- dards proposed by the IEEE in the United States and the ETSI ITS-G5 in Europe, reserved 10 MHz wide channels in the 5.9 GHz spectrum band. Despite the exclusive use of these frequencies for vehicular com- munication purposes, there are still cross channel interference problems that have been widely reported in the literature. In order to mitigate these issues, this paper presents the design of a two-stage FIR low-pass filter, targeting the integration with a digital baseband receiver chain of a custom vehicular communications platform. The filter was tested, evaluated and optimized, with the simulation results proving the effectiveness of the proposed method and the low delay introduced in the overall operation of the receiver chain. 2016 Chongqing University of Posts and Telecommunications. Production and Hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
文摘To provide quality-of service (QoS) guarantees for heterogeneous applications, most recent wireless communications technologies and standards combine the error-correcting capability of hybrid automatic repeat request (HARQ) schemes at the data link layer (DLL) with the adaptation ability of the adaptive modulation and coding (AMC) modes at the physical layer (PHY) layer. This paper aims to investigate the aggregated system capacity as well as the breakdown of this capacity for different ACM modes in each HARQ scheme. This investigation was done by using maximum weighted capacity (MWC) resource allocation at the PHY layer in conjunction with a novel packet error rate (PER)-based scheduling at the medium access control (MAC) layer. As a result, the dominant AMC mode corresponding to channel SNR was available.
基金Supported by the National Natural Science Foundation of China(61571368)the Ministerial Level Advanced Research Foundation(950303HK,C9149C0511)
文摘In order to improve the performance of linear time-varying(LTV)channel estimation,based on the sparsity of channel taps in time domain,a sparse recovery method of LTV channel in orthogonal frequency division multiplexing(OFDM)system is proposed.Firstly,based on the compressive sensing theory,the average of the channel taps over one symbol duration in the LTV channel model is estimated.Secondly,in order to deal with the inter-carrier interference(ICI),the group-pilot design criterion is used based on the minimization of mutual coherence of the measurement.Finally,an efficient pilot pattern optimization algorithm is proposed by a dual layer loops iteration.The simulation results show that the new method uses less pilots,has a smaller bit error ratio(BER),and greater ability to deal with Doppler frequency shift than the traditional method does.
文摘Epilepsy is described as the most common chronic brain disorder. A typical symptom of epilepsy results in uncontrolled convulsions caused by temporary excessive neuronal discharges. Although several new anticon-vulsants have been introduced, some types of seizures have still not been adequately controlled with these new and current therapies. There is an urgent need to develop new anticonvulsant drugs to control the many different types of seizures. Many studies have shown that the epilepsies involve more than one mechanism and therefore may be responsible for the various types of observed seizures. Recently reported studies have shown that a group of newly synthesized 6 Hz active anticonvulsant fluorinated N-benzamide enaminones exhibited selective inhibitions of voltage-gated sodium (Nav) channels. Nav channels are responsible for the initial inward currents during the depolarization phases of the action potential in excitable cells. The activation and opening of Nav channels result in the initial phases of action potentials. We hypothesize that there is an essential pharmacophore model for the interactions between these enaminones and the active sites of Nav channels. The research reported here is focused on molecular docking studies of the interactions that occur between the fluorinated N-benzamide enaminones and the Nav channels. These studies may open an avenue for designing anticonvulsant drugs by inhibiting Nav channels.