In this paper, a chaos system and proportional differential control are both used to detect the frequency of an unknown signal. In traditional methods the useful signal is obtained through the Duffing equation or othe...In this paper, a chaos system and proportional differential control are both used to detect the frequency of an unknown signal. In traditional methods the useful signal is obtained through the Duffing equation or other chaotic oscillators. But these methods are too complex because of using a lot of chaos oscillators. In this paper a new method is presented that uses the Rossler equation and proportional differential control to detect a weak signal frequency. Substituting the detected signal frequency into the RSssler equation leads the Rossler phase state to be considerably changed. The chaos state can be controlled through the proportional differential method. Through its phase diagram and spectrum analysis, the unknown frequency is obtained. The simulation results verify that the presented method is feasible and that the detection accuracy is higher than those of other methods.展开更多
The dynamics of a unidirectional nonlinear delayed-coupling chaos system is investigated. Based on the local Hopf bifurcation at the zero equilibrium, we prove the global existence of periodic solutions using a global...The dynamics of a unidirectional nonlinear delayed-coupling chaos system is investigated. Based on the local Hopf bifurcation at the zero equilibrium, we prove the global existence of periodic solutions using a global Hopf bifurcation result due to Wu and a Bendixson’s criterion for higher dimensional ordinary differential equations due to Li & Muldowney.展开更多
A method is introduced to stabilize unstable discrete systems, which does not require any adjustable control parameters of the system. 2-dimension discrete Fold system and 3-dimension discrete hyperchaotic system are ...A method is introduced to stabilize unstable discrete systems, which does not require any adjustable control parameters of the system. 2-dimension discrete Fold system and 3-dimension discrete hyperchaotic system are stabilized to fixed points respectively. Numerical simulations are then provided to show the effectiveness and feasibility of the proposed chaos and hyperchaos controlling scheme.展开更多
The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)frac...The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB.展开更多
In order to realize the coordination oriented management of the economy resource environment(Ec R Ev) composite system,its optimal aggregate coordinating measurement model is established.A self learning method is...In order to realize the coordination oriented management of the economy resource environment(Ec R Ev) composite system,its optimal aggregate coordinating measurement model is established.A self learning method is presented,which combines the optimizing technology and stability analysis together to achieve a tradeoff between the optimizing objective and system stability.So a model for chaos control of the composite system based on coordination is proposed.展开更多
This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investi...This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. By numerical simulating, this paper verifies that the four-dimensional system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic behaviours. And the new dynamical system is hyperchaotic in a large region. In comparison with other known hyperchaos, the two positive Lyapunov exponents of the new system are relatively more larger. Thus it has more complex degree.展开更多
To seek for lower-dimensional chaotic systems that have complex topological attractor structure with simple algebraic system structure, a new chaotic system of three-dimensional autonomous ordinary differential equati...To seek for lower-dimensional chaotic systems that have complex topological attractor structure with simple algebraic system structure, a new chaotic system of three-dimensional autonomous ordinary differential equations is presented. The new system has simple algebraic structure, and can display a 2-scroll attractor with complex topological structure, which is different from the Lorenz's, Chen's and Lu¨'s attractors. By introducing a linear state feedback controller, the system can be controlled to generate a hyperchaotic attractor. The novel chaotic attractor, hyperchaotic attractor and dynamical behaviors of corresponding systems are further investigated by employing Lyapunov exponent spectrum, bifurcation diagram, Poincar′e mapping and phase portrait, etc., and then verified by simulating an experimental circuit.展开更多
Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We fi...Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We find that chaos synchronization in circular arrays of chaotic systems can occur through the on off intermittent synchronization with a power law distribution of laminar phases. And in the coupled ring and linear array it is found that the chaotic rotating waves generated from the ring propagate with spatial periodic synchronization along the linear array.展开更多
Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated...Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the system, and the dynamic equation of motion is calculated by the modified Wilson-0-based method. To analyze the unbalanced responses of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the orbit diagram, the Poincar6 map, the time series and the frequency spectrum are employed. The numerical results reveal that the nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system.展开更多
In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally c...In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.展开更多
A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm...A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.展开更多
The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical system...The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.展开更多
In this paper, we study chaos control of the new 3D chaotic system. We use three feedback methods (the linear, speed, doubly-periodic function controller) to suppress the chaos to unstable equilibrium. As a result, ...In this paper, we study chaos control of the new 3D chaotic system. We use three feedback methods (the linear, speed, doubly-periodic function controller) to suppress the chaos to unstable equilibrium. As a result, some controllers are obtained. Moreover, numerical simulations are used to verify the effectiveness of the obtained controllers.展开更多
Using the properties of chaos synchronization, the method for estimating the largest Lyapunov exponent in a multibody system with dry friction is presented in this paper. The Lagrange equations with multipliers of the...Using the properties of chaos synchronization, the method for estimating the largest Lyapunov exponent in a multibody system with dry friction is presented in this paper. The Lagrange equations with multipliers of the systems are given in matrix form, which is adequate for numerical calculation. The approach for calculating the generalized velocity and acceleration of the slider is given to determine slipping or sticking of the slider in the systems. For slip-slip and stick-slip multibody systems, their largest Lyapunov exponents are calculated to characterize their dynamics.展开更多
Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system...Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.展开更多
The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to th...The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.展开更多
In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress c...In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress chaos to unstable focuses and unstable periodic orbits. To overcome the topological limitation that the saddle-type steady state cannot be stabilized, an adaptive control based on LaSalle's invariance principle is used to control chaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). The control technique does not require any computer analysis of the system dynamics, and it operates without needing to know any explicit knowledge of the desired steady-state position.展开更多
The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential pr...The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.展开更多
Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator(GMA).Therefore,in the present study we intend to investigate the influences of the system damping coe...Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator(GMA).Therefore,in the present study we intend to investigate the influences of the system damping coefficient,system stiffness coefficient,disc spring cubic stiffness factor,and the excitation force and frequency on the output stability and the hysteresis vibration of the GMA.In this regard,the nonlinear piezomagnetic equation,Jiles-Atherton hysteresis model,quadratic domain rotation model,and the GMA structural dynamics are used to establish the mathematical model of the hysteresis vibration system of the GMA.Moreover,the multi-scale method and the singularity theory are used to determine the eo-dimensional two-bifurcation characteristics of the system.Then,the output response of the system is simulated to determine the variation range of each parameter when chaos is imposed.Finally,the fourth-order Runge-Kutta method is used to obtain the time domain waveform,phase portrait and Poincare mapping diagrams of the system.Subsequently,the obtained three graphs are analyzed.The obtained results show that when the system output is stable,the variation range of each parameter can be determined.Moreover,the stability interval of system damping coefficient,system stiffness coefficient,and the coefficient of the cubic stiffness term of the disc spring are obtained.Furthermore,the stability interval of the exciting force and the excitation frequency are determined.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 60877065)Science and Technology Innovation Talents Special Funds of Harbin,China (Grant No. RC2008XK009004)the Heilongjiang Provincial Education Department,China (Grant No. 11544035)
文摘In this paper, a chaos system and proportional differential control are both used to detect the frequency of an unknown signal. In traditional methods the useful signal is obtained through the Duffing equation or other chaotic oscillators. But these methods are too complex because of using a lot of chaos oscillators. In this paper a new method is presented that uses the Rossler equation and proportional differential control to detect a weak signal frequency. Substituting the detected signal frequency into the RSssler equation leads the Rossler phase state to be considerably changed. The chaos state can be controlled through the proportional differential method. Through its phase diagram and spectrum analysis, the unknown frequency is obtained. The simulation results verify that the presented method is feasible and that the detection accuracy is higher than those of other methods.
文摘The dynamics of a unidirectional nonlinear delayed-coupling chaos system is investigated. Based on the local Hopf bifurcation at the zero equilibrium, we prove the global existence of periodic solutions using a global Hopf bifurcation result due to Wu and a Bendixson’s criterion for higher dimensional ordinary differential equations due to Li & Muldowney.
文摘A method is introduced to stabilize unstable discrete systems, which does not require any adjustable control parameters of the system. 2-dimension discrete Fold system and 3-dimension discrete hyperchaotic system are stabilized to fixed points respectively. Numerical simulations are then provided to show the effectiveness and feasibility of the proposed chaos and hyperchaos controlling scheme.
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.
文摘The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB.
基金Supported by National Natural Science Foundation of China(No.79970 0 4 3)
文摘In order to realize the coordination oriented management of the economy resource environment(Ec R Ev) composite system,its optimal aggregate coordinating measurement model is established.A self learning method is presented,which combines the optimizing technology and stability analysis together to achieve a tradeoff between the optimizing objective and system stability.So a model for chaos control of the composite system based on coordination is proposed.
基金Project supported by the National Nature Science Foundation of China (Grant No 60574036), the Specialized Research Fund for the Doctoral Program of China (Grant No 20050055013) and the Program for New Excellent Talents in University of China (NCET).
文摘This paper reports a new four-dimensional continuous autonomous hyperchaos generated from the Lorenz chaotic system by introducing a nonlinear state feedback controller. Some basic properties of the system are investigated by means of Lyapunov exponent spectrum and bifurcation diagrams. By numerical simulating, this paper verifies that the four-dimensional system can evolve into periodic, quasi-periodic, chaotic and hyperchaotic behaviours. And the new dynamical system is hyperchaotic in a large region. In comparison with other known hyperchaos, the two positive Lyapunov exponents of the new system are relatively more larger. Thus it has more complex degree.
基金supported by the National Natural Science Foundation of China (60971090)the Natural Science Foundation of Jiangsu Province (BK 2009105)
文摘To seek for lower-dimensional chaotic systems that have complex topological attractor structure with simple algebraic system structure, a new chaotic system of three-dimensional autonomous ordinary differential equations is presented. The new system has simple algebraic structure, and can display a 2-scroll attractor with complex topological structure, which is different from the Lorenz's, Chen's and Lu¨'s attractors. By introducing a linear state feedback controller, the system can be controlled to generate a hyperchaotic attractor. The novel chaotic attractor, hyperchaotic attractor and dynamical behaviors of corresponding systems are further investigated by employing Lyapunov exponent spectrum, bifurcation diagram, Poincar′e mapping and phase portrait, etc., and then verified by simulating an experimental circuit.
文摘Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We find that chaos synchronization in circular arrays of chaotic systems can occur through the on off intermittent synchronization with a power law distribution of laminar phases. And in the coupled ring and linear array it is found that the chaotic rotating waves generated from the ring propagate with spatial periodic synchronization along the linear array.
基金supported by National Natural Science Foundation of China(Grant No.51075327)National Key Basic Research and Development Program of China(973 Program,Grant No.2013CB035705)+3 种基金Shaanxi Provincial Natural Science Foundation of China(Grant No.2013JQ7008)Open Project of State Key Laboratory of Mechanical Transmission of China(Grant No.SKLMT-KFKT-201011)Tribology Science Fund of State Key Laboratory of Tribology of China(Grant No.SKLTKF11A02)Scientific Research Program of Shaanxi Provincial Education Department of China(Grant Nos.12JK0661,12JK0680)
文摘Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the system, and the dynamic equation of motion is calculated by the modified Wilson-0-based method. To analyze the unbalanced responses of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the orbit diagram, the Poincar6 map, the time series and the frequency spectrum are employed. The numerical results reveal that the nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system.
文摘In this paper we present the control and synchronization of a coupled Bragg acousto-optic bistable map system using nonlinear feedback technology. This nonlinear feedback technology is useful to control a temporally chaotic system as well as a spatiotemporally chaotic system. It can be extended to synchronize the spatiotemporal chaos. It can work in a wide range of the controlled and synchronized signals, so it can decrease the sensitivity down to a noise level. The synchronization can be obtained by the analysis of the largest conditional Lyapunov exponent spectrum, and easily implemented in practical systems just by adjusting the coupled strength without any pre-knowledge of the dynamic system required.
文摘A novel technique for the optimal tuning of power system stabilizer (PSS) was proposed,by integrating the modified particle swarm optimization (MPSO) with the chaos (MPSOC).Firstly,a modification in the particle swarm optimization (PSO) was made by introducing passive congregation (PC).It helps each swarm member in receiving a multitude of information from other members and thus decreases the possibility of a failed attempt at detection or a meaningless search.Secondly,the MPSO and chaos were hybridized (MPSOC) to improve the global searching capability and prevent the premature convergence due to local minima.The robustness of the proposed PSS tuning technique was verified on a multi-machine power system under different operating conditions.The performance of the proposed MPSOC was compared to the MPSO,PSO and GA through eigenvalue analysis,nonlinear time-domain simulation and statistical tests.Eigenvalue analysis shows acceptable damping of the low-frequency modes and time domain simulations also show that the oscillations of synchronous machines can be rapidly damped for power systems with the proposed PSSs.The results show that the presented algorithm has a faster convergence rate with higher degree of accuracy than the GA,PSO and MPSO.
基金Supported by National Natural Science Foundation of China(Grant Nos.50875112,51275002)PhD Programs Foundation of Ministry of Education of China(Grant No.20093227110013)+1 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK2010337)Natural Science Foundation of Higher Education of Jiangsu Province of China(Grant No.09KJA580001)
文摘The existing research of the active suspension system(ASS) mainly focuses on the different evaluation indexes and control strategies. Among the different components, the nonlinear characteristics of practical systems and control are usually not considered for vehicle lateral dynamics. But the vehicle model has some shortages on tyre model with side-slip angle, road adhesion coefficient, vertical load and velocity. In this paper, the nonlinear dynamic model of lateral system is considered and also the adaptive neural network of tire is introduced. By nonlinear analysis methods, such as the bifurcation diagram and Lyapunov exponent, it has shown that the lateral dynamics exhibits complicated motions with the forward speed. Then, a fuzzy control method is applied to the lateral system aiming to convert chaos into periodic motion using the linear-state feedback of an available lateral force with changing tire load. Finally, the rapid control prototyping is built to conduct the real vehicle test. By comparison of time response diagram, phase portraits and Lyapunov exponents at different work conditions, the results on step input and S-shaped road indicate that the slip angle and yaw velocity of lateral dynamics enter into stable domain and the results of test are consistent to the simulation and verified the correctness of simulation. And the Lyapunov exponents of the closed-loop system are becoming from positive to negative. This research proposes a fuzzy control method which has sufficient suppress chaotic motions as an effective active suspension system.
基金The project supported by Natural Science Foundations of Zhejiang Province of China under Grant No.Y604056the Doctoral Foundation of Ningbo City under Grant No.2005A61030+1 种基金National Natural Science Foundation of China under Grant No.10401039National Key Basic Research Program of China under Grant No.2004CB318000,and the NDEF,CAS
文摘In this paper, we study chaos control of the new 3D chaotic system. We use three feedback methods (the linear, speed, doubly-periodic function controller) to suppress the chaos to unstable equilibrium. As a result, some controllers are obtained. Moreover, numerical simulations are used to verify the effectiveness of the obtained controllers.
基金The project supported by the National Natural Science Foundation of China (10272008 and 10371030)The English text was polished by Yunming Chen
文摘Using the properties of chaos synchronization, the method for estimating the largest Lyapunov exponent in a multibody system with dry friction is presented in this paper. The Lagrange equations with multipliers of the systems are given in matrix form, which is adequate for numerical calculation. The approach for calculating the generalized velocity and acceleration of the slider is given to determine slipping or sticking of the slider in the systems. For slip-slip and stick-slip multibody systems, their largest Lyapunov exponents are calculated to characterize their dynamics.
基金supported by the National High Technology Research and Development Program of China (Grant No. 2007AA041401)Tianjin Natural Science Foundation,China (Grant Nos. 08JCZDJC18600 and 09JCZDJC23900)the University Science and Technology Development Foundation of Tianjin City,China (Grant No. 2006ZD32)
文摘Recent investigations show that a power system is a highly nonlinear system and can exhibit chaotic behaviour leading to a voltage collapse, which severely threatens the secure and stable operation of the power system. Based on the finite-time stability theory, two control strategies are presented to achieve finite-time chaos control. In addition, the problem of how to stabilize an unstable nonzero equilibrium point in a finite time is solved by coordinate transformation for the first time. Numerical simulations are presented to demonstrate the effectiveness and the robustness of the proposed scheme. The research in this paper may help to maintain the secure operation of power systems.
基金supported by the Natural Science Foundation of Hebei Province,China (Grant Nos A2008000136 and A2006000128)
文摘The chaotic behaviours of a fractional-order generalized Lorenz system and its synchronization are studied in this paper. A new electronic circuit unit to realize fractional-order operator is proposed. According to the circuit unit, an electronic circuit is designed to realize a 3.8-order generalized Lorenz chaotic system. Furthermore, synchronization between two fractional-order systems is achieved by utilizing a single-variable feedback method. Circuit experiment simulation results verify the effectiveness of the proposed scheme.
基金supported by the Doctoral Foundation of North China Electric Power University (Grant No. kH0433)the International Science and Technology Cooperation Program (Grant No. 2007DFA71250)
文摘In the case where the knowledge of goal states is not known, the controllers are constructed to stabilize unstable steady states for a coupled dynamos system. A delayed feedback control technique is used to suppress chaos to unstable focuses and unstable periodic orbits. To overcome the topological limitation that the saddle-type steady state cannot be stabilized, an adaptive control based on LaSalle's invariance principle is used to control chaos to unstable equilibrium (i.e. saddle point, focus, node, etc.). The control technique does not require any computer analysis of the system dynamics, and it operates without needing to know any explicit knowledge of the desired steady-state position.
基金Project supported by the National Natural Science Foundation of China (Grants Nos 10472091 and 10332030).
文摘The Chebyshev polynomial approximation is applied to investigate the stochastic period-doubling bifurcation and chaos problems of a stochastic Duffing-van der Pol system with bounded random parameter of exponential probability density function subjected to a harmonic excitation. Firstly the stochastic system is reduced into its equivalent deterministic one, and then the responses of stochastic system can be obtained by numerical methods. Nonlinear dynamical behaviour related to stochastic period-doubling bifurcation and chaos in the stochastic system is explored. Numerical simulations show that similar to its counterpart in deterministic nonlinear system of stochastic period-doubling bifurcation and chaos may occur in the stochastic Duffing-van der Pol system even for weak intensity of random parameter. Simply increasing the intensity of the random parameter may result in the period-doubling bifurcation which is absent from the deterministic system.
基金Project supported by the Science Fund from the Ministry of Science and Technology of China(Grant No.2017M010660)the Major Project of the Inner Mongolia Autonomous Region,China(Grant No.2018ZD10).
文摘Chaotic motion and quasi-periodic motion are two common forms of instability in the giant magnetostrictive actuator(GMA).Therefore,in the present study we intend to investigate the influences of the system damping coefficient,system stiffness coefficient,disc spring cubic stiffness factor,and the excitation force and frequency on the output stability and the hysteresis vibration of the GMA.In this regard,the nonlinear piezomagnetic equation,Jiles-Atherton hysteresis model,quadratic domain rotation model,and the GMA structural dynamics are used to establish the mathematical model of the hysteresis vibration system of the GMA.Moreover,the multi-scale method and the singularity theory are used to determine the eo-dimensional two-bifurcation characteristics of the system.Then,the output response of the system is simulated to determine the variation range of each parameter when chaos is imposed.Finally,the fourth-order Runge-Kutta method is used to obtain the time domain waveform,phase portrait and Poincare mapping diagrams of the system.Subsequently,the obtained three graphs are analyzed.The obtained results show that when the system output is stable,the variation range of each parameter can be determined.Moreover,the stability interval of system damping coefficient,system stiffness coefficient,and the coefficient of the cubic stiffness term of the disc spring are obtained.Furthermore,the stability interval of the exciting force and the excitation frequency are determined.