This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaoti...This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.展开更多
Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgori...Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.展开更多
The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relations...The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.展开更多
With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In t...With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.展开更多
Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is desi...Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.展开更多
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are con...A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.展开更多
Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),a...Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.展开更多
To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)pre...To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)prediction model based on the incremental attention mechanism.Firstly,a traversal search is conducted through the traversal layer for finite parameters in the phase space.Then,an incremental attention layer is utilized for parameter judgment based on the dimension weight criteria(DWC).The phase space parameters that best meet DWC are selected and fed into the input layer.Finally,the constructed CNN-LSTM network extracts spatio-temporal features and provides the final prediction results.The model is verified using Logistic,Lorenz,and sunspot chaotic time series,and the performance is compared from the two dimensions of prediction accuracy and network phase space structure.Additionally,the CNN-LSTM network based on incremental attention is compared with long short-term memory(LSTM),convolutional neural network(CNN),recurrent neural network(RNN),and support vector regression(SVR)for prediction accuracy.The experiment results indicate that the proposed composite network model possesses enhanced capability in extracting temporal features and achieves higher prediction accuracy.Also,the algorithm to estimate the phase space parameter is compared with the traditional CAO,false nearest neighbor,and C-C,three typical methods for determining the chaotic phase space parameters.The experiments reveal that the phase space parameter estimation algorithm based on the incremental attention mechanism is superior in prediction accuracy compared with the traditional phase space reconstruction method in five networks,including CNN-LSTM,LSTM,CNN,RNN,and SVR.展开更多
This paper focus on the chaotic properties of minimal subshift of shift operators. It is proved that the minimal subshift of shift operators is uniformly distributional chaotic, distributional chaotic in a sequence, d...This paper focus on the chaotic properties of minimal subshift of shift operators. It is proved that the minimal subshift of shift operators is uniformly distributional chaotic, distributional chaotic in a sequence, distributional chaotic of type k ( k∈{ 1,2,2 1 2 ,3 } ), and ( 0,1 ) -distribution.展开更多
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red...Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.展开更多
With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of...With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of confidentiality in the fog computing environment is a pivotal task.Among different types of data stored in the fog,the 3D point and mesh fog data are increasingly popular in recent days,due to the growth of 3D modelling and 3D printing technologies.Hence,in this research,we propose a novel scheme for preserving the privacy of 3D point and mesh fog data.Chaotic Cat mapbased data encryption is a recently trending research area due to its unique properties like pseudo-randomness,deterministic nature,sensitivity to initial conditions,ergodicity,etc.To boost encryption efficiency significantly,in this work,we propose a novel Chaotic Cat map.The sequence generated by this map is used to transform the coordinates of the fog data.The improved range of the proposed map is depicted using bifurcation analysis.The quality of the proposed Chaotic Cat map is also analyzed using metrics like Lyapunov exponent and approximate entropy.We also demonstrate the performance of the proposed encryption framework using attacks like brute-force attack and statistical attack.The experimental results clearly depict that the proposed framework produces the best results compared to the previous works in the literature.展开更多
Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shami...Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8.展开更多
A new four-dimensional(4D)memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system,and a detailed dynamic analysis of the system is performed.The sensitivity of the system to ...A new four-dimensional(4D)memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system,and a detailed dynamic analysis of the system is performed.The sensitivity of the system to parameters allows it obtains 16 different attractors by changing only one parameter.The various transient behaviors and excellent spectral entropy and C0 complexity values of the system can also reflect the high complexity of the system.A circuit is designed and verified the feasibility of the system from the physical level.Finally,the system is applied to image encryption,and the security of the encryption system is analyzed from multiple aspects,providing a reference for the application of such memristive chaotic systems.展开更多
This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other...This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other existing MMCSs, the most eye-catching point of the proposed MMCS is that the amplitude of the wing will enlarge towards the poles as the number of wings increases. Diverse coexisting attractors are numerically found in the MMCS, including chaos,quasi-period, and stable point. The circuits of the proposed memristor and MMCS are designed and the obtained results demonstrate their validity and reliability.展开更多
With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large a...With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large amount of sensitive information, and the requirements for data security and real-time transmission are gradually improved. In this paper, a new 9-dimensional(9D) complex chaotic system with quaternion is proposed for the encryption of smart grid data. Firstly, we present the mathematical model of the system, and analyze its attractors, bifurcation diagram, complexity,and 0–1 test. Secondly, the pseudo-random sequences are generated by the new chaotic system to encrypt power data.Finally, the proposed encryption algorithm is verified with power data and images in the smart grid, which can ensure the encryption security and real time. The verification results show that the proposed encryption scheme is technically feasible and available for power data and image encryption in smart grid.展开更多
In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with...In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve.The proposed chaotic system has two quadratic,two cubic and two quartic nonlinear terms.It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points.It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but differential initial states.A detailed bifurcation analysis with respect to variations in the system parameters is portrayed for the new chaotic system with capsule equilibrium curve.We have shown MATLAB plots to illustrate the capsule equilibrium curve,phase orbits of the new chaotic system,bifurcation diagrams and multi-stability.As an engineering application,we have proposed a speech cryptosystem with a numerical algorithm,which is based on our novel 3-D chaotic system with a capsule-shaped equilibrium curve.The proposed speech cryptosystem follows its security evolution and implementation on Field Programmable Gate Array(FPGA)platform.Experimental results show that the proposed encryption system utilizes 33%of the FPGA,while the maximum clock frequency is 178.28 MHz.展开更多
A substitution box(S-Box)is a crucial component of contemporary cryptosystems that provide data protection in block ciphers.At the moment,chaotic maps are being created and extensively used to generate these SBoxes as...A substitution box(S-Box)is a crucial component of contemporary cryptosystems that provide data protection in block ciphers.At the moment,chaotic maps are being created and extensively used to generate these SBoxes as a chaotic map assists in providing disorder and resistance to combat cryptanalytical attempts.In this paper,the construction of a dynamic S-Box using a cipher key is proposed using a novel chaotic map and an innovative tweaking approach.The projected chaotic map and the proposed tweak approach are presented for the first time and the use of parameters in their workingmakes both of these dynamic in nature.The tweak approach employs cubic polynomials while permuting the values of an initial S-Box to enhance its cryptographic fort.Values of the parameters are provided using the cipher key and a small variation in values of these parameters results in a completely different unique S-Box.Comparative analysis and exploration confirmed that the projected chaoticmap exhibits a significant amount of chaotic complexity.The security assessment in terms of bijectivity,nonlinearity,bits independence,strict avalanche,linear approximation probability,and differential probability criteria are utilized to critically investigate the effectiveness of the proposed S-Box against several assaults.The proposed S-Box’s cryptographic performance is comparable to those of recently projected S-Boxes for its adaption in real-world security applications.The comparative scrutiny pacifies the genuine potential of the proposed S-Box in terms of its applicability for data security.展开更多
There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is call...There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is called logical chaotic resonance(LCR). However, realization of a reliable exclusive disjunction(XOR) through LCR has not been reported.Here, we explore the possibility of using chaos to enhance the reliability of XOR logic operation in a triple-well potential system via LCR. The success probability P of obtaining XOR logic operation can take the maximum value of 1 in an optimal window of intensity D of a chaotic force. Namely, success probability P displays characteristic bell-shaped behavior by altering the intensity of the chaotic driving force, indicating the occurrence of LCR. Further, the effects of periodic force on LCR have been investigated. For a subthreshold chaotic force, a periodic force with appropriate amplitude and frequency can help enhance the reliability of XOR logic operation. Thus, LCR can be effectively regulated by changing the amplitude and frequency of the periodic force.展开更多
The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin pl...The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin plate theory,considering geometric nonlinearity and using the principle of virtualwork,the nonlinearmotion partial differential equation of the rectangular conductive thin plate is deduced.Using the separate variable method and Galerkin’s method,the system motion partial differential equation is converted into the general equation of the Duffing equation;the Hamilton system is introduced,and the Melnikov function is used to analyze the Hamilton system,and obtain the critical surface for the existence of chaos.The bifurcation diagram,phase portrait,time history response and Poincarémap of the vibration system are obtained by numerical simulation,and the correctness is demonstrated.The results showthatwhen the ratio of external excitation amplitude to damping coefficient is higher than the critical surface,the system will enter chaotic state.The chaotic motion of the rectangular conductive thin plate is affected by different magnetic field distributions and airflow.展开更多
基金Project supported by the Open Fund of Anhui Key Laboratory of Mine Intelligent Equipment and Technology (Grant No.ZKSYS202204)the Talent Introduction Fund of Anhui University of Science and Technology (Grant No.2021yjrc34)the Scientific Research Fund of Anhui Provincial Education Department (Grant No.KJ2020A0301)。
文摘This paper explores a double quantum images representation(DNEQR)model that allows for simultaneous storage of two digital images in a quantum superposition state.Additionally,a new type of two-dimensional hyperchaotic system based on sine and logistic maps is investigated,offering a wider parameter space and better chaotic behavior compared to the sine and logistic maps.Based on the DNEQR model and the hyperchaotic system,a double quantum images encryption algorithm is proposed.Firstly,two classical plaintext images are transformed into quantum states using the DNEQR model.Then,the proposed hyperchaotic system is employed to iteratively generate pseudo-random sequences.These chaotic sequences are utilized to perform pixel value and position operations on the quantum image,resulting in changes to both pixel values and positions.Finally,the ciphertext image can be obtained by qubit-level diffusion using two XOR operations between the position-permutated image and the pseudo-random sequences.The corresponding quantum circuits are also given.Experimental results demonstrate that the proposed scheme ensures the security of the images during transmission,improves the encryption efficiency,and enhances anti-interference and anti-attack capabilities.
基金the National Natural Science Foundation of China(Nos.62002028,62102040 and 62202066).
文摘Images are the most important carrier of human information. Moreover, how to safely transmit digital imagesthrough public channels has become an urgent problem. In this paper, we propose a novel image encryptionalgorithm, called chaotic compressive sensing (CS) encryption (CCSE), which can not only improve the efficiencyof image transmission but also introduce the high security of the chaotic system. Specifically, the proposed CCSEcan fully leverage the advantages of the Chebyshev chaotic system and CS, enabling it to withstand various attacks,such as differential attacks, and exhibit robustness. First, we use a sparse trans-form to sparse the plaintext imageand then use theArnold transformto perturb the image pixels. After that,we elaborate aChebyshev Toeplitz chaoticsensing matrix for CCSE. By using this Toeplitz matrix, the perturbed image is compressed and sampled to reducethe transmission bandwidth and the amount of data. Finally, a bilateral diffusion operator and a chaotic encryptionoperator are used to perturb and expand the image pixels to change the pixel position and value of the compressedimage, and ultimately obtain an encrypted image. Experimental results show that our method can be resistant tovarious attacks, such as the statistical attack and noise attack, and can outperform its current competitors.
基金Project supported by the National Natural Science Foundation of China(Nos.12293000,12293001,11988102,12172006,and 12202011)。
文摘The dynamic model of a bistable laminated composite shell simply supported by four corners is further developed to investigate the resonance responses and chaotic behaviors.The existence of the 1:1 resonance relationship between two order vibration modes of the system is verified.The resonance response of this class of bistable structures in the dynamic snap-through mode is investigated,and the four-dimensional(4D)nonlinear modulation equations are derived based on the 1:1 internal resonance relationship by means of the multiple scales method.The Hopf bifurcation and instability interval of the amplitude frequency and force amplitude curves are analyzed.The discussion focuses on investigating the effects of key parameters,e.g.,excitation amplitude,damping coefficient,and detuning parameters,on the resonance responses.The numerical simulations show that the foundation excitation and the degree of coupling between the vibration modes exert a substantial effect on the chaotic dynamics of the system.Furthermore,the significant motions under particular excitation conditions are visualized by bifurcation diagrams,time histories,phase portraits,three-dimensional(3D)phase portraits,and Poincare maps.Finally,the vibration experiment is carried out to study the amplitude frequency responses and bifurcation characteristics for the bistable laminated composite shell,yielding results that are qualitatively consistent with the theoretical results.
基金This work has received funding from National Natural Science Foundation of China(No.42275157).
文摘With the rapid advancement in exploring perceptual interactions and digital twins,metaverse technology has emerged to transcend the constraints of space-time and reality,facilitating remote AI-based collaboration.In this dynamic metasystem environment,frequent information exchanges necessitate robust security measures,with Authentication and Key Agreement(AKA)serving as the primary line of defense to ensure communication security.However,traditional AKA protocols fall short in meeting the low-latency requirements essential for synchronous interactions within the metaverse.To address this challenge and enable nearly latency-free interactions,a novel low-latency AKA protocol based on chaotic maps is proposed.This protocol not only ensures mutual authentication of entities within the metasystem but also generates secure session keys.The security of these session keys is rigorously validated through formal proofs,formal verification,and informal proofs.When confronted with the Dolev-Yao(DY)threat model,the session keys are formally demonstrated to be secure under the Real-or-Random(ROR)model.The proposed protocol is further validated through simulations conducted using VMware workstation compiled in HLPSL language and C language.The simulation results affirm the protocol’s effectiveness in resisting well-known attacks while achieving the desired low latency for optimal metaverse interactions.
基金Project supported by the National Natural Science Foundation of China(Grant No.62061014)the Natural Science Foundation of Liaoning province of China(Grant No.2020-MS-274).
文摘Security during remote transmission has been an important concern for researchers in recent years.In this paper,a hierarchical encryption multi-image encryption scheme for people with different security levels is designed,and a multiimage encryption(MIE)algorithm with row and column confusion and closed-loop bi-directional diffusion is adopted in the paper.While ensuring secure communication of medical image information,people with different security levels have different levels of decryption keys,and differentiated visual effects can be obtained by using the strong sensitivity of chaotic keys.The highest security level can obtain decrypted images without watermarks,and at the same time,patient information and copyright attribution can be verified by obtaining watermark images.The experimental results show that the scheme is sufficiently secure as an MIE scheme with visualized differences and the encryption and decryption efficiency is significantly improved compared to other works.
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62105004 and 52174141)the College Student Innovation and Entrepreneurship Fund Project(Grant No.202210361053)+1 种基金Anhui Mining Machinery and Electrical Equipment Coordination Innovation Center,Anhui University of Science&Technology(Grant No.KSJD202304)the Anhui Province Digital Agricultural Engineering Technology Research Center Open Project(Grant No.AHSZNYGC-ZXKF021)。
文摘A novel color image encryption scheme is developed to enhance the security of encryption without increasing the complexity. Firstly, the plain color image is decomposed into three grayscale plain images, which are converted into the frequency domain coefficient matrices(FDCM) with discrete cosine transform(DCT) operation. After that, a twodimensional(2D) coupled chaotic system is developed and used to generate one group of embedded matrices and another group of encryption matrices, respectively. The embedded matrices are integrated with the FDCM to fulfill the frequency domain encryption, and then the inverse DCT processing is implemented to recover the spatial domain signal. Eventually,under the function of the encryption matrices and the proposed diagonal scrambling algorithm, the final color ciphertext is obtained. The experimental results show that the proposed method can not only ensure efficient encryption but also satisfy various sizes of image encryption. Besides, it has better performance than other similar techniques in statistical feature analysis, such as key space, key sensitivity, anti-differential attack, information entropy, noise attack, etc.
文摘Wireless Network security management is difficult because of the ever-increasing number of wireless network malfunctions,vulnerabilities,and assaults.Complex security systems,such as Intrusion Detection Systems(IDS),are essential due to the limitations of simpler security measures,such as cryptography and firewalls.Due to their compact nature and low energy reserves,wireless networks present a significant challenge for security procedures.The features of small cells can cause threats to the network.Network Coding(NC)enabled small cells are vulnerable to various types of attacks.Avoiding attacks and performing secure“peer”to“peer”data transmission is a challenging task in small cells.Due to the low power and memory requirements of the proposed model,it is well suited to use with constrained small cells.An attacker cannot change the contents of data and generate a new Hashed Homomorphic Message Authentication Code(HHMAC)hash between transmissions since the HMAC function is generated using the shared secret.In this research,a chaotic sequence mapping based low overhead 1D Improved Logistic Map is used to secure“peer”to“peer”data transmission model using lightweight H-MAC(1D-LM-P2P-LHHMAC)is proposed with accurate intrusion detection.The proposed model is evaluated with the traditional models by considering various evaluation metrics like Vector Set Generation Accuracy Levels,Key Pair Generation Time Levels,Chaotic Map Accuracy Levels,Intrusion Detection Accuracy Levels,and the results represent that the proposed model performance in chaotic map accuracy level is 98%and intrusion detection is 98.2%.The proposed model is compared with the traditional models and the results represent that the proposed model secure data transmission levels are high.
文摘To improve the prediction accuracy of chaotic time series and reconstruct a more reasonable phase space structure of the prediction network,we propose a convolutional neural network-long short-term memory(CNN-LSTM)prediction model based on the incremental attention mechanism.Firstly,a traversal search is conducted through the traversal layer for finite parameters in the phase space.Then,an incremental attention layer is utilized for parameter judgment based on the dimension weight criteria(DWC).The phase space parameters that best meet DWC are selected and fed into the input layer.Finally,the constructed CNN-LSTM network extracts spatio-temporal features and provides the final prediction results.The model is verified using Logistic,Lorenz,and sunspot chaotic time series,and the performance is compared from the two dimensions of prediction accuracy and network phase space structure.Additionally,the CNN-LSTM network based on incremental attention is compared with long short-term memory(LSTM),convolutional neural network(CNN),recurrent neural network(RNN),and support vector regression(SVR)for prediction accuracy.The experiment results indicate that the proposed composite network model possesses enhanced capability in extracting temporal features and achieves higher prediction accuracy.Also,the algorithm to estimate the phase space parameter is compared with the traditional CAO,false nearest neighbor,and C-C,three typical methods for determining the chaotic phase space parameters.The experiments reveal that the phase space parameter estimation algorithm based on the incremental attention mechanism is superior in prediction accuracy compared with the traditional phase space reconstruction method in five networks,including CNN-LSTM,LSTM,CNN,RNN,and SVR.
文摘This paper focus on the chaotic properties of minimal subshift of shift operators. It is proved that the minimal subshift of shift operators is uniformly distributional chaotic, distributional chaotic in a sequence, distributional chaotic of type k ( k∈{ 1,2,2 1 2 ,3 } ), and ( 0,1 ) -distribution.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation(JPMJFS2115)。
文摘Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.
基金This work was supprted by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R151),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘With the rapid evolution of Internet technology,fog computing has taken a major role in managing large amounts of data.The major concerns in this domain are security and privacy.Therefore,attaining a reliable level of confidentiality in the fog computing environment is a pivotal task.Among different types of data stored in the fog,the 3D point and mesh fog data are increasingly popular in recent days,due to the growth of 3D modelling and 3D printing technologies.Hence,in this research,we propose a novel scheme for preserving the privacy of 3D point and mesh fog data.Chaotic Cat mapbased data encryption is a recently trending research area due to its unique properties like pseudo-randomness,deterministic nature,sensitivity to initial conditions,ergodicity,etc.To boost encryption efficiency significantly,in this work,we propose a novel Chaotic Cat map.The sequence generated by this map is used to transform the coordinates of the fog data.The improved range of the proposed map is depicted using bifurcation analysis.The quality of the proposed Chaotic Cat map is also analyzed using metrics like Lyapunov exponent and approximate entropy.We also demonstrate the performance of the proposed encryption framework using attacks like brute-force attack and statistical attack.The experimental results clearly depict that the proposed framework produces the best results compared to the previous works in the literature.
基金the National Natural Science Foundation of China(Grant No.61972103)the Natural Science Foundation of Guangdong Province of China(Grant No.2023A1515011207)+3 种基金the Special Project in Key Area of General University in Guangdong Province of China(Grant No.2020ZDZX3064)the Characteristic Innovation Project of General University in Guangdong Province of China(Grant No.2022KTSCX051)the Postgraduate Education Innovation Project of Guangdong Ocean University of China(Grant No.202263)the Foundation of Guangdong Provincial Engineering and Technology Research Center of Far Sea Fisheries Management and Fishing of South China Sea.
文摘Based on some analyses of existing chaotic image encryption frameworks and a new designed three-dimensional improved logistic chaotic map(3D-ILM),an asymmetric image encryption algorithm using public-key Rivest–Shamir–Adleman(RSA)is presented in this paper.In the first stage,a new 3D-ILM is proposed to enhance the chaotic behavior considering analysis of time sequence,Lyapunov exponent,and Shannon entropy.In the second stage,combined with the public key RSA algorithm,a new key acquisition mathematical model(MKA)is constructed to obtain the initial keys for the 3D-ILM.Consequently,the key stream can be produced depending on the plain image for a higher security.Moreover,a novel process model(NPM)for the input of the 3D-ILM is built,which is built to improve the distribution uniformity of the chaotic sequence.In the third stage,to encrypt the plain image,a pre-process by exclusive OR(XOR)operation with a random matrix is applied.Then,the pre-processed image is performed by a permutation for rows,a downward modulo function for adjacent pixels,a permutation for columns,a forward direction XOR addition-modulo diffusion,and a backward direction XOR addition-modulo diffusion to achieve the final cipher image.Moreover,experiments show that the the proposed algorithm has a better performance.Especially,the number of pixels change rate(NPCR)is close to ideal case 99.6094%,with the unified average changing intensity(UACI)close to 33.4634%,and the information entropy(IE)close to 8.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1612442)Science and Technology Special Foundation Project of Guizhou Water Resources Department(Grant No.KT202236)。
文摘A new four-dimensional(4D)memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system,and a detailed dynamic analysis of the system is performed.The sensitivity of the system to parameters allows it obtains 16 different attractors by changing only one parameter.The various transient behaviors and excellent spectral entropy and C0 complexity values of the system can also reflect the high complexity of the system.A circuit is designed and verified the feasibility of the system from the physical level.Finally,the system is applied to image encryption,and the security of the encryption system is analyzed from multiple aspects,providing a reference for the application of such memristive chaotic systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62366014 and 61961019)the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202008)。
文摘This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other existing MMCSs, the most eye-catching point of the proposed MMCS is that the amplitude of the wing will enlarge towards the poles as the number of wings increases. Diverse coexisting attractors are numerically found in the MMCS, including chaos,quasi-period, and stable point. The circuits of the proposed memristor and MMCS are designed and the obtained results demonstrate their validity and reliability.
基金Project supported by the International Collaborative Research Project of Qilu University of Technology (Grant No.QLUTGJHZ2018020)the Project of Youth Innovation and Technology Support Plan for Colleges and Universities in Shandong Province,China (Grant No.2021KJ025)the Major Scientific and Technological Innovation Projects of Shandong Province,China (Grant Nos.2019JZZY010731 and 2020CXGC010901)。
文摘With the development of smart grid, operation and control of a power system can be realized through the power communication network, especially the power production and enterprise management business involve a large amount of sensitive information, and the requirements for data security and real-time transmission are gradually improved. In this paper, a new 9-dimensional(9D) complex chaotic system with quaternion is proposed for the encryption of smart grid data. Firstly, we present the mathematical model of the system, and analyze its attractors, bifurcation diagram, complexity,and 0–1 test. Secondly, the pseudo-random sequences are generated by the new chaotic system to encrypt power data.Finally, the proposed encryption algorithm is verified with power data and images in the smart grid, which can ensure the encryption security and real time. The verification results show that the proposed encryption scheme is technically feasible and available for power data and image encryption in smart grid.
基金funded by the Center for Research Excellence,Incubation Management Center,Universiti Sultan Zainal Abidin via an internal grant UniSZA/2021/SRGSIC/07.
文摘In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve.The proposed chaotic system has two quadratic,two cubic and two quartic nonlinear terms.It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points.It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but differential initial states.A detailed bifurcation analysis with respect to variations in the system parameters is portrayed for the new chaotic system with capsule equilibrium curve.We have shown MATLAB plots to illustrate the capsule equilibrium curve,phase orbits of the new chaotic system,bifurcation diagrams and multi-stability.As an engineering application,we have proposed a speech cryptosystem with a numerical algorithm,which is based on our novel 3-D chaotic system with a capsule-shaped equilibrium curve.The proposed speech cryptosystem follows its security evolution and implementation on Field Programmable Gate Array(FPGA)platform.Experimental results show that the proposed encryption system utilizes 33%of the FPGA,while the maximum clock frequency is 178.28 MHz.
文摘A substitution box(S-Box)is a crucial component of contemporary cryptosystems that provide data protection in block ciphers.At the moment,chaotic maps are being created and extensively used to generate these SBoxes as a chaotic map assists in providing disorder and resistance to combat cryptanalytical attempts.In this paper,the construction of a dynamic S-Box using a cipher key is proposed using a novel chaotic map and an innovative tweaking approach.The projected chaotic map and the proposed tweak approach are presented for the first time and the use of parameters in their workingmakes both of these dynamic in nature.The tweak approach employs cubic polynomials while permuting the values of an initial S-Box to enhance its cryptographic fort.Values of the parameters are provided using the cipher key and a small variation in values of these parameters results in a completely different unique S-Box.Comparative analysis and exploration confirmed that the projected chaoticmap exhibits a significant amount of chaotic complexity.The security assessment in terms of bijectivity,nonlinearity,bits independence,strict avalanche,linear approximation probability,and differential probability criteria are utilized to critically investigate the effectiveness of the proposed S-Box against several assaults.The proposed S-Box’s cryptographic performance is comparable to those of recently projected S-Boxes for its adaption in real-world security applications.The comparative scrutiny pacifies the genuine potential of the proposed S-Box in terms of its applicability for data security.
基金supported by the Technology Innovation Team Program in Higher Education Institutions in Hubei Province, China (Grant No. T2020039)。
文摘There exists an optimal range of intensity of a chaotic force in which the behavior of a chaos-driven bistable system with two weak inputs can be consistently mapped to a specific logic output. This phenomenon is called logical chaotic resonance(LCR). However, realization of a reliable exclusive disjunction(XOR) through LCR has not been reported.Here, we explore the possibility of using chaos to enhance the reliability of XOR logic operation in a triple-well potential system via LCR. The success probability P of obtaining XOR logic operation can take the maximum value of 1 in an optimal window of intensity D of a chaotic force. Namely, success probability P displays characteristic bell-shaped behavior by altering the intensity of the chaotic driving force, indicating the occurrence of LCR. Further, the effects of periodic force on LCR have been investigated. For a subthreshold chaotic force, a periodic force with appropriate amplitude and frequency can help enhance the reliability of XOR logic operation. Thus, LCR can be effectively regulated by changing the amplitude and frequency of the periodic force.
基金funded by the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Natural Science Research Project of Higher Education Institutions in Anhui Province(2022AH040045)the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(2021-YF22).
文摘The chaotic motion behavior of the rectangular conductive thin plate that is simply supported on four sides by airflow andmechanical external excitation in a magnetic field is studied.According to Kirchhoff’s thin plate theory,considering geometric nonlinearity and using the principle of virtualwork,the nonlinearmotion partial differential equation of the rectangular conductive thin plate is deduced.Using the separate variable method and Galerkin’s method,the system motion partial differential equation is converted into the general equation of the Duffing equation;the Hamilton system is introduced,and the Melnikov function is used to analyze the Hamilton system,and obtain the critical surface for the existence of chaos.The bifurcation diagram,phase portrait,time history response and Poincarémap of the vibration system are obtained by numerical simulation,and the correctness is demonstrated.The results showthatwhen the ratio of external excitation amplitude to damping coefficient is higher than the critical surface,the system will enter chaotic state.The chaotic motion of the rectangular conductive thin plate is affected by different magnetic field distributions and airflow.