A new method to perform blind separation of chaotic signals is articulated in this paper, which takes advantage of the underlying features in the phase space for identifying various chaotic sources. Without incorporat...A new method to perform blind separation of chaotic signals is articulated in this paper, which takes advantage of the underlying features in the phase space for identifying various chaotic sources. Without incorporating any prior information about the source equations, the proposed algorithm can not only separate the mixed signals in just a few iterations, but also outperforms the fast independent component analysis (FastlCA) method when noise contamination is considerable.展开更多
In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals a...In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.展开更多
A novel approach of signal extraction of a harmonic component fRom a chaotic signal generated by a Duffing oscillator was proposed. Based on empirical mode decomposition (EMD) and concept that any signal is composed...A novel approach of signal extraction of a harmonic component fRom a chaotic signal generated by a Duffing oscillator was proposed. Based on empirical mode decomposition (EMD) and concept that any signal is composed of a series of the simple intrinsic modes, the harmonic components were extracted f^om the chaotic signals. Simulation results show the approach is satisfactory.展开更多
The denoising problem of impure chaotic signals is addressed in this paper. A method based on sparse representation is proposed, in which the random frame dictionary is generated by a chaotic random search algorithm. ...The denoising problem of impure chaotic signals is addressed in this paper. A method based on sparse representation is proposed, in which the random frame dictionary is generated by a chaotic random search algorithm. The numerical simulation shows the proposed algorithm outperforms those recently reported alternative denoising methods.展开更多
Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics.The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristic...Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics.The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristics.We propose a denoising method of chaotic signals based on sparse decomposition and K-singular value decomposition(K-SVD)optimization.The observed signal is divided into segments and decomposed sparsely.The over-complete atomic library is constructed according to the differential equation of chaotic signals.The orthogonal matching pursuit algorithm is used to search the optimal matching atom.The atoms and coefficients are further processed to obtain the globally optimal atoms and coefficients by K-SVD.The simulation results show that the denoised signals have a higher signal to noise ratio and better preserve the chaotic characteristics.展开更多
In this paper, we address the problem of blind extraction and separation of a continuous chaotic signal from a linear mixture consisting of some chaotic signal and/or random signals. The problem of blind extraction is...In this paper, we address the problem of blind extraction and separation of a continuous chaotic signal from a linear mixture consisting of some chaotic signal and/or random signals. The problem of blind extraction is firstly formulated as a problem of the synchronization-based parameter estimation. Then an efficient least square based parameter estimation method is introduced to determine the desired extracting vector. The proposed blind signal extraction scheme is applicable to blind separation of chaotic signals by formulating the separation problem as the extraction of each chaotic source. Numerical simulation shows that the proposed approach can blindly extract and separate the desired chaotic signals and it is also robust to measurement noise.展开更多
Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime,...Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime, a nonlinear method is proposed based on the higher order statistics, on the other aspect, which characterizes the higher order singular spectrum (HOSS) of chaotic signals. All computations are done with Lorenz attractor, Rossler attractor and EEG(electroencephalogram) time series and the comparisions among these results are made. The experimental results show that the Lipschitz exponents and the higher order singular spectra of these signals are significantly different from each other, which indicates these methods are effective for studing the singularity of chaotic signals.展开更多
We investigate the nonlinear behaviors of light recognized as chaos during the propagation of Gaussian laser beam inside a nonlinear polarization maintaining and absorption reducing (PANDA) ring resonator system. It...We investigate the nonlinear behaviors of light recognized as chaos during the propagation of Gaussian laser beam inside a nonlinear polarization maintaining and absorption reducing (PANDA) ring resonator system. It aims to generate the nonlinear behavior of light to obtain data in binary logic codes for transmission in fiber optics communication. Effective parameters, such as refractive indices of a silicon waveguide, coupling coefficients (~), and ring radius ring (R), can be properly selected to operate the nonlinear behavior. Therefore, the binary coded data generated by the PANDA ring resonator system can be decoded and converted to Manchester codes, where the decoding process of the transmitted codes occurs at the end of the transmission link. The simulation results show that the original codes can be recovered with a high security of signal transmission using the Manchester method.展开更多
The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscilla...The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscillator detection system cannot guarantee the immunity to noises (even white noise). In fact the randomness of noises has a serious or even a destructive effect on the detection results in many cases. To solve this problem, we present a new detecting method based on wavelet threshold processing that can detect the chaotic weak signal accompanied with noise. All theoretical analyses and simulation experiments indicate that the new method reduces the noise interferences to detection significantly, thereby making the corresponding chaotic oscillator that detects the weak signals accompanied with noises more stable and reliable.展开更多
Relerrlng to contlnuous-Ume claaotlc systems, tills paper presents a new projective syncnromzatlon scheme, wnlcn enables each drive system state to be synchronized with a linear combination of response system states f...Relerrlng to contlnuous-Ume claaotlc systems, tills paper presents a new projective syncnromzatlon scheme, wnlcn enables each drive system state to be synchronized with a linear combination of response system states for any arbitrary scaling matrix. The proposed method, based on a structural condition related to the uncontrollable eigenvalues of the error system, can be applied to a wide class of continuous-time chaotic (hyperchaotic) systems and represents a general framework that includes any type of synchronization defined to date. An example involving a hyperchaotic oscillator is reported, with the aim of showing how a response system attractor is arbitrarily shaped using a scalar synchronizing signal only. Finally, it is shown that the recently introduced dislocated synchronization can be readily achieved using the conceived scheme.展开更多
For solving the issues of the signal reconstruction of nonlinear non-Gaussian signals in wireless sensor networks (WSNs), a new signal reconstruction algorithm based on a cubature Kalman particle filter (CKPF) is ...For solving the issues of the signal reconstruction of nonlinear non-Gaussian signals in wireless sensor networks (WSNs), a new signal reconstruction algorithm based on a cubature Kalman particle filter (CKPF) is proposed in this paper. We model the reconstruction signal first and then use the CKPF to estimate the signal. The CKPF uses a cubature Kalman filter (CKF) to generate the importance proposal distribution of the particle filter and integrates the latest observation, which can approximate the true posterior distribution better. It can improve the estimation accuracy. CKPF uses fewer cubature points than the unscented Kalman particle filter (UKPF) and has less computational overheads. Meanwhile, CKPF uses the square root of the error covariance for iterating and is more stable and accurate than the UKPF counterpart. Simulation results show that the algorithm can reconstruct the observed signals quickly and effectively, at the same time consuming less computational time and with more accuracy than the method based on UKPF.展开更多
A novel chaotic optical time-domain reflectometry(OTDR)-based approach was proposed for monitoring long-haul fiber communication systems with multiple fiber segments. The self-phase modulation and group velocity dispe...A novel chaotic optical time-domain reflectometry(OTDR)-based approach was proposed for monitoring long-haul fiber communication systems with multiple fiber segments. The self-phase modulation and group velocity dispersion effects of the optical cable was considered in demonstrating the proof-of-concept experiment and simulation. In experiments, the correlation peaks are clearly obtained from the correlation trace between the reference and reflected(or scattered) light signals propagating in three optical-fiber segments. The technique affords a high spatial resolution of 2 m, and further long-haul fiber simulations indicate that the sensing distance can be more than 3300 km. Thus, the new proposed technique can be effectively applied for health monitoring of long-haul fiber communication systems.展开更多
In this paper, we propose a new method that combines chaotic series phase space reconstruction and local polynomial estimation to solve the problem of suppressing strong chaotic noise. First, chaotic noise time series...In this paper, we propose a new method that combines chaotic series phase space reconstruction and local polynomial estimation to solve the problem of suppressing strong chaotic noise. First, chaotic noise time series are reconstructed to obtain multivariate time series according to Takens delay embedding theorem. Then the chaotic noise is estimated accurately using local polynomial estimation method. After chaotic noise is separated from observation signal, we can get the estimation of the useful signal. This local polynomial estimation method can combine the advantages of local and global law. Finally, it makes the estimation more exactly and we can calculate the formula of mean square error theoretically. The simulation results show that the method is effective for the suppression of strong chaotic noise when the signal to interference ratio is low.展开更多
For the model of a Closed Phase Locked Loop (CPLL) communication System consists of both the transmission and receiver ends. This model is considered to be in a multi-order intermittent chaotic state. The chaotic sign...For the model of a Closed Phase Locked Loop (CPLL) communication System consists of both the transmission and receiver ends. This model is considered to be in a multi-order intermittent chaotic state. The chaotic signals are then synchronized along side with our system. This chaotic synchronization will be demonstrated and furthermore, a modulation will be formed to examine the system if it will perfectly reconstruct or not. Finally we will demonstrate the synchronization conditions of the system.展开更多
This research is performed based on the modeling of biological signals. We can produce Heart Rate (HR) and Heart Rate Variability (HRV) signals synthetically using the mathematical relationships which are used as inpu...This research is performed based on the modeling of biological signals. We can produce Heart Rate (HR) and Heart Rate Variability (HRV) signals synthetically using the mathematical relationships which are used as input for the Integral Pulse Frequency Modulation (IPFM) model. Previous researches were proposed same methods such as one model of ECG signal synthetically based on RBF neural network, a model based on IPFM with random threshold, method was based on the estimation of produced signals which are dependent on autonomic nervous system using IPFM model with fixed threshold, a new method based on the theory of vector space that based on time-varying uses of IPMF model (TVTIPMF) and special functions, and two different methods for producing HRV signals with controlled characteristics and structure of time-frequency (TF) for using non-stationary HRV analysis. In this paper, several chaotic maps such as Logistic Map, Henon Map, Lorenz and Tent Map have been used. Also, effects of sympathetic and parasympathetic nervous system and an internal input to the SA node and their effects in HRV signals were evaluated. In the proposed method, output amount of integrator in IPFM model was compared with chaotic threshold level. Then, final output of IPFM model was characterized as the HR and HRV signal. So, from HR and HRV signals obtaining from this model, linear features such as Mean, Median, Variance, Standard Deviation, Maximum Range, Minimum Range, Mode, Amplitude Range and frequency spectrum, and non-linear features such as Lyapunov Exponent, Shanon Entropy, log Entropy, Threshold Entropy, sure Entropy and mode Entropy were extracted from artificial HRV and compared them with characteristics as extracted from natural HRV signal. Also, in this paper two patients that called high sympathetic Balance and Cardiovascular Autonomy Neuropathy (CAN) which is detected and evaluated by HRV signals were simulated. These signals by changing the values of the some coefficients of the normal simulated signal and with extracted frequency feature from these signals were simulated. For final generation of these abnormal signals, frequency features such as energy of low frequency band (EL), energy of high frequency band (HL), ratio of energy in low frequency band to the energy in high frequency band (EL/EH), ratio of energy in low frequency band to the energy in all frequency band (EL/ET) and ratio of energy in high frequency band to the energy in all frequency band (EH/ET) from abnormal signals were extracted and compared with these extracted values from normal signals. The results were closely correlated with the real data which confirm the effectiveness of the proposed model. Various signals derived from the output of this model can be used for final analysis of the HRV signals, such as arrhythmia detection and classification of ECG and HRV signals. One of the applications of the proposed model is the easy evaluation of diagnostic ECG signal processing devices. Such a model can also be used in signal compression and telemedicine application.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.60872123)the Joint Fund of the National Natural Science Foundation and the Natural Science Foundation of Guangdong Province,China(Grant No.U0835001)+1 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.2012ZM0025)the South China University of Technology,China,and the Fund for Higher-Level Talents in Guangdong Province,China(Grant No.N9101070)
文摘A new method to perform blind separation of chaotic signals is articulated in this paper, which takes advantage of the underlying features in the phase space for identifying various chaotic sources. Without incorporating any prior information about the source equations, the proposed algorithm can not only separate the mixed signals in just a few iterations, but also outperforms the fast independent component analysis (FastlCA) method when noise contamination is considerable.
基金supported by the National Science and Technology,China(Grant No.2012BAJ15B04)the National Natural Science Foundation of China(Grant Nos.41071270 and 61473213)+3 种基金the Natural Science Foundation of Hubei Province,China(Grant No.2015CFB424)the State Key Laboratory Foundation of Satellite Ocean Environment Dynamics,China(Grant No.SOED1405)the Hubei Provincial Key Laboratory Foundation of Metallurgical Industry Process System Science,China(Grant No.Z201303)the Hubei Key Laboratory Foundation of Transportation Internet of Things,Wuhan University of Technology,China(Grant No.2015III015-B02)
文摘In this paper, a new method to reduce noises within chaotic signals based on ICA (independent component analysis) and EMD (empirical mode decomposition) is proposed. The basic idea is decomposing chaotic signals and constructing multidimensional input vectors, firstly, on the base of EMD and its translation invariance. Secondly, it makes the indepen- dent component analysis on the input vectors, which means that a self adapting denoising is carried out for the intrinsic mode functions (IMFs) of chaotic signals. Finally, all IMFs compose the new denoised chaotic signal. Experiments on the Lorenz chaotic signal composed of different Gaussian noises and the monthly observed chaotic sequence on sunspots were put into practice. The results proved that the method proposed in this paper is effective in denoising of chaotic signals. Moreover, it can correct the center point in the phase space effectively, which makes it approach the real track of the chaotic attractor.
基金Project supported by the National Natural Science Foundations of China (Nos.10502032, 50335030,10325209 and 50375094)
文摘A novel approach of signal extraction of a harmonic component fRom a chaotic signal generated by a Duffing oscillator was proposed. Based on empirical mode decomposition (EMD) and concept that any signal is composed of a series of the simple intrinsic modes, the harmonic components were extracted f^om the chaotic signals. Simulation results show the approach is satisfactory.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60872123)the Joint Fund of the National Natural Science Foundation and the Guangdong Provincial Natural Science Foundation (Grant No. U0835001)by the Doctorate Foundation of South China University of Technology,China
文摘The denoising problem of impure chaotic signals is addressed in this paper. A method based on sparse representation is proposed, in which the random frame dictionary is generated by a chaotic random search algorithm. The numerical simulation shows the proposed algorithm outperforms those recently reported alternative denoising methods.
基金National Natural Science Foundation of China(Grant No.61872083)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2017A030310659 and 2019A1515011123).
文摘Denoising of chaotic signal is a challenge work due to its wide-band and noise-like characteristics.The algorithm should make the denoised signal have a high signal to noise ratio and retain the chaotic characteristics.We propose a denoising method of chaotic signals based on sparse decomposition and K-singular value decomposition(K-SVD)optimization.The observed signal is divided into segments and decomposed sparsely.The over-complete atomic library is constructed according to the differential equation of chaotic signals.The orthogonal matching pursuit algorithm is used to search the optimal matching atom.The atoms and coefficients are further processed to obtain the globally optimal atoms and coefficients by K-SVD.The simulation results show that the denoised signals have a higher signal to noise ratio and better preserve the chaotic characteristics.
基金Supported by the National Natural Science Foundation of China (No.60472059)the Aeronautical Science Foundation of China (2008ZC 52026)
文摘In this paper, we address the problem of blind extraction and separation of a continuous chaotic signal from a linear mixture consisting of some chaotic signal and/or random signals. The problem of blind extraction is firstly formulated as a problem of the synchronization-based parameter estimation. Then an efficient least square based parameter estimation method is introduced to determine the desired extracting vector. The proposed blind signal extraction scheme is applicable to blind separation of chaotic signals by formulating the separation problem as the extraction of each chaotic source. Numerical simulation shows that the proposed approach can blindly extract and separate the desired chaotic signals and it is also robust to measurement noise.
基金Science Foundation of Educational Commission of Fujian Province of China (Grant NO:JAO04238)
文摘Based on the variations of wavelet transform modulus maxima at multi-scales, the singularity of chaotic signals are studied, and the singularity of these signals are measured by the Lipschitz exponent.In the meantime, a nonlinear method is proposed based on the higher order statistics, on the other aspect, which characterizes the higher order singular spectrum (HOSS) of chaotic signals. All computations are done with Lorenz attractor, Rossler attractor and EEG(electroencephalogram) time series and the comparisions among these results are made. The experimental results show that the Lipschitz exponents and the higher order singular spectra of these signals are significantly different from each other, which indicates these methods are effective for studing the singularity of chaotic signals.
基金Universiti Teknolog,Malaysia(UTM),and the IDF for their financial support
文摘We investigate the nonlinear behaviors of light recognized as chaos during the propagation of Gaussian laser beam inside a nonlinear polarization maintaining and absorption reducing (PANDA) ring resonator system. It aims to generate the nonlinear behavior of light to obtain data in binary logic codes for transmission in fiber optics communication. Effective parameters, such as refractive indices of a silicon waveguide, coupling coefficients (~), and ring radius ring (R), can be properly selected to operate the nonlinear behavior. Therefore, the binary coded data generated by the PANDA ring resonator system can be decoded and converted to Manchester codes, where the decoding process of the transmitted codes occurs at the end of the transmission link. The simulation results show that the original codes can be recovered with a high security of signal transmission using the Manchester method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10731050)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRTO0742)
文摘The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscillator detection system cannot guarantee the immunity to noises (even white noise). In fact the randomness of noises has a serious or even a destructive effect on the detection results in many cases. To solve this problem, we present a new detecting method based on wavelet threshold processing that can detect the chaotic weak signal accompanied with noise. All theoretical analyses and simulation experiments indicate that the new method reduces the noise interferences to detection significantly, thereby making the corresponding chaotic oscillator that detects the weak signals accompanied with noises more stable and reliable.
文摘Relerrlng to contlnuous-Ume claaotlc systems, tills paper presents a new projective syncnromzatlon scheme, wnlcn enables each drive system state to be synchronized with a linear combination of response system states for any arbitrary scaling matrix. The proposed method, based on a structural condition related to the uncontrollable eigenvalues of the error system, can be applied to a wide class of continuous-time chaotic (hyperchaotic) systems and represents a general framework that includes any type of synchronization defined to date. An example involving a hyperchaotic oscillator is reported, with the aim of showing how a response system attractor is arbitrarily shaped using a scalar synchronizing signal only. Finally, it is shown that the recently introduced dislocated synchronization can be readily achieved using the conceived scheme.
基金supported by the National Natural Science Foundation of China(Grant No.60872123)the Joint Fund of the National Natural Science Foundation andthe Guangdong Provincial Natural Science Foundation,China(Grant No.U0835001)+2 种基金the Fundamental Research Funds for the Central Universities of Ministryof Education of China(Grant No.2012ZM0025)the South China University of Technology,Chinathe Fund for Higher-level Talent in GuangdongProvince,China(Grant No.N9101070)
文摘For solving the issues of the signal reconstruction of nonlinear non-Gaussian signals in wireless sensor networks (WSNs), a new signal reconstruction algorithm based on a cubature Kalman particle filter (CKPF) is proposed in this paper. We model the reconstruction signal first and then use the CKPF to estimate the signal. The CKPF uses a cubature Kalman filter (CKF) to generate the importance proposal distribution of the particle filter and integrates the latest observation, which can approximate the true posterior distribution better. It can improve the estimation accuracy. CKPF uses fewer cubature points than the unscented Kalman particle filter (UKPF) and has less computational overheads. Meanwhile, CKPF uses the square root of the error covariance for iterating and is more stable and accurate than the UKPF counterpart. Simulation results show that the algorithm can reconstruct the observed signals quickly and effectively, at the same time consuming less computational time and with more accuracy than the method based on UKPF.
基金the Project Funding National Natural Science Foundation of China (NSFC) (61527819)University Natural Science Research Project of Jiangsu Province (19KJB510005)High-Level Training Fund project of Nanjing Xiaozhuang University (2019NXY18)
文摘A novel chaotic optical time-domain reflectometry(OTDR)-based approach was proposed for monitoring long-haul fiber communication systems with multiple fiber segments. The self-phase modulation and group velocity dispersion effects of the optical cable was considered in demonstrating the proof-of-concept experiment and simulation. In experiments, the correlation peaks are clearly obtained from the correlation trace between the reference and reflected(or scattered) light signals propagating in three optical-fiber segments. The technique affords a high spatial resolution of 2 m, and further long-haul fiber simulations indicate that the sensing distance can be more than 3300 km. Thus, the new proposed technique can be effectively applied for health monitoring of long-haul fiber communication systems.
基金supported by the Natural Science Foundation of Chongqing Science & Technology Commission,China (Grant No.CSTC2010BB2310)the Chongqing Municipal Education Commission Foundation,China (Grant Nos.KJ080614,KJ100810,and KJ100818)
文摘In this paper, we propose a new method that combines chaotic series phase space reconstruction and local polynomial estimation to solve the problem of suppressing strong chaotic noise. First, chaotic noise time series are reconstructed to obtain multivariate time series according to Takens delay embedding theorem. Then the chaotic noise is estimated accurately using local polynomial estimation method. After chaotic noise is separated from observation signal, we can get the estimation of the useful signal. This local polynomial estimation method can combine the advantages of local and global law. Finally, it makes the estimation more exactly and we can calculate the formula of mean square error theoretically. The simulation results show that the method is effective for the suppression of strong chaotic noise when the signal to interference ratio is low.
文摘For the model of a Closed Phase Locked Loop (CPLL) communication System consists of both the transmission and receiver ends. This model is considered to be in a multi-order intermittent chaotic state. The chaotic signals are then synchronized along side with our system. This chaotic synchronization will be demonstrated and furthermore, a modulation will be formed to examine the system if it will perfectly reconstruct or not. Finally we will demonstrate the synchronization conditions of the system.
文摘This research is performed based on the modeling of biological signals. We can produce Heart Rate (HR) and Heart Rate Variability (HRV) signals synthetically using the mathematical relationships which are used as input for the Integral Pulse Frequency Modulation (IPFM) model. Previous researches were proposed same methods such as one model of ECG signal synthetically based on RBF neural network, a model based on IPFM with random threshold, method was based on the estimation of produced signals which are dependent on autonomic nervous system using IPFM model with fixed threshold, a new method based on the theory of vector space that based on time-varying uses of IPMF model (TVTIPMF) and special functions, and two different methods for producing HRV signals with controlled characteristics and structure of time-frequency (TF) for using non-stationary HRV analysis. In this paper, several chaotic maps such as Logistic Map, Henon Map, Lorenz and Tent Map have been used. Also, effects of sympathetic and parasympathetic nervous system and an internal input to the SA node and their effects in HRV signals were evaluated. In the proposed method, output amount of integrator in IPFM model was compared with chaotic threshold level. Then, final output of IPFM model was characterized as the HR and HRV signal. So, from HR and HRV signals obtaining from this model, linear features such as Mean, Median, Variance, Standard Deviation, Maximum Range, Minimum Range, Mode, Amplitude Range and frequency spectrum, and non-linear features such as Lyapunov Exponent, Shanon Entropy, log Entropy, Threshold Entropy, sure Entropy and mode Entropy were extracted from artificial HRV and compared them with characteristics as extracted from natural HRV signal. Also, in this paper two patients that called high sympathetic Balance and Cardiovascular Autonomy Neuropathy (CAN) which is detected and evaluated by HRV signals were simulated. These signals by changing the values of the some coefficients of the normal simulated signal and with extracted frequency feature from these signals were simulated. For final generation of these abnormal signals, frequency features such as energy of low frequency band (EL), energy of high frequency band (HL), ratio of energy in low frequency band to the energy in high frequency band (EL/EH), ratio of energy in low frequency band to the energy in all frequency band (EL/ET) and ratio of energy in high frequency band to the energy in all frequency band (EH/ET) from abnormal signals were extracted and compared with these extracted values from normal signals. The results were closely correlated with the real data which confirm the effectiveness of the proposed model. Various signals derived from the output of this model can be used for final analysis of the HRV signals, such as arrhythmia detection and classification of ECG and HRV signals. One of the applications of the proposed model is the easy evaluation of diagnostic ECG signal processing devices. Such a model can also be used in signal compression and telemedicine application.