In this paper surrogate data method of phase-randomized is proposed to identify the random or chaotic nature of the data obtained in dynamic analysis: The calculating results validate the phase-randomized method to be...In this paper surrogate data method of phase-randomized is proposed to identify the random or chaotic nature of the data obtained in dynamic analysis: The calculating results validate the phase-randomized method to be useful as it can increase the extent of accuracy of the results. And the calculating results show that threshold values of the random timeseries and nonlinear chaotic timeseries have marked difference.展开更多
The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscilla...The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscillator detection system cannot guarantee the immunity to noises (even white noise). In fact the randomness of noises has a serious or even a destructive effect on the detection results in many cases. To solve this problem, we present a new detecting method based on wavelet threshold processing that can detect the chaotic weak signal accompanied with noise. All theoretical analyses and simulation experiments indicate that the new method reduces the noise interferences to detection significantly, thereby making the corresponding chaotic oscillator that detects the weak signals accompanied with noises more stable and reliable.展开更多
The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The e...The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly.展开更多
文摘In this paper surrogate data method of phase-randomized is proposed to identify the random or chaotic nature of the data obtained in dynamic analysis: The calculating results validate the phase-randomized method to be useful as it can increase the extent of accuracy of the results. And the calculating results show that threshold values of the random timeseries and nonlinear chaotic timeseries have marked difference.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10731050)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRTO0742)
文摘The chaotic oscillator has already been considered as a powerful method to detect weak signals, even weak signals accompanied with noises. However, many examples, analyses and simulations indicate that chaotic oscillator detection system cannot guarantee the immunity to noises (even white noise). In fact the randomness of noises has a serious or even a destructive effect on the detection results in many cases. To solve this problem, we present a new detecting method based on wavelet threshold processing that can detect the chaotic weak signal accompanied with noise. All theoretical analyses and simulation experiments indicate that the new method reduces the noise interferences to detection significantly, thereby making the corresponding chaotic oscillator that detects the weak signals accompanied with noises more stable and reliable.
基金supported by National Natural Science Foundation of China under Grant No.60872065Open Foundation of State Key Laboratory for Novel Software Technology at Nanjing University under Grant No.KFKT2010B17
文摘The segmentation effect of Tsallis entropy method is superior to that of Shannon entropy method, and the computation speed of two-dimensional Shannon cross entropy method can be further improved by optimization. The existing two-dimensional Tsallis cross entropy method is not the strict two-dimensional extension. Thus two new methods of image thresholding using two-dimensional Tsallis cross entropy based on either Chaotic Particle Swarm Optimization (CPSO) or decomposition are proposed. The former uses CPSO to find the optimal threshold. The recursive algorithm is adopted to avoid the repetitive computation of fitness function in iterative procedure. The computing speed is improved greatly. The latter converts the two-dimensional computation into two one-dimensional spaces, which makes the computational complexity further reduced from O(L2) to O(L). The experimental results show that, compared with the proposed recently two-dimensional Shannon or Tsallis cross entropy method, the two new methods can achieve superior segmentation results and reduce running time greatly.