To confirm the rheological characteristic of sewage in the research and application of urban sewage source heat pump system, the viscosity of sewage was investigated. The tube-type rheometer was used in this experimen...To confirm the rheological characteristic of sewage in the research and application of urban sewage source heat pump system, the viscosity of sewage was investigated. The tube-type rheometer was used in this experimental study, and the sewage was treated as homogeneous non-Newtonian fluid. In addition, the relational expression between viscosity parameters was developed, and the function of apparent viscosity was obtained. It is concluded that the viscosity characteristic of sewage is influenced largely by complex mixture in sewage, and the sewage has the characteristic of sheared densification fluid.展开更多
Characteristic and dynamic viscosities of Hyaluronic acid ( HA ) derivative modified by polyethylene glycol (PEG) were tested with different reaction times (6 h,12 h,18 h and 24 h ), different molar ratio of HA...Characteristic and dynamic viscosities of Hyaluronic acid ( HA ) derivative modified by polyethylene glycol (PEG) were tested with different reaction times (6 h,12 h,18 h and 24 h ), different molar ratio of HA/PEG (1/10,1/5,1/3 and 1/2), different molecular weight of PEG(400,6 000 and 20 000) and mass fraction is 0. 4% by Wushi Viscosimeter and L-90 Rheometer at 25℃ . Characteristic viscosity of HA derivative had the largest value in 12 h, which decreased with increasing of PEG molecular weight, bat its aqueous dynamic viscosity increased with increment of PEG molecular weight. Meanwhile, we tested dynamic mechanic properties of HA derivative by 3ARES3 Rheometer at 25℃ to study viscoelastic changes and to compare change difference from viscosity to elasticity with the changes of vibration frequency between unmodified HA and HA derivative. Change from low vibrated freqnency to high one of solution resulted in change from viscosity to elasticity of solution. In conclusion, as to the rheological properties, structure- modified HA derivative meets the requirement of biomaterial .展开更多
Understanding the kinetics and viscosity of hydrate slurry in gas-water-sand system is of great significance for the high-efficiency and high-safety development of natural gas hydrates.The effect of micronsized sands ...Understanding the kinetics and viscosity of hydrate slurry in gas-water-sand system is of great significance for the high-efficiency and high-safety development of natural gas hydrates.The effect of micronsized sands with various concentrations and particle sizes on the hydrate formation,dissociation,and viscosity in gas-water-sand system are investigated in this work.The experimental results show that the hydrate induction time in the sandy system is slightly prolonged compared to the pure gas-water system,and the inhibition effect first strengthens and then weakens as the sand concentration increases from0 wt%to 5 wt%.Besides,the difference of hydrate formation amount in various cases is not obvious.The concentration and particle size of sand have little effect on the kinetics of hydrate formation.Both promoting and inhibiting effects on hydrate formation have been found in the sandy multiphase fluid.For the viscosity characteristics,there are three variations of hydrate slurry viscosity during the formation process:Steep drop type,S-type and Fluctuation type.Moreover,appropriate sand size is helpful to reduce the randomness of slurry viscosity change.Meanwhile,even at the same hydrate volume fraction,the slurry viscosity in the formation process is significantly higher than that in dissociation process,which needs further research.This work provides further insights of hydrate formation,dissociation,and viscosity in gas-water-sand system,which is of great significance for safe and economic development of natural gas hydrates.展开更多
The lubricating characteristics of CVTF(continuously variable transmission fluid) mixed with a multi-functional complex additive were studied. The said complex additive contained an organic borate ester and a new type...The lubricating characteristics of CVTF(continuously variable transmission fluid) mixed with a multi-functional complex additive were studied. The said complex additive contained an organic borate ester and a new type of friction improver comprising phosphorus element and poly-methylmethacrylate(PMMA), and a viscosity index improver. The viscosity-pressure characteristics were evaluated by a high-pressure quartz viscometer, and the anti-wear property was investigated by a four-ball friction tester. The mechanism of lubrication by the CVTF was studied using X-ray photoelectron spectroscopy(XPS). The results showed that CVTF T10, which contained a multi-functional complex additive, exhibited excellent properties, featuring greater solidification pressure and pressure-viscosity coefficient, improved oil film strength, and low wear value. These attributes meet the special CVTF requirements for "high friction and low wear" that make it possible to provide both traction and lubrication. The lubricating mechanism was varied using different functional elements, such as inert and active elements. Sulfur and phosphorus are active extreme pressure elements that can react on the metal friction surface and produce an extreme pressure lubrication film. Boron is an inert functional element and does not react upon the metal surface; boron is only adsorbed onto the metal surface to act as a lubricant for adsorption film and fillers.展开更多
The entrained flow gasification has been identified as the most promising gasification technology.Serious environmental pollution and waste of land resources are caused by the increasing amount of storage and producti...The entrained flow gasification has been identified as the most promising gasification technology.Serious environmental pollution and waste of land resources are caused by the increasing amount of storage and production of coal gasification slag.The aim of this work is to explore the feasibility of high-temperature combustion and melting technology for treating coal gasification fine slag and determine the important parameters of system operation.The flow properties and molten slag structure characteristics of three fine slags from different entrained flow gasifiers were studied.Depending on the melting mechanism of melt-dissolution,the melting time of fine slags is short.Three fine slags all produce glassy slags,which is conducive to slag discharge.The degree of polymerization of silicate melt is proportionate to the amount of SiO_(2)in the slag.A part of Al^(3+)exist in the form of[AlO_(4)]^(5-)because of the effect of CaO and Na_(2)O,as the network former.Finally,the degree of polymerization of the three type molten slag was calculated by considering the role of Si and Al in molten slag and the property of each one.展开更多
This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: c(x, y) = inf x(0)=x x(1)=y u∈U∫0^1 L(x(s), u(x(s), s), s)ds, w...This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: c(x, y) = inf x(0)=x x(1)=y u∈U∫0^1 L(x(s), u(x(s), s), s)ds, where U is a control set, and x satisfies the ordinary equation x(s) = f(x(s), u(x(s), s)).It is proved that under the condition that the initial measure μ0 is absolutely continuous w.r.t. the Lebesgue measure, the Monge problem has a solution, and the optimal transport map just walks along the characteristic curves of the corresponding Hamilton-Jacobi equation:Vt(t, x) + sup u∈U = 0,V(0, x) = Φ0(x).展开更多
基金Sponsored by the National Natural Science Foundation of China (Grant No.50578048)
文摘To confirm the rheological characteristic of sewage in the research and application of urban sewage source heat pump system, the viscosity of sewage was investigated. The tube-type rheometer was used in this experimental study, and the sewage was treated as homogeneous non-Newtonian fluid. In addition, the relational expression between viscosity parameters was developed, and the function of apparent viscosity was obtained. It is concluded that the viscosity characteristic of sewage is influenced largely by complex mixture in sewage, and the sewage has the characteristic of sheared densification fluid.
文摘Characteristic and dynamic viscosities of Hyaluronic acid ( HA ) derivative modified by polyethylene glycol (PEG) were tested with different reaction times (6 h,12 h,18 h and 24 h ), different molar ratio of HA/PEG (1/10,1/5,1/3 and 1/2), different molecular weight of PEG(400,6 000 and 20 000) and mass fraction is 0. 4% by Wushi Viscosimeter and L-90 Rheometer at 25℃ . Characteristic viscosity of HA derivative had the largest value in 12 h, which decreased with increasing of PEG molecular weight, bat its aqueous dynamic viscosity increased with increment of PEG molecular weight. Meanwhile, we tested dynamic mechanic properties of HA derivative by 3ARES3 Rheometer at 25℃ to study viscoelastic changes and to compare change difference from viscosity to elasticity with the changes of vibration frequency between unmodified HA and HA derivative. Change from low vibrated freqnency to high one of solution resulted in change from viscosity to elasticity of solution. In conclusion, as to the rheological properties, structure- modified HA derivative meets the requirement of biomaterial .
基金supported by the National Natural Science Foundation of China[Grand numbers:52104069,51874323,U20B6005]China Postdoctoral Science Foundation[Grand number:2022M713460]Science Foundation of China University of Petroleum,Beijing[Grand number:2462020YXZZ045]。
文摘Understanding the kinetics and viscosity of hydrate slurry in gas-water-sand system is of great significance for the high-efficiency and high-safety development of natural gas hydrates.The effect of micronsized sands with various concentrations and particle sizes on the hydrate formation,dissociation,and viscosity in gas-water-sand system are investigated in this work.The experimental results show that the hydrate induction time in the sandy system is slightly prolonged compared to the pure gas-water system,and the inhibition effect first strengthens and then weakens as the sand concentration increases from0 wt%to 5 wt%.Besides,the difference of hydrate formation amount in various cases is not obvious.The concentration and particle size of sand have little effect on the kinetics of hydrate formation.Both promoting and inhibiting effects on hydrate formation have been found in the sandy multiphase fluid.For the viscosity characteristics,there are three variations of hydrate slurry viscosity during the formation process:Steep drop type,S-type and Fluctuation type.Moreover,appropriate sand size is helpful to reduce the randomness of slurry viscosity change.Meanwhile,even at the same hydrate volume fraction,the slurry viscosity in the formation process is significantly higher than that in dissociation process,which needs further research.This work provides further insights of hydrate formation,dissociation,and viscosity in gas-water-sand system,which is of great significance for safe and economic development of natural gas hydrates.
基金financially supported by the China National Machinery Industry Corporation Science & Technology Development Fund (SINOMACH12 No.180)
文摘The lubricating characteristics of CVTF(continuously variable transmission fluid) mixed with a multi-functional complex additive were studied. The said complex additive contained an organic borate ester and a new type of friction improver comprising phosphorus element and poly-methylmethacrylate(PMMA), and a viscosity index improver. The viscosity-pressure characteristics were evaluated by a high-pressure quartz viscometer, and the anti-wear property was investigated by a four-ball friction tester. The mechanism of lubrication by the CVTF was studied using X-ray photoelectron spectroscopy(XPS). The results showed that CVTF T10, which contained a multi-functional complex additive, exhibited excellent properties, featuring greater solidification pressure and pressure-viscosity coefficient, improved oil film strength, and low wear value. These attributes meet the special CVTF requirements for "high friction and low wear" that make it possible to provide both traction and lubrication. The lubricating mechanism was varied using different functional elements, such as inert and active elements. Sulfur and phosphorus are active extreme pressure elements that can react on the metal friction surface and produce an extreme pressure lubrication film. Boron is an inert functional element and does not react upon the metal surface; boron is only adsorbed onto the metal surface to act as a lubricant for adsorption film and fillers.
基金financially supported by Class A Strategic Pilot Science and Technology Project,Chinese Academy of Sciences(Grant No.XDA21040602)the National Natural Science Foundation of China(Grant No.U1810127)the Youth Innovation Promotion Association,Chinese Academy of Science(Grant No.Y201932)。
文摘The entrained flow gasification has been identified as the most promising gasification technology.Serious environmental pollution and waste of land resources are caused by the increasing amount of storage and production of coal gasification slag.The aim of this work is to explore the feasibility of high-temperature combustion and melting technology for treating coal gasification fine slag and determine the important parameters of system operation.The flow properties and molten slag structure characteristics of three fine slags from different entrained flow gasifiers were studied.Depending on the melting mechanism of melt-dissolution,the melting time of fine slags is short.Three fine slags all produce glassy slags,which is conducive to slag discharge.The degree of polymerization of silicate melt is proportionate to the amount of SiO_(2)in the slag.A part of Al^(3+)exist in the form of[AlO_(4)]^(5-)because of the effect of CaO and Na_(2)O,as the network former.Finally,the degree of polymerization of the three type molten slag was calculated by considering the role of Si and Al in molten slag and the property of each one.
文摘This paper deals with the optimal transportation for generalized Lagrangian L = L(x, u, t), and considers the following cost function: c(x, y) = inf x(0)=x x(1)=y u∈U∫0^1 L(x(s), u(x(s), s), s)ds, where U is a control set, and x satisfies the ordinary equation x(s) = f(x(s), u(x(s), s)).It is proved that under the condition that the initial measure μ0 is absolutely continuous w.r.t. the Lebesgue measure, the Monge problem has a solution, and the optimal transport map just walks along the characteristic curves of the corresponding Hamilton-Jacobi equation:Vt(t, x) + sup u∈U = 0,V(0, x) = Φ0(x).