A deep trench super-junction LDMOS with double charge compensation layer(DC DT SJ LDMOS)is proposed in this paper.Due to the capacitance effect of the deep trench which is known as silicon-insulator-silicon(SIS)capaci...A deep trench super-junction LDMOS with double charge compensation layer(DC DT SJ LDMOS)is proposed in this paper.Due to the capacitance effect of the deep trench which is known as silicon-insulator-silicon(SIS)capacitance,the charge balance in the super-junction region of the conventional deep trench SJ LDMOS(Con.DT SJ LDMOS)device will be broken,resulting in breakdown voltage(BV)of the device drops.DC DT SJ LDMOS solves the SIS capacitance effect by adding a vertical variable doped charge compensation layer and a triangular charge compensation layer inside the Con.DT SJ LDMOS device.Therefore,the drift region reaches an ideal charge balance state again.The electric field is optimized by double charge compensation and gate field plate so that the breakdown voltage of the proposed device is improved sharply,meanwhile the enlarged on-current region reduces its specific on-resistance.The simulation results show that compared with the Con.DT SJ LD-MOS,the BV of the DC DT SJ LDMOS has been increased from 549.5 to 705.5 V,and the R_(on,sp) decreased to 23.7 mΩ·cm^(2).展开更多
In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles a...In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles are studied by soft x-ray absorption spectroscopy in total electron(TEY) and fluorescence(TFY) detection modes, which provide surface and bulk information, respectively. The spectra of Co L2,3-edge indicate that Co contributes to charge compensation below 4.4 V.Combining with the spectra of O K-edge, it manifests that only O contributes to electron compensation above 4.4 V with the formation of local O 2 p holes both on the surface and in the bulk, where the surficial O evolves more remarkably. The evolution of the O 2 p holes gives an explanation to the origin of O2^-or even O2. A comparison between the TEY and TFY of O K-edge spectra of LiCoO2 cycled in a range from 3 V to 4.6 V indicates both the structural change in the bulk and aggregation of lithium salts on the electrode surface are responsible for the capacity fading. However, the latter is found to play a more important role after many cycles.展开更多
Fast charging and high-power delivering batteries are highly demanded in mobile electronics,electric vehicles and grid energy storage,but there are full of challenges.The star-material Li_(3)V_(2)(PO_(4))_(3) is demon...Fast charging and high-power delivering batteries are highly demanded in mobile electronics,electric vehicles and grid energy storage,but there are full of challenges.The star-material Li_(3)V_(2)(PO_(4))_(3) is demonstrated as a promising high-rate cathode material meeting the above requirements.Herein,we report the carbon decorated Li_(3)V_(2)(PO_(4))_(3) (LVP/C) cathode prepared via a facile method,which displays a remarkable high-rate capability and long-term cycling performance.Briefly,the prepared LVP/C delivers a high discharge capacity of 122 mAh g^(-1)(-93% of the theoretical capacity) at a high rate up to 20 C and a superior capacity retention of 87.1% after 1000 cycles.Importantly,by applying a combination of X-ray absorption spectroscopy and full-range mapping of resonant inelastic X-ray scattering,we clearly elucidate the structural and chemical evolutions of LVP upon various potentials and cycle numbers.We show unambiguous spectroscopic evidences that the evolution of the hybridization strength between V and O in LVP/C as a consequence of lithiation/delithiation is highly reversible both in the bulk and on the surface during the discharge-charge processes even over extended cycles,which should be responsible for the remarkable electrochemical performance of LVP/C.Our present study provides not only an effective synthesis strategy but also deeper insights into the surface and bulk electrochemical reaction mechanism of LVP,which should be beneficial for the further design of high-performance LVP electrode materials.展开更多
A novel optically controlled SiCGe/SiC heterojunction transistor with charge-compensation technique has been simulated by using commercial simulator. This paper discusses the electric field distribution, spectral resp...A novel optically controlled SiCGe/SiC heterojunction transistor with charge-compensation technique has been simulated by using commercial simulator. This paper discusses the electric field distribution, spectral response and transient response of the device. Due to utilizing p-SiCGe charge-compensation layer, the responsivity increases nearly two times and breakdown voltage increases 33%. The switching characteristic illustrates that the device is latch-free and its fall time is much longer than the rise time. With an increase of the light power density and wavelength, the rise time and fall time will become shorter and longer, respectively. In terms of carrier lifetime, a compromise should be made between the responsivity and switching speed, the ratio of them reaches maximum value when the minority carrier lifetime equals 90 ns.展开更多
An analytical model of the power metal–oxide–semiconductor field-effect transistor(MOSFET)with high permittivity insulator structure(HKMOS)with interface charge is established based on superposition and developed fo...An analytical model of the power metal–oxide–semiconductor field-effect transistor(MOSFET)with high permittivity insulator structure(HKMOS)with interface charge is established based on superposition and developed for optimization by charge compensation.In light of charge compensation,the disturbance aroused by interface charge is efficiently compromised by introducing extra charge for maximizing breakdown voltage(BV)and minimizing specific ON-resistance(R_(on,sp)).From this optimization method,it is very efficient to obtain the design parameters to overcome the difficulty in implementing the R_(on,sp)–BV trade-off for quick design.The analytical results prove that in the HKMOS with positive or negative interface charge at a given length of drift region,the extraction of the parameters is qualitatively and quantitatively optimized for trading off BV and Ron,sp with JFET effect taken into account.展开更多
The relationship between the structural evolution and redox of Li-rich transition-metal layered oxides(LLOs)cathodes remains ambiguous,obstructing the development of high-performance lithium-ion(Li^(+))battery.Herein,...The relationship between the structural evolution and redox of Li-rich transition-metal layered oxides(LLOs)cathodes remains ambiguous,obstructing the development of high-performance lithium-ion(Li^(+))battery.Herein,the coherent effects of local atomic and electronic structure in Li_(2)Ru_(x)Mn_(1-x)O_(3)(LRMO)with a wide voltage window(1.3–4.8 V)is identified by in situ X-ray absorption fine spectroscopy(XAFS)and chemometrics.We not only skillfully separated the redox active structures to track the electrochemical path,but also visualized the coupling mechanism between the evolution of Ru-Ru dimer and the(de)excitation of cations and anions.Furthermore,introducing manganese triggers the“heterogeneity”of coordination environment and electronic structure between Ru and Mn after discharge to 3 V.The change of thermodynamic and kinetic paths affects the relithiation,and further leads to the hysteresis of the anion activation structure relaxation of Li_(2)Ru_(0.4)Mn_(0.6)O_(3)relative to Li_(2)RuO_(3)(LRO).Additionally,it is demonstrated that the high charge cut-off voltage restrains the relaxation of anionic active structure in LRO from a new perspective through comparative experiments.Our work associates the evolution of atomic structure with charge compensation and negative electrochemical reactions such as voltage hysteresis(VH)and capacity attenuation,deepening the understanding electrochemical reaction mechanism of LLOs during the first cycle and providing a theoretical support for the further design and synthesis of high-efficiency cathodes.展开更多
Based on particle-in-cell simulation, we studied the motions of ions and electrons. The results have shown that electrons are bounded by a magnetic field and only a small number of electrons can pass through the whirl...Based on particle-in-cell simulation, we studied the motions of ions and electrons. The results have shown that electrons are bounded by a magnetic field and only a small number of electrons can pass through the whirler channel. The plasma becomes non-neutral when it is emitted from the whirler, and the spatial charge leads to a beam divergence, which is unfavorable for mass separation. In order to compensate the spatial charge, a cathode is designed to transmit electrons and the quasi-neutral plasma beam. Experiment results have demonstrated that the auxiliary cathode can obviously improve the compensation degree of the spatial charge.展开更多
Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detect...Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evalualed by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 um. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.展开更多
A novel method to partially compensate sigma-delta shaped noise is proposed. By injecting the compensation current into the passive loop filter during the delay time of the phase frequency detector(PFD),a maximum re...A novel method to partially compensate sigma-delta shaped noise is proposed. By injecting the compensation current into the passive loop filter during the delay time of the phase frequency detector(PFD),a maximum reduction of the phase noise by about 16dB can be achieved. Compared to other compensation methods,the technique proposed here is relatively simple and easy to implement. Key building blocks for realizing the noise cancellation,including the delay variable PFD and compensation current source, are specially designed. Both the behavior level and circuit level simulation results are presented.展开更多
CaMoO_(4):Eu^(3+)and CaMoO_(4):Eu^(3+),A+(A=Li,Na,K)phosphors for light-emitting diode(LED)applications have been prepared by microwave sintering method(MSM),and their structure and luminescence properties are investi...CaMoO_(4):Eu^(3+)and CaMoO_(4):Eu^(3+),A+(A=Li,Na,K)phosphors for light-emitting diode(LED)applications have been prepared by microwave sintering method(MSM),and their structure and luminescence properties are investigated.The influences of microwave reaction time and concentration of different kinds of charge compensation A+and Eu^(3+)on luminescence have also been discussed.The samples emit a red luminescence at 615 nm attributed to the^(5)D0→^(7)F2 transition of Eu^(3+)under 464 nm excitation.It is observed that adding charge compensation A+in the sample synthesis increases luminescence intensity.The optimized sample made with 32 mol%Li+and 32 mol%Eu^(3+)has an enhancement factor of 4 in photoluminescence compared to the sample made without charge compensation.The CIE(Commission Internationale de l'Eclairage)coordinates of Ca0.36MoO_(4):0.32Eu^(3+),0.32Li+are x=0.661 and y=0.339,which indicate that the obtained phosphor can be a promising red color candidate for white LED fabrications.展开更多
AIM: Variation in structure-related components in plant products prompted the trend to establish methods, using multiple or total analog analysis, for their effective quality control. However, the general use of routi...AIM: Variation in structure-related components in plant products prompted the trend to establish methods, using multiple or total analog analysis, for their effective quality control. However, the general use of routine quality control is restricted by the limited availability of reference substances. Using an easily available single marker as a reference standard to determine multiple or total analogs should be a practical option. METHOD: In this study, the Ultra-HPLC method was used for the baseline separation of the main components in ginseng extracts. Using a plant chemical component database, ginsenosides in ginseng extracts were identified by Ultra-HPLC-MS analysis. The charged aerosol detection(CAD) system with post-column compensation of the gradient generates a similar response for identical amounts of different analytes, and thus, the content of each ginsenoside in ginseng extracts was determined by comparing the analyte peak area with the reference standard(determination of total analogs by single marker, DTSM). The total ginsenoside content was determined by the summation of reference standard and other ginsenoside components. RESULTS: The results showed that DTSM approaches were available for the determination of total ginsenosides in a high purity ginseng extract because of the removal of impurities. In contrast, DTSM approaches might be suitable for determination of multiple ginsenosides without interference from impurities in the crude ginseng extract. CONCLUSION: Future practical studies similar to the present study should be conducted to verify that DTSM approaches based on CAD with post-column inverse gradient for uniform response are ideal for the quality control of plant products.展开更多
Calcium and barium zirconate powders based upon CaZrO 3:Eu3+ , A and BaZrO 3:Eu3+, A(A=Li+, Na+, K+) were prepared by combustion synthesis method and heating to ~1000 °C to improve crystallinity. The structure an...Calcium and barium zirconate powders based upon CaZrO 3:Eu3+ , A and BaZrO 3:Eu3+, A(A=Li+, Na+, K+) were prepared by combustion synthesis method and heating to ~1000 °C to improve crystallinity. The structure and morphology of materials were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results showed that CaZrO 3:Eu3+, A and BaZrO 3:Eu3+, A (A=Li+, Na+, K+) perovskites possessed orthorhombic and cubic structures, respectively. The morphologies of all powders were very similar consisting of small, coagulated, cubical particles with narrow size distributions and smooth and regular surfaces. The characteristic luminescences of Eu 3 + ions in CaZrO 3 :Eu3+ , A (A=Li+, Na+, K+) lattices were present with strong emissions at 614 and 625 nm for 5D0 →7F2 transitions with other weaker emissions observed at 575, 592, 655, and 701 nm corresponding to 5D0 → 7Fn transitions (where n=0,1,3,4, respectively). In BaZrO3:Eu3 + both the 5D0 → 7F1and5D0 → 7F2 transitions at 595 and 613 nm were strong. Photoluminescence intensities of CaZrO3:Eu3+samples were higher than those of BaZrO 3:Eu3+lattices. This remarkable increase of photoluminescence intensity (corresponding to 5D0→7Fn transitions) was observed in CaZrO3:Eu3+and BaZrO3:Eu3+ if co-doped with Li + ions. An additional broad band composed of many peaks between 440 to 575 nm was observed in BaZrO3:Eu3+, A samples. The intensity of this band was greatest in Li + co-doped samples and lowest for K + doped samples.展开更多
Monovalent ions Li+, Na+, and K+, as charge compensators, are introduced into CaYA1307: M (M = Eu3+, Ce~+) in this letter. Their crystal phases and photoluminescence properties of different alkali metal ions d...Monovalent ions Li+, Na+, and K+, as charge compensators, are introduced into CaYA1307: M (M = Eu3+, Ce~+) in this letter. Their crystal phases and photoluminescence properties of different alkali metal ions doped in CaYA1307 are investigated. In addition, the influence of charge compensation ion Li+ which has a more obvious role in improving luminescence intensity on CaYA1307: Eu3+ phosphor is intentionally discussed in detail and a possible mechanism of charge compensation is given. The enhancement of red emission centered at 618 nm belonging to Eu3+ is achieved by adding alkali metal ion Li+ under 393-nm excitation.展开更多
文摘A deep trench super-junction LDMOS with double charge compensation layer(DC DT SJ LDMOS)is proposed in this paper.Due to the capacitance effect of the deep trench which is known as silicon-insulator-silicon(SIS)capacitance,the charge balance in the super-junction region of the conventional deep trench SJ LDMOS(Con.DT SJ LDMOS)device will be broken,resulting in breakdown voltage(BV)of the device drops.DC DT SJ LDMOS solves the SIS capacitance effect by adding a vertical variable doped charge compensation layer and a triangular charge compensation layer inside the Con.DT SJ LDMOS device.Therefore,the drift region reaches an ideal charge balance state again.The electric field is optimized by double charge compensation and gate field plate so that the breakdown voltage of the proposed device is improved sharply,meanwhile the enlarged on-current region reduces its specific on-resistance.The simulation results show that compared with the Con.DT SJ LD-MOS,the BV of the DC DT SJ LDMOS has been increased from 549.5 to 705.5 V,and the R_(on,sp) decreased to 23.7 mΩ·cm^(2).
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21503263,U1632269,21473235,and 11227902)
文摘In order to obtain an in-depth insight into the mechanism of charge compensation and capacity fading in LiCoO2, the evolution of electronic structure of LiCoO2 at different cutoff voltages and after different cycles are studied by soft x-ray absorption spectroscopy in total electron(TEY) and fluorescence(TFY) detection modes, which provide surface and bulk information, respectively. The spectra of Co L2,3-edge indicate that Co contributes to charge compensation below 4.4 V.Combining with the spectra of O K-edge, it manifests that only O contributes to electron compensation above 4.4 V with the formation of local O 2 p holes both on the surface and in the bulk, where the surficial O evolves more remarkably. The evolution of the O 2 p holes gives an explanation to the origin of O2^-or even O2. A comparison between the TEY and TFY of O K-edge spectra of LiCoO2 cycled in a range from 3 V to 4.6 V indicates both the structural change in the bulk and aggregation of lithium salts on the electrode surface are responsible for the capacity fading. However, the latter is found to play a more important role after many cycles.
基金supported by Collaborative Innovation Center of Suzhou Nano Science & Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)+5 种基金the 111 roject, Joint International Research Laboratory of Carbon-Based Functional Materials and Devicesthe National Natural Science Foundation of China (11905154)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJA550004)the Natural Science Foundation of Jiangsu Province (BK20190814)the National Key R&D Program of China (No. 2016YFA0202600)supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231。
文摘Fast charging and high-power delivering batteries are highly demanded in mobile electronics,electric vehicles and grid energy storage,but there are full of challenges.The star-material Li_(3)V_(2)(PO_(4))_(3) is demonstrated as a promising high-rate cathode material meeting the above requirements.Herein,we report the carbon decorated Li_(3)V_(2)(PO_(4))_(3) (LVP/C) cathode prepared via a facile method,which displays a remarkable high-rate capability and long-term cycling performance.Briefly,the prepared LVP/C delivers a high discharge capacity of 122 mAh g^(-1)(-93% of the theoretical capacity) at a high rate up to 20 C and a superior capacity retention of 87.1% after 1000 cycles.Importantly,by applying a combination of X-ray absorption spectroscopy and full-range mapping of resonant inelastic X-ray scattering,we clearly elucidate the structural and chemical evolutions of LVP upon various potentials and cycle numbers.We show unambiguous spectroscopic evidences that the evolution of the hybridization strength between V and O in LVP/C as a consequence of lithiation/delithiation is highly reversible both in the bulk and on the surface during the discharge-charge processes even over extended cycles,which should be responsible for the remarkable electrochemical performance of LVP/C.Our present study provides not only an effective synthesis strategy but also deeper insights into the surface and bulk electrochemical reaction mechanism of LVP,which should be beneficial for the further design of high-performance LVP electrode materials.
基金Project supported by National Natural Science Foundation of China (Grant No. 60876050)Special Scientific Research Project of Shaanxi Provincial Departments of Education,China (Grant No. 08JK367)the Research Fund for Excellent Doctor DegreeThesis of Xi’an University of Technology,China
文摘A novel optically controlled SiCGe/SiC heterojunction transistor with charge-compensation technique has been simulated by using commercial simulator. This paper discusses the electric field distribution, spectral response and transient response of the device. Due to utilizing p-SiCGe charge-compensation layer, the responsivity increases nearly two times and breakdown voltage increases 33%. The switching characteristic illustrates that the device is latch-free and its fall time is much longer than the rise time. With an increase of the light power density and wavelength, the rise time and fall time will become shorter and longer, respectively. In terms of carrier lifetime, a compromise should be made between the responsivity and switching speed, the ratio of them reaches maximum value when the minority carrier lifetime equals 90 ns.
基金supported by the National Natural Science Foundation of China(Grant No.61404110)the National Higher-education Institution General Research and Development Project(Grant No.2682014CX097)。
文摘An analytical model of the power metal–oxide–semiconductor field-effect transistor(MOSFET)with high permittivity insulator structure(HKMOS)with interface charge is established based on superposition and developed for optimization by charge compensation.In light of charge compensation,the disturbance aroused by interface charge is efficiently compromised by introducing extra charge for maximizing breakdown voltage(BV)and minimizing specific ON-resistance(R_(on,sp)).From this optimization method,it is very efficient to obtain the design parameters to overcome the difficulty in implementing the R_(on,sp)–BV trade-off for quick design.The analytical results prove that in the HKMOS with positive or negative interface charge at a given length of drift region,the extraction of the parameters is qualitatively and quantitatively optimized for trading off BV and Ron,sp with JFET effect taken into account.
基金supported by the National Key Research and Development Program of China(2021YFA1500502)。
文摘The relationship between the structural evolution and redox of Li-rich transition-metal layered oxides(LLOs)cathodes remains ambiguous,obstructing the development of high-performance lithium-ion(Li^(+))battery.Herein,the coherent effects of local atomic and electronic structure in Li_(2)Ru_(x)Mn_(1-x)O_(3)(LRMO)with a wide voltage window(1.3–4.8 V)is identified by in situ X-ray absorption fine spectroscopy(XAFS)and chemometrics.We not only skillfully separated the redox active structures to track the electrochemical path,but also visualized the coupling mechanism between the evolution of Ru-Ru dimer and the(de)excitation of cations and anions.Furthermore,introducing manganese triggers the“heterogeneity”of coordination environment and electronic structure between Ru and Mn after discharge to 3 V.The change of thermodynamic and kinetic paths affects the relithiation,and further leads to the hysteresis of the anion activation structure relaxation of Li_(2)Ru_(0.4)Mn_(0.6)O_(3)relative to Li_(2)RuO_(3)(LRO).Additionally,it is demonstrated that the high charge cut-off voltage restrains the relaxation of anionic active structure in LRO from a new perspective through comparative experiments.Our work associates the evolution of atomic structure with charge compensation and negative electrochemical reactions such as voltage hysteresis(VH)and capacity attenuation,deepening the understanding electrochemical reaction mechanism of LLOs during the first cycle and providing a theoretical support for the further design and synthesis of high-efficiency cathodes.
基金supported by National Natural Science Foundation of China(No.51177020)
文摘Based on particle-in-cell simulation, we studied the motions of ions and electrons. The results have shown that electrons are bounded by a magnetic field and only a small number of electrons can pass through the whirler channel. The plasma becomes non-neutral when it is emitted from the whirler, and the spatial charge leads to a beam divergence, which is unfavorable for mass separation. In order to compensate the spatial charge, a cathode is designed to transmit electrons and the quasi-neutral plasma beam. Experiment results have demonstrated that the auxiliary cathode can obviously improve the compensation degree of the spatial charge.
基金This project is supported by Science and Technology Development Foundation of Shanghai Municipal Commission of Science and Technology, China (No.021111125).
文摘Automatic compensation of grinding wheel wear in dry grinding is accomplished by an image based online measurement method. A kind of PC-based charge-coupled device image recognition system is schemed out, which detects the topography changes of the grinding wheel surface. Profile data, which corresponds to the wear and the topography, is measured by using a digital image processing method. The grinding wheel wear is evalualed by analyzing the position deviation of the grinding wheel edge. The online wear compensation is achieved according to the measure results. The precise detection and automatic compensation system is integrated into an open structure CNC curve grinding machine. A practical application is carried out to fulfil the precision curve grinding. The experimental results confirm the benefits of the proposed techniques, and the online detection accuracy is less than 5 um. The grinding machine provides higher precision according to the in-process grinding wheel error compensation.
文摘A novel method to partially compensate sigma-delta shaped noise is proposed. By injecting the compensation current into the passive loop filter during the delay time of the phase frequency detector(PFD),a maximum reduction of the phase noise by about 16dB can be achieved. Compared to other compensation methods,the technique proposed here is relatively simple and easy to implement. Key building blocks for realizing the noise cancellation,including the delay variable PFD and compensation current source, are specially designed. Both the behavior level and circuit level simulation results are presented.
基金supported by the National Natural Science Foundation of China(No.21271074)teamwork projects funded by Guangdong Natural Science Foundation(No.S2013030012842)CAS-Foshan Cooperation Funding Program(No.2012HY100685).
文摘CaMoO_(4):Eu^(3+)and CaMoO_(4):Eu^(3+),A+(A=Li,Na,K)phosphors for light-emitting diode(LED)applications have been prepared by microwave sintering method(MSM),and their structure and luminescence properties are investigated.The influences of microwave reaction time and concentration of different kinds of charge compensation A+and Eu^(3+)on luminescence have also been discussed.The samples emit a red luminescence at 615 nm attributed to the^(5)D0→^(7)F2 transition of Eu^(3+)under 464 nm excitation.It is observed that adding charge compensation A+in the sample synthesis increases luminescence intensity.The optimized sample made with 32 mol%Li+and 32 mol%Eu^(3+)has an enhancement factor of 4 in photoluminescence compared to the sample made without charge compensation.The CIE(Commission Internationale de l'Eclairage)coordinates of Ca0.36MoO_(4):0.32Eu^(3+),0.32Li+are x=0.661 and y=0.339,which indicate that the obtained phosphor can be a promising red color candidate for white LED fabrications.
基金supported by the National Natural Science Foundation of China(81303246)the Jiangsu Provincial Natural Science Foundation of China(BK2011815)+1 种基金the ‘Qing Lan’ Project from Jiangsu Provincial Framework Teacher Support Schemethe Projects of priority-discipline for colleges and universities of Jiangsu Province
文摘AIM: Variation in structure-related components in plant products prompted the trend to establish methods, using multiple or total analog analysis, for their effective quality control. However, the general use of routine quality control is restricted by the limited availability of reference substances. Using an easily available single marker as a reference standard to determine multiple or total analogs should be a practical option. METHOD: In this study, the Ultra-HPLC method was used for the baseline separation of the main components in ginseng extracts. Using a plant chemical component database, ginsenosides in ginseng extracts were identified by Ultra-HPLC-MS analysis. The charged aerosol detection(CAD) system with post-column compensation of the gradient generates a similar response for identical amounts of different analytes, and thus, the content of each ginsenoside in ginseng extracts was determined by comparing the analyte peak area with the reference standard(determination of total analogs by single marker, DTSM). The total ginsenoside content was determined by the summation of reference standard and other ginsenoside components. RESULTS: The results showed that DTSM approaches were available for the determination of total ginsenosides in a high purity ginseng extract because of the removal of impurities. In contrast, DTSM approaches might be suitable for determination of multiple ginsenosides without interference from impurities in the crude ginseng extract. CONCLUSION: Future practical studies similar to the present study should be conducted to verify that DTSM approaches based on CAD with post-column inverse gradient for uniform response are ideal for the quality control of plant products.
基金supported by the Spanish Government through MCINN (MAT2009-14625-C03-03)European Commission through Nano CIS project (FP7-PEOPLE-2010-IRSES ref. 269279)
文摘Calcium and barium zirconate powders based upon CaZrO 3:Eu3+ , A and BaZrO 3:Eu3+, A(A=Li+, Na+, K+) were prepared by combustion synthesis method and heating to ~1000 °C to improve crystallinity. The structure and morphology of materials were examined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results showed that CaZrO 3:Eu3+, A and BaZrO 3:Eu3+, A (A=Li+, Na+, K+) perovskites possessed orthorhombic and cubic structures, respectively. The morphologies of all powders were very similar consisting of small, coagulated, cubical particles with narrow size distributions and smooth and regular surfaces. The characteristic luminescences of Eu 3 + ions in CaZrO 3 :Eu3+ , A (A=Li+, Na+, K+) lattices were present with strong emissions at 614 and 625 nm for 5D0 →7F2 transitions with other weaker emissions observed at 575, 592, 655, and 701 nm corresponding to 5D0 → 7Fn transitions (where n=0,1,3,4, respectively). In BaZrO3:Eu3 + both the 5D0 → 7F1and5D0 → 7F2 transitions at 595 and 613 nm were strong. Photoluminescence intensities of CaZrO3:Eu3+samples were higher than those of BaZrO 3:Eu3+lattices. This remarkable increase of photoluminescence intensity (corresponding to 5D0→7Fn transitions) was observed in CaZrO3:Eu3+and BaZrO3:Eu3+ if co-doped with Li + ions. An additional broad band composed of many peaks between 440 to 575 nm was observed in BaZrO3:Eu3+, A samples. The intensity of this band was greatest in Li + co-doped samples and lowest for K + doped samples.
基金supported by the National Natural Science Foundation of China(Nos.11204113,61265004,and 51272097)the Foundation of Application Research of Yunnan Province(No.2011FB022)+2 种基金the Chinese Specialized Research Fund for the Doctoral Program of Higher Education(No.20115314120001)the Postdoctoral Science Foundation of China(No.2011M501424)the Nature and Science Fund from Yunnan ProvinceMinistry of Education(No.2011C13211708)
文摘Monovalent ions Li+, Na+, and K+, as charge compensators, are introduced into CaYA1307: M (M = Eu3+, Ce~+) in this letter. Their crystal phases and photoluminescence properties of different alkali metal ions doped in CaYA1307 are investigated. In addition, the influence of charge compensation ion Li+ which has a more obvious role in improving luminescence intensity on CaYA1307: Eu3+ phosphor is intentionally discussed in detail and a possible mechanism of charge compensation is given. The enhancement of red emission centered at 618 nm belonging to Eu3+ is achieved by adding alkali metal ion Li+ under 393-nm excitation.