期刊文献+
共找到7,653篇文章
< 1 2 250 >
每页显示 20 50 100
Chitosan-collagen porous scaffold and bone marrow mesenchymal stem cell transplantation for ischemic stroke 被引量:5
1
作者 Feng Yan Wei Yue +5 位作者 Yue-lin Zhang Guo-chao Mao Ke Gao Zhen-xing Zuo Ya-jing Zhang Hui Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第9期1421-1426,共6页
In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone int... In this study, we successfully constructed a composite of bone marrow mesenchymal stem cells and a chitosan-collagen scaffold in vitro, transplanted either the composite or bone marrow mesenchymal stem cells alone into the ischemic area in animal models, and compared their effects. At 14 days after co-transplantation of bone marrow mesenchymal stem cells and the hi- tosan-collagen scaffold, neurological function recovered noticeably. Vascular endothelial growth factor expression and nestin-labeled neural precursor cells were detected in the iscbemic area, surrounding tissue, hippocampal dentate gyrus and subventricular zone. Simultaneously, a high level of expression of glial fibrillary acidic protein and a low level of expression of neuron-spe- cific enolase were visible in BrdU-labeled bone marrow mesenchymal stem cells. These findings suggest that transplantation of a composite of bone marrow mesenchymal stem cells and a chi- tosan-collagen scaffold has a neuroprotective effect following ischemic stroke. 展开更多
关键词 nerve regeneration ischemic stroke chitosan-collagen scaffold bone marrow mesenchymalstem cells cell transplantation cell differentiation neurological function neural regeneration
下载PDF
Insights into Nano-and Micro-Structured Scaffolds for Advanced Electrochemical Energy Storage 被引量:1
2
作者 Jiajia Qiu Yu Duan +4 位作者 Shaoyuan Li Huaping Zhao Wenhui Ma Weidong Shi Yong Lei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期187-230,共44页
Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical... Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint. 展开更多
关键词 Nano-and micro-structured Interconnected porous scaffolds Electrode design Electrochemical energy storage
下载PDF
Customized scaffolds for large bone defects using 3D‑printed modular blocks from 2D‑medical images
3
作者 Anil AAcar Evangelos Daskalakis +4 位作者 Paulo Bartolo Andrew Weightman Glen Cooper Gordon Blunn Bahattin Koc 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期74-87,共14页
Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced ... Additive manufacturing(AM)has revolutionized the design and manufacturing of patient-specific,three-dimensional(3D),complex porous structures known as scaffolds for tissue engineering applications.The use of advanced image acquisition techniques,image processing,and computer-aided design methods has enabled the precise design and additive manufacturing of anatomically correct and patient-specific implants and scaffolds.However,these sophisticated techniques can be timeconsuming,labor-intensive,and expensive.Moreover,the necessary imaging and manufacturing equipment may not be readily available when urgent treatment is needed for trauma patients.In this study,a novel design and AM methods are proposed for the development of modular and customizable scaffold blocks that can be adapted to fit the bone defect area of a patient.These modular scaffold blocks can be combined to quickly form any patient-specific scaffold directly from two-dimensional(2D)medical images when the surgeon lacks access to a 3D printer or cannot wait for lengthy 3D imaging,modeling,and 3D printing during surgery.The proposed method begins with developing a bone surface-modeling algorithm that reconstructs a model of the patient’s bone from 2D medical image measurements without the need for expensive 3D medical imaging or segmentation.This algorithm can generate both patient-specific and average bone models.Additionally,a biomimetic continuous path planning method is developed for the additive manufacturing of scaffolds,allowing porous scaffold blocks with the desired biomechanical properties to be manufactured directly from 2D data or images.The algorithms are implemented,and the designed scaffold blocks are 3D printed using an extrusion-based AM process.Guidelines and instructions are also provided to assist surgeons in assembling scaffold blocks for the self-repair of patient-specific large bone defects. 展开更多
关键词 Additive manufacturing Modular scaffolds Large bone defect Customized scaffold design Patient-specific scaffolds
下载PDF
Biological scaffold as potential platforms for stem cells:Current development and applications in wound healing
4
作者 Jie-Yu Xiang Lin Kang +7 位作者 Zi-Ming Li Song-Lu Tseng Li-Quan Wang Tian-Hao Li Zhu-Jun Li Jiu-Zuo Huang Nan-Ze Yu Xiao Long 《World Journal of Stem Cells》 SCIE 2024年第4期334-352,共19页
Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address ... Wound repair is a complex challenge for both clinical practitioners and researchers.Conventional approaches for wound repair have several limitations.Stem cell-based therapy has emerged as a novel strategy to address this issue,exhibiting significant potential for enhancing wound healing rates,improving wound quality,and promoting skin regeneration.However,the use of stem cells in skin regeneration presents several challenges.Recently,stem cells and biomaterials have been identified as crucial components of the wound-healing process.Combination therapy involving the development of biocompatible scaffolds,accompanying cells,multiple biological factors,and structures resembling the natural extracellular matrix(ECM)has gained considerable attention.Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells,providing them with an environment conducive to growth,similar to that of the ECM.These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing.This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing,emphasizing their capacity to facilitate stem cell adhesion,proliferation,differentiation,and paracrine functions.Additionally,we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity. 展开更多
关键词 Stem-cell-based therapy Biological scaffolds Wound healing Extracellular matrix mimicry Cellular activities enhancement scaffold characteristics
下载PDF
3D-printed Mg-1Ca/polycaprolactone composite scaffolds with promoted bone regeneration
5
作者 Xiao Zhao Siyi Wang +6 位作者 Feilong Wang Yuan Zhu Ranli Gu Fan Yang Yongxiang Xu Dandan Xia Yunsong Liu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期966-979,共14页
In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we dev... In bone tissue engineering,polycaprolactone(PCL)is a promising material with good biocompatibility,but its poor degradation rate,mechanical strength,and osteogenic properties limit its application.In this study,we developed an Mg-1Ca/polycaprolactone(Mg-1Ca/PCL)composite scaffolds to overcome these limitations.We used a melt blending method to prepare Mg-1Ca/PCL composites with Mg-1Ca alloy powder mass ratios of 5,10,and 20 wt%.Porous scaffolds with controlled macro-and microstructure were printed using the fused deposition modeling method.We explored the mechanical strength,biocompatibility,osteogenesis performance,and molecular mechanism of the Mg-1Ca/PCL composites.The 5 and 10 wt%Mg-1Ca/PCL composites were found to have good biocompatibility.Moreover,they promoted the mechanical strength,proliferation,adhesion,and osteogenic differentiation of human bone marrow stem cells(hBMSCs)of pure PCL.In vitro degradation experiments revealed that the composite material stably released Mg_(2)+ions for a long period;it formed an apatite layer on the surface of the scaffold that facilitated cell adhesion and growth.Microcomputed tomography and histological analysis showed that both 5 and 10 wt%Mg-1Ca/PCL composite scaffolds promoted bone regeneration bone defects.Our results indicated that the Wnt/β-catenin pathway was involved in the osteogenic effect.Therefore,Mg-1Ca/PCL composite scaffolds are expected to be a promising bone regeneration material for clinical application.Statement of significance:Bone tissue engineering scaffolds have promising applications in the regeneration of critical-sized bone defects.However,there remain many limitations in the materials and manufacturing methods used to fabricate scaffolds.This study shows that the developed Ma-1Ca/PCL composites provides scaffolds with suitable degradation rates and enhanced boneformation capabilities.Furthermore,the fused deposition modeling method allows precise control of the macroscopic morphology and microscopic porosity of the scaffold.The obtained porous scaffolds can significantly promote the regeneration of bone defects. 展开更多
关键词 3D printing Bone tissue engineering MAGNESIUM OSTEOGENIC POLYCAPROLACTONE scaffold.
下载PDF
Constructing a biofunctionalized 3D-printed gelatin/sodium alginate/chitosan tri-polymer complex scaffold with improvised biological andmechanical properties for bone-tissue engineering
6
作者 Amit Kumar Singh Krishna Pramanik Amit Biswas 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第1期57-73,共17页
Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of... Sodium alginate(SA)/chitosan(CH)polyelectrolyte scaffold is a suitable substrate for tissue-engineering application.The present study deals with further improvement in the tensile strength and biological properties of this type of scaffold to make it a potential template for bone-tissue regeneration.We experimented with adding 0%–15%(volume fraction)gelatin(GE),a protein-based biopolymer known to promote cell adhesion,proliferation,and differentiation.The resulting tri-polymer complex was used as bioink to fabricate SA/CH/GEmatrices by three-dimensional(3D)printing.Morphological studies using scanning electron microscopy revealed the microfibrous porous architecture of all the structures,which had a pore size range of 383–419μm.X-ray diffraction and Fourier-transform infrared spectroscopy analyses revealed the amorphous nature of the scaffold and the strong electrostatic interactions among the functional groups of the polymers,thereby forming polyelectrolyte complexes which were found to improve mechanical properties and structural stability.The scaffolds exhibited a desirable degradation rate,controlled swelling,and hydrophilic characteristics which are favorable for bone-tissue engineering.The tensile strength improved from(386±15)to(693±15)kPa due to the increased stiffness of SA/CH scaffolds upon addition of gelatin.The enhanced protein adsorption and in vitro bioactivity(forming an apatite layer)confirmed the ability of the SA/CH/GE scaffold to offer higher cellular adhesion and a bone-like environment to cells during the process of tissue regeneration.In vitro biological evaluation including the MTT assay,confocal microscopy analysis,and alizarin red S assay showed a significant increase in cell attachment,cell viability,and cell proliferation,which further improved biomineralization over the scaffold surface.In addition,SA/CH containing 15%gelatin designated as SA/CH/GE15 showed superior performance to the other fabricated 3D structures,demonstrating its potential for use in bone-tissue engineering. 展开更多
关键词 scaffold Biomaterial Sodium alginate CHITOSAN GELATIN 3D printing Tissue engineering
下载PDF
In vitro investigations on the effects of graphene and graphene oxide on polycaprolactone bone tissue engineering scaffolds
7
作者 Yanhao Hou Weiguang Wang Paulo Bartolo 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期651-669,共19页
Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomateria... Polycaprolactone(PCL)scaffolds that are produced through additive manufacturing are one of the most researched bone tissue engineering structures in the field.Due to the intrinsic limitations of PCL,carbon nanomaterials are often investigated to reinforce the PCL scaffolds.Despite several studies that have been conducted on carbon nanomaterials,such as graphene(G)and graphene oxide(GO),certain challenges remain in terms of the precise design of the biological and nonbiological properties of the scaffolds.This paper addresses this limitation by investigating both the nonbiological(element composition,surface,degradation,and thermal and mechanical properties)and biological characteristics of carbon nanomaterial-reinforced PCL scaffolds for bone tissue engineering applications.Results showed that the incorporation of G and GO increased surface properties(reduced modulus and wettability),material crystallinity,crystallization temperature,and degradation rate.However,the variations in compressive modulus,strength,surface hardness,and cell metabolic activity strongly depended on the type of reinforcement.Finally,a series of phenomenological models were developed based on experimental results to describe the variations of scaffold’s weight,fiber diameter,porosity,and mechanical properties as functions of degradation time and carbon nanomaterial concentrations.The results presented in this paper enable the design of three-dimensional(3D)bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers. 展开更多
关键词 Additive manufacturing Bone tissue engineering Carbon nanomaterial GRAPHENE Graphene oxide scaffold
下载PDF
Electrospinning/3D printing-integrated porous scaffold guides oral tissue regeneration in beagles
8
作者 Li Yuan Chen Yuan +5 位作者 Jiawei Wei Shue Jin Yi Zuo Yubao Li Xinjie Liang Jidong Li 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第6期1000-1017,共18页
The combined use of guided tissue/bone regeneration(GTR/GBR)membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues.Nev... The combined use of guided tissue/bone regeneration(GTR/GBR)membranes and bone filling grafts represents a classical therapy for guiding the regeneration and functional reconstruction of oral soft and hard tissues.Nevertheless,due to its displacement and poor mechanical support,bone meal is not suitable for implantation in the case of insufficient cortical bone support and large dimensional defects.The combination of GTR/GBR membrane with a three-dimensional(3D)porous scaffold may offer a resolution for the repair and functional reconstruction of large soft and hard tissue defects.In this study,a novel integrated gradient biodegradable porous scaffold was prepared by bonding a poly(lactic-co-glycolic acid)(PLGA)/fish collagen(FC)electrospun membrane(PFC)to a 3D-printed PLGA/nano-hydroxyapatite(HA)(PHA)scaffold.The consistency of the composition(PLGA)ensured strong interfacial bonding between the upper fibrous membrane and the lower 3D scaffold.In vitro cell experiments showed that the PFC membrane(upper layer)effectively prevented the unwanted migration of L929 cells.Further in vivo investigations with an oral soft and hard tissue defect model in beagles revealed that the integrated scaffold effectively guided the regeneration of defective oral tissues.These results suggest that the designed integrated scaffold has great potential for guiding the regeneration and reconstruction of large oral soft and hard tissues. 展开更多
关键词 ELECTROSPINNING 3D printing Gradient porous scaffold Oral tissue regeneration
下载PDF
Coaxial electrohydrodynamic printing of core–shell microfibrous scaffolds with layer-specific growth factors release for enthesis regeneration
9
作者 Lang Bai Meiguang Xu +10 位作者 Zijie Meng Zhennan Qiu Jintao Xiu Baojun Chen Qian Han Qiaonan Liu Pei He Nuanyang Wen Jiankang He Jing Zhang Zhanhai Yin 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第5期220-238,共19页
The rotator cuff tear has emerged as a significant global health concern.However,existing therapies fail to fully restore the intricate bone-to-tendon gradients,resulting in compromised biomechanical functionalities o... The rotator cuff tear has emerged as a significant global health concern.However,existing therapies fail to fully restore the intricate bone-to-tendon gradients,resulting in compromised biomechanical functionalities of the reconstructed enthesis tissues.Herein,a tri-layered core–shell microfibrous scaffold with layer-specific growth factors(GFs)release is developed using coaxial electrohydrodynamic(EHD)printing for in situ cell recruitment and differentiation to facilitate gradient enthesis tissue repair.Stromal cell-derived factor-1(SDF-1)is loaded in the shell,while basic fibroblast GF,transforming GF-beta,and bone morphogenetic protein-2 are loaded in the core of the EHD-printed microfibrous scaffolds in a layer-specific manner.Correspondingly,the tri-layered microfibrous scaffolds have a core–shell fiber size of(25.7±5.1)μm,with a pore size sequentially increasing from(81.5±4.6)μm to(173.3±6.9)μm,and to(388.9±6.9μm)for the tenogenic,chondrogenic,and osteogenic instructive layers.A rapid release of embedded GFs is observed within the first 2 d,followed by a faster release of SDF-1 and a slightly slower release of differentiation GFs for approximately four weeks.The coaxial EHD-printed microfibrous scaffolds significantly promote stem cell recruitment and direct their differentiation toward tenocyte,chondrocyte,and osteocyte phenotypes in vitro.When implanted in vivo,the tri-layered core–shell microfibrous scaffolds rapidly restored the biomechanical functions and promoted enthesis tissue regeneration with native-like bone-to-tendon gradients.Our findings suggest that the microfibrous scaffolds with layer-specific GFs release may offer a promising clinical solution for enthesis regeneration. 展开更多
关键词 coaxial electrohydrodynamic printing core-shell structures microfibrous scaffolds growth factors enthesis regeneration
下载PDF
Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection
10
作者 Cijun Shuai Xiaoxin Shi +2 位作者 Feng Yang Haifeng Tian Pei Feng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期296-311,共16页
Bacterial infection is a major issue after artificial bone transplantation due to the absence of antibacterial function of bone scaffold,which seriously causes the transplant failure and even amputation in severe case... Bacterial infection is a major issue after artificial bone transplantation due to the absence of antibacterial function of bone scaffold,which seriously causes the transplant failure and even amputation in severe cases.In this study,oxygen vacancy(OV)defects Fe-doped Ti O2(OV-FeTiO2)nanoparticles were synthesized by nano TiO2and Fe3O4via high-energy ball milling,which was then incorporated into polycaprolactone/polyglycolic acid(PCLGA)biodegradable polymer matrix to construct composite bone scaffold with good antibacterial activities by selective laser sintering.The results indicated that OV defects were introduced into the core/shell-structured OV-FeTiO2nanoparticles through multiple welding and breaking during the high-energy ball milling,which facilitated the adsorption of hydrogen peroxide(H2O2)in the bacterial infection microenvironment at the bone transplant site.The accumulated H2O2could amplify the Fenton reaction efficiency to induce more hydroxyl radicals(·OH),thereby resulting in more bacterial deaths through·OH-mediated oxidative damage.This antibacterial strategy had more effective broad-spectrum antibacterial properties against Gram-negative Escherichia coli(E.coli)and Gram-positive Staphylococcus aureus(S.aureus).In addition,the PCLGA/OV-FeTiO2scaffold possessed mechanical properties that match those of human cancellous bone and good biocompatibility including cell attachment,proliferation and osteogenic differentiation. 展开更多
关键词 bacterial infection bone scaffold selective laser sintering Fenton reaction antibacterial properties
下载PDF
Numerical Analysis of Permeability of Functionally Graded Scaffolds
11
作者 Dmitry Bratsun Natalia Elenskaya +1 位作者 Ramil Siraev Mikhail Tashkinov 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1463-1479,共17页
In this work,we numerically study the hydrodynamic permeability of new-generation artificial porous materials used as scaffolds for cell growth in a perfusion bioreactor.We consider two popular solid matrix designs ba... In this work,we numerically study the hydrodynamic permeability of new-generation artificial porous materials used as scaffolds for cell growth in a perfusion bioreactor.We consider two popular solid matrix designs based on triply periodic minimal surfaces,the Schwarz P(primitive)and D(diamond)surfaces,which enable the creation of materials with controlled porosity gradients.The latter property is crucial for regulating the shear stress field in the pores of the scaffold,which makes it possible to control the intensity of cell growth.The permeability of functionally graded materials is studied within the framework of both a microscopic approach based on the Navier-Stokes equation and an averaged description of the liquid filtration through a porous medium based on the equations of the Darcy or Forchheimer models.We calculate the permeability coefficients for both types of solid matrices formed by Schwarz surfaces,study their properties concerning forward and reverse fluid flows,and determine the ranges of Reynolds number for which the description within the Darcy or Forchheimer model is applicable.Finally,we obtain a shear stress field that varies along the sample,demonstrating the ability to tune spatially the rate of tissue growth. 展开更多
关键词 Porous media filtration models scaffolds functionally graded materials
下载PDF
Flame Retardant Material Based on Cellulose Scaffold Mineralized by Calcium Carbonate
12
作者 Jinshuo Wang Lida Xing +1 位作者 Fulong Zhang Chuanfu Liu 《Journal of Renewable Materials》 EI CAS 2024年第1期89-102,共14页
Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a ce... Wood-based functional materials have developed rapidly.But the flammability significantly limits its further application.To improve the flame retardancy,the balsa wood was delignified by NaClO2 solution to create a cellulose scaffold,and then alternately immersed in CaCl_(2) ethanol solution and NaHCO3 aqueous solution under vacuum.The high porosity and wettability resulting from delignification benefited the following mineralization process,changing the thermal properties of balsa wood significantly.The organic-inorganic wood composite showed abundant CaCO_(3) spherical particles under scanning electron microscopy.The peak of the heat release rate of delignified balsa-CaCO_(3) was reduced by 33%compared to the native balsa,according to the cone calorimetric characterization.The flame test demonstrated that the mineralized wood was flame retardant and selfextinguish.Additionally,the mineralized wood also displayed lower thermal conductivity.This study developed a feasible way to fabricate a lightweight,fire-retardant,self-extinguishing,and heat-insulating wood composite,providing a promising route for the valuable application of cellulosic biomass. 展开更多
关键词 Cellulose scaffold DELIGNIFICATION CaCO_(3) MINERALIZATION fire retardancy
下载PDF
Advanced strategies for 3D-printed neural scaffolds:materials,structure,and nerve remodeling
13
作者 Jian He Liang Qiao +5 位作者 Jiuhong Li Junlin Lu Zhouping Fu Jiafang Chen Xiangchun Zhang Xulin Hu 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期747-770,共24页
Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurologic... Nerve regeneration holds significant potential in the treatment of various skeletal and neurological disorders to restore lost sensory and motor functions.The potential of nerve regeneration in ameliorating neurological diseases and injuries is critical to human health.Three-dimensional(3D)printing offers versatility and precision in the fabrication of neural scaffolds.Complex neural structures such as neural tubes and scaffolds can be fabricated via 3Dprinting.This reviewcomprehensively analyzes the current state of 3D-printed neural scaffolds and explores strategies to enhance their design.It highlights therapeutic strategies and structural design involving neural materials and stem cells.First,nerve regeneration materials and their fabrication techniques are outlined.The applications of conductive materials in neural scaffolds are reviewed,and their potential to facilitate neural signal transmission and regeneration is highlighted.Second,the progress in 3D-printed neural scaffolds applied to the peripheral and central nerves is comprehensively evaluated,and their potential to restore neural function and promote the recovery of different nervous systems is emphasized.In addition,various applications of 3D-printed neural scaffolds in peripheral and neurological diseases,as well as the design strategies of multifunctional biomimetic scaffolds,are discussed. 展开更多
关键词 Nerve regeneration 3D printing based neural scaffolds BIOMATERIALS Nervous system Design strategies
下载PDF
Enhanced axonal regeneration and functional recovery of the injured sciatic nerve in a rat model by lithium-loaded electrospun nanofibrous scaffolds
14
作者 Banafsheh Dolatyar Bahman Zeynali +2 位作者 Iman Shabani Azita Parvaneh Tafreshi Reza Karimi-Soflou 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第5期701-720,共20页
Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,... Increasing evidence indicates that engineered nerve grafts have great potential for the regeneration of peripheral nerve injuries(PNIs).While most studies have focused only on the topographical features of the grafts,we have considered both the biophysical and biochemical manipulations in our applied nanoscaffold.To achieve this,we fabricated an electrospun nanofibrous scaffold(ENS)containing polylactide nanofibers loaded with lithium(Li)ions,a Wnt/β-catenin signaling activator.In addition,we seeded human adipose-derived mesenchymal stem cells(hADMSCs)onto this engineered scaffold to examine if their differentiation toward Schwann-like cells was induced.We further examined the efficacy of the scaffolds for nerve regeneration in vivo via grafting in a PNI rat model.Our results showed that Li-loaded ENSs gradually released Li within 11 d,at concentrations ranging from 0.02 to(3.64±0.10)mmol/L,and upregulated the expression of Wnt/β-catenin target genes(cyclinD1 and c-Myc)as well as those of Schwann cell markers(growth-associated protein 43(GAP43),S100 calcium binding protein B(S100B),glial fibrillary acidic protein(GFAP),and SRY-box transcription factor 10(SOX10))in differentiated hADMSCs.In the PNI rat model,implantation of Li-loaded ENSs with/without cells improved behavioral features such as sensory and motor functions as well as the electrophysiological characteristics of the injured nerve.This improved function was further validated by histological analysis of sciatic nerves grafted with Li-loaded ENSs,which showed no fibrous connective tissue but enhanced organized myelinated axons.The potential of Li-loaded ENSs in promoting Schwann cell differentiation of hADMSCs and axonal regeneration of injured sciatic nerves suggests their potential for application in peripheral nerve tissue engineering. 展开更多
关键词 Stem cell Schwann cell differentiation Electrospun nanofibrous scaffold Lithium ion Nerve regeneration
下载PDF
Recognizing and preventing complications regarding bioresorbable scaffolds during coronary interventions
15
作者 George Latsios Leonidas Koliastasis +1 位作者 Konstantinos Toutouzas Kostas Tsioufis 《World Journal of Cardiology》 2024年第9期508-511,共4页
The evolution of coronary intervention techniques and equipment has led to more sophisticated procedures for the treatment of highly complex lesions.However,as a result,the risk of complications has increased,which ar... The evolution of coronary intervention techniques and equipment has led to more sophisticated procedures for the treatment of highly complex lesions.However,as a result,the risk of complications has increased,which are mostly iatrogenic and often include equipment failure.Stent dislodgement warrants vigilance for the early diagnosis and a stepwise management approach is required to either expand or retrieve the lost stent.In the era of bioresorbable scaffolds that are not radiopaque,increased caution is required.Intravascular imaging may assist in detecting the lost scaffold in cases of no visibility fluoroscopically.Adequate lesion preparation is the key to minimizing the possibility of equipment loss;however,in the case that it occurs,commercially available and improvised devices and techniques may be applied. 展开更多
关键词 Bioresorbable scaffolds Stent dislodgement Complication prevention Coronary complications Equipment failure
下载PDF
Ag-doped CNT/HAP nanohybrids in a PLLA bone scaffold show significant antibacterial activity
16
作者 Cijun Shuai Xiaoxin Shi +3 位作者 Kai Wang Yulong Gu Feng Yang Pei Feng 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第2期105-120,共16页
Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioacti... Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioactiv-ityregardingbonedefectregeneration.Inthisstudy,wesynthesizedsilver(Ag)-dopedCNT/HAP(CNT/Ag-HAP)nanohybrids via the partial replacing of calcium ions(Ca2+)in the HAP lattice with silver ions(Ag+)using an ion doping technique under hydrothermal conditions.Specifically,the doping process was induced using the special lattice structure of HAP and the abundant surface oxygenic functional groups of CNT,and involved the partial replacement of Ca2+in the HAP lattice by doped Ag+as well as the in situ synthesis of Ag-HAP nanoparticles on CNT in a hydrothermal environment.The result-ing CNT/Ag-HAP nanohybrids were then introduced into a PLLA matrix via laser-based powder bed fusion(PBF-LB)to fabricate PLLA/CNT/Ag-HAP scaffolds that showed sustained antibacterial activity.We then found that Ag+,which pos-sesses broad-spectrum antibacterial activity,endowed PLLA/CNT/Ag-HAP scaffolds with this activity,with an antibacterial effectiveness of 92.65%.This antibacterial effect is due to the powerful effect of Ag+against bacterial structure and genetic material,as well as the physical destruction of bacterial structures due to the sharp edge structure of CNT.In addition,the scaffold possessed enhanced mechanical properties,showing tensile and compressive strengths of 8.49 MPa and 19.72 MPa,respectively.Finally,the scaffold also exhibited good bioactivity and cytocompatibility,including the ability to form apatite layers and to promote the adhesion and proliferation of human osteoblast-like cells(MG63 cells). 展开更多
关键词 Ag-doped Carbon nanotube/hydroxyapatite(CNT/HAP) Antibacterial properties Bone scaffold
下载PDF
负载纳米钽的液晶显示光固化聚乳酸支架制备及促成骨性能
17
作者 李明哲 叶翔凌 +1 位作者 王冰 余翔 《中国组织工程研究》 CAS 北大核心 2025年第4期670-677,共8页
背景:聚乳酸因具有良好的生物相容性和可控的降解速率在生物医学工程中得到了广泛应用,然而存在机械强度低和生物活性不足等缺陷,限制了其在骨组织工程中的进一步应用。目的:构建聚乳酸/聚多巴胺/钽(PLA/PDA/Ta)骨组织工程支架,探究其... 背景:聚乳酸因具有良好的生物相容性和可控的降解速率在生物医学工程中得到了广泛应用,然而存在机械强度低和生物活性不足等缺陷,限制了其在骨组织工程中的进一步应用。目的:构建聚乳酸/聚多巴胺/钽(PLA/PDA/Ta)骨组织工程支架,探究其生物安全性和体外促成骨性能。方法:利用液晶显示光固化技术制备具有多孔结构的聚乳酸(PLA)支架,将PLA支架分别浸泡在多巴胺溶液与多巴胺-纳米钽混合溶液中分别制备聚乳酸/聚多巴胺(PLA/PDA)支架、PLA/PDA/Ta支架,表征支架的微观形貌与水接触角。将MC3T3-E1细胞分别与PLA、PLA/PDA、PLA/PDA/Ta支架共培养,进行CCK-8检测与活/死细胞染色;成骨诱导分化后,进行碱性磷酸酶、茜素红染色及成骨基因检测。结果与结论:①扫描电镜下可见3种支架均具有互连的多孔三维结构,平均孔径为200μm;PLA/PDA/Ta支架的水接触角低于PLA、PLA/PDA支架(P<0.05);②CCK-8检测显示,相较于PLA、PLA/PDA支架,PLA/PDA/Ta支架可促进细胞的增殖(P<0.05);活/死细胞染色显示3组细胞增殖良好;③碱性磷酸酶与茜素红染色显示,相较于PLA、PLA/PDA支架,PLA/PDA/Ta支架可促进细胞碱性磷酸酶的表达与矿化结节形成;RT-qPCR检测显示,相较于PLA、PLA/PDA支架,PLA/PDA/Ta支架可促进细胞骨形态发生蛋白、Runx-2及Ⅰ型胶原mRNA的表达(P<0.05,P<0.01);④结果表明,PLA/PDA/Ta支架具有优异的促细胞增殖与成骨活性。 展开更多
关键词 液晶显示光固化打印 聚乳酸 聚多巴胺 纳米钽 MC3T3-E1细胞 骨组织工程支架
下载PDF
家蚕scaffold中新微卫星标记的获得与Dll基因的遗传连锁分析 被引量:6
18
作者 郭秋红 詹帅 +3 位作者 相辉 赵云坡 李卫华 黄勇平 《蚕业科学》 CAS CSCD 北大核心 2007年第2期187-194,共8页
在进行家蚕遗传连锁图谱的整合过程中,需要寻找两个作图群体中都有多态的共有标记,但这种共有标记数量较少。为此,利用已有的简单重复序列(SSR)与家蚕基因组进行比对,寻找到匹配的scaffold,再采用SS-RHunter1.3搜索其中的SSR区域,排除... 在进行家蚕遗传连锁图谱的整合过程中,需要寻找两个作图群体中都有多态的共有标记,但这种共有标记数量较少。为此,利用已有的简单重复序列(SSR)与家蚕基因组进行比对,寻找到匹配的scaffold,再采用SS-RHunter1.3搜索其中的SSR区域,排除掉原有SSR序列,选择重复次数在6~23之间的微卫星区域设计引物,用BC1群体的亲本及F1进行多态性的筛选,选择有多态性的标记用7019×(F50B×7019)BC1群体进行基因型分析。结果显示:根据原家蚕第2连锁群上SSR位点新设计的邻近的7对引物中,有6对引物在BC1群体的亲本中有多态性,选择其中2个进行遗传连锁分析,作图结果与原有相应SSR标记的作图结果基本保持一致,其中根据S0207所在scaffold上开发的NS02071和NS02072之间的图距达到6.9 cM;根据家蚕大造和C108的回交一代初步定位的D ll基因的位置与后来在其所在scaffold上所设计的临近引物D ll1和D ll2的定位一致,且这两个标记在遗传连锁图上的图距为0.0 cM,表明这两个标记在遗传图上的位置重叠。由此,在较短的DNA区域内(在遗传连锁图上表现1个位点)便有多个SSR标记可供使用,将为定位家蚕重要经济性状基因、分子辅助育种及功能基因研究等提供更多有价值的信息。 展开更多
关键词 家蚕 微卫星标记 scaffold Dll基因 连锁分析
下载PDF
Topology optimization of microstructure and selective laser meltingfabrication for metallic biomaterial scaffolds 被引量:12
19
作者 肖冬明 杨永强 +2 位作者 苏旭彬 王迪 罗子艺 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第10期2554-2561,共8页
The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two ... The precise design and fabrication of biomaterial scaffolds is necessary to provide a systematic study for bone tissue engineering. Biomaterial scaffolds should have sufficient stiffness and large porosity. These two goals generally contradict since larger porosity results in lower mechanical properties. To seek the microstructure of maximum stiffness with the constraint of volume fraction by topology optimization method, algorithms and programs were built to obtain 2D and 3D optimized microstructure and then they were transferred to CAD models of STL format. Ti scaffolds with 30% volume fraction were fabricated using a selective laser melting (SLM) technology. The architecture and pore shape in the metallic biomaterial scaffolds were relatively precise reproduced and the minimum mean pore size was 231μm. The accurate fabrication of intricate microstructure has verified that the SLM process is suitable for fabrication of metallic biomaterial scaffolds. 展开更多
关键词 topology optimization selective laser melting (SLM) MICROSTRUCTURE metallic biomaterial scaffolds
下载PDF
骨组织工程中传统与仿生支架结构设计的差异
20
作者 赵越 许燕 +4 位作者 周建平 张旭婧 陈宇彤 靳正阳 印治涛 《中国组织工程研究》 CAS 北大核心 2025年第16期3458-3468,共11页
背景:多孔支架作为新骨生长的临时基质在骨修复过程中起着关键作用,其中多孔支架的结构设计是骨修复过程中的研究重点。目的:综述传统支架(规则、均匀的支架)和仿生支架(不规则、不均匀的支架)在骨组织工程研究领域的应用。方法:检索中... 背景:多孔支架作为新骨生长的临时基质在骨修复过程中起着关键作用,其中多孔支架的结构设计是骨修复过程中的研究重点。目的:综述传统支架(规则、均匀的支架)和仿生支架(不规则、不均匀的支架)在骨组织工程研究领域的应用。方法:检索中国知网(CNKI)、维普、万方、Web of Science、Science Direct、PubMed、EI等数据库,选取2008年1月至2024年3月发表的文献,中文检索词为“骨组织工程,仿生支架,骨小梁,传统支架,骨修复,三周期极小曲面”,英文检索词为“bone tissue engineering,bionic scaffolds,bone trabeculae,traditional scaffolds,bone repair,TPMS”。最终纳入81篇文献进行综述。结果与结论:骨支架的结构设计是实现骨修复和骨再生的关键,骨组织工程中的支架技术已取得显著进展。传统的规则多孔支架因简单的制造流程和良好的机械性能被广泛应用,然而这类支架往往缺乏生物活性,难以模拟自然骨组织的复杂微环境,限制了其在促进细胞增殖和骨再生方面的能力。相反,仿生支架通过模拟自然骨组织的结构特征,提供了更适宜的生理微环境,促进了成骨细胞的增殖、分化及新骨的形成,为骨缺损有效治疗提供了新的思路。尽管仿生支架在理论上具有巨大的潜力,但在实际应用中仍面临诸多挑战,支架的生物相容性、生物活性及长期稳定性等因素仍需通过临床试验进行进一步验证。 展开更多
关键词 骨组织工程 仿生支架 骨小梁 传统支架 骨修复 三周期极小曲面 拓扑优化 结构设计 单胞阵列
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部