The variations in gas path parameter deviations can fully reflect the healthy state of aeroengine gas path components and units;therefore,airlines usually take them as key parameters for monitoring the aero-engine gas...The variations in gas path parameter deviations can fully reflect the healthy state of aeroengine gas path components and units;therefore,airlines usually take them as key parameters for monitoring the aero-engine gas path performance state and conducting fault diagnosis.In the past,the airlines could not obtain deviations autonomously.At present,a data-driven method based on an aero-engine dataset with a large sample size can be utilized to obtain the deviations.However,it is still difficult to utilize aero-engine datasets with small sample sizes to establish regression models for deviations based on deep neural networks.To obtain monitoring autonomy of each aero-engine model,it is crucial to transfer and reuse the relevant knowledge of deviation modelling learned from different aero-engine models.This paper adopts the Residual-Back Propagation Neural Network(Res-BPNN)to deeply extract high-level features and stacks multi-layer Multi-Kernel Maximum Mean Discrepancy(MK-MMD)adaptation layers to map the extracted high-level features to the Reproduce Kernel Hilbert Space(RKHS)for discrepancy measurement.To further reduce the distribution discrepancy of each aero-engine model,the method of maximizing domain-confusion loss based on an adversarial mechanism is introduced to make the features learned from different domains as close as possible,and then the learned features can be confused.Through the above methods,domain-invariant features can be extracted,and the optimal adaptation effect can be achieved.Finally,the effectiveness of the proposed method is verified by using cruise data from different civil aero-engine models and compared with other transfer learning algorithms.展开更多
Mutual learning is a cornerstone for building a global community of shared future.Cultural Envoys:Connecting Civilizations introduces the winners of the Orchid Awards,a recent laurel instituted by the China Internatio...Mutual learning is a cornerstone for building a global community of shared future.Cultural Envoys:Connecting Civilizations introduces the winners of the Orchid Awards,a recent laurel instituted by the China International Communications Group to recognize the work of people worldwide who have made significant contributions to cultural exchanges and mutual learning between China and the rest of the world.展开更多
With the deployment of ultra-dense low earth orbit(LEO)satellite constellations,LEO satellite access network(LEO-SAN)is envisioned to achieve global Internet coverage.Meanwhile,the civil aviation communications have i...With the deployment of ultra-dense low earth orbit(LEO)satellite constellations,LEO satellite access network(LEO-SAN)is envisioned to achieve global Internet coverage.Meanwhile,the civil aviation communications have increased dramatically,especially for providing airborne Internet services.However,due to dynamic service demands and onboard LEO resources over time and space,it poses huge challenges in satellite-aircraft access and service management in ultra-dense LEO satellite networks(UDLSN).In this paper,we propose a deep reinforcement learning-based approach for ultra-dense LEO satellite-aircraft access and service management.Firstly,we develop an airborne Internet architecture based on UDLSN and design a management mechanism including medium earth orbit satellites to guarantee lightweight management.Secondly,considering latency-sensitive and latency-tolerant services,we formulate the problem of satellite-aircraft access and service management for civil aviation to ensure service continuity.Finally,we propose a proximal policy optimization-based access and service management algorithm to solve the formulated problem.Simulation results demonstrate the convergence and effectiveness of the proposed algorithm with satisfying the service continuity when applying to the UDLSN.展开更多
The maintenance of an aero-engine usually includes three levels,and the maintenance cost and period greatly differ depending on the different maintenance levels.To plan a reasonable maintenance budget program, airline...The maintenance of an aero-engine usually includes three levels,and the maintenance cost and period greatly differ depending on the different maintenance levels.To plan a reasonable maintenance budget program, airlines would like to predict the maintenance level of aero-engine before repairing in terms of performance parameters,which can provide more economic benefits.The maintenance level decision rules are mined using the historical maintenance data of a civil aero-engine based on the rough set theory,and a variety of possible models of updating rules produced by newly increased maintenance cases added to the historical maintenance case database are investigated by the means of incremental machine learning.The continuously updated rules can provide reasonable guidance suggestions for engineers and decision support for planning a maintenance budget program before repairing. The results of an example show that the decision rules become more typical and robust,and they are more accurate to predict the maintenance level of an aero-engine module as the maintenance data increase,which illustrates the feasibility of the represented method.展开更多
Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving s...Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.展开更多
An aero-engine is a typically repairable and complex system and its maintenance level has a close relationship with the maintenance cost. The inaccurate measurement for the maintenance level of an aero-engine can indu...An aero-engine is a typically repairable and complex system and its maintenance level has a close relationship with the maintenance cost. The inaccurate measurement for the maintenance level of an aero-engine can induce higher overhaul maintenance costs. Variable precision rough set (VPRS) theory is used to determine the maintenance level of an aero-engine. According to the relationship between condition information and performance parameters of aero-engine modules, decision rules are established for reflecting the real condition of an aeroengine when its maintenance level needs to be determined. Finally, the CF6 engine is used as an example to illustrate the method to be effective.展开更多
The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gr...The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.展开更多
The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM includin...The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superqlloys for aero-engine disks and rings, and powder metalurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.展开更多
As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary e...As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary element methods. Among them, the finite element method presents more flexibility to deal with the irregularly shaped workpieces. However, it is very difficult to ensure the convergence of finite element numerical approach. This paper proposes an accurate model and a finite element numerical approach of cathode design based on the potential distribution in inter-electrode gap. In order to ensure the convergence of finite element numerical approach and increase the accuracy in cathode design, the cathode shape should be iterated to eliminate the design errors in computational process. Several experiments are conducted to verify the machining accuracy of the designed cathode. The experimental results have proven perfect convergence and good computing accuracy of the proposed finite element numerical approach by the high surface quality and dimensional accuracy of the machined blades.展开更多
The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces...The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has signif- icant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and inte- grated finishing and strengthening technologies and dis- cusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.展开更多
Fatigue life and reliability of aero-engine blade are always of important significance to flight safety.The establishment of damage model is one of the key factors in blade fatigue research.Conventional linear Miner'...Fatigue life and reliability of aero-engine blade are always of important significance to flight safety.The establishment of damage model is one of the key factors in blade fatigue research.Conventional linear Miner's sum method is not suitable for aero-engine because of its low accuracy.A back propagation neutral network(BPNN) based on the combination of Levenberg-Marquardt(LM) and finite element method(FEM) is used to describe process of nonlinear damage accumulation behavior in material and predict fatigue life of the blade.Fatigue tests of standard specimen made from TC4 are carried out to obtain material fatigue parameters and S-N curve.A nonlinear continuum damage model(CDM),based on the BPNN with one hidden layer and ten neurons,is built to investigate the nonlinear damage accumulation behavior,in which the results from the tests are used as training set.Comparing with linear models and previous nonlinear models,BPNN has the lowest calculation error in full load range.It has significant accuracy when the load is below 500 MPa.Especially,when the load is 350 MPa,the calculation error of the BPNN is only 0.4%.The accurate model of the blade is built by using 3D coordinate measurement technology.The loading cycle in fatigue analysis is defined from takeoff to cruise in 10 min,and the load history is obtained from finite element analysis(FEA).Then the fatigue life of the compressor blade is predicted by using the BPNN model.The final fatigue life of the aero-engine blade is 6.55 104 cycles(10 916 h) based on the BPNN model,which is effective for the virtual design of aero-engine blade.展开更多
Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs l...Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs least square support vector regression (LSSVR) is applied to the compensation of on-board self-tuning model of aero-engine, and particle swarm optimization (PSO) is used to the kernels selection of multi-outputs LSSVR. The method need not reconstruct the model of aero-engine because of the differences in the individuals of the same type engines and engine degradation after use. The concrete steps for the application of the method are given, and the simulation results show the effectiveness of the algorithm.展开更多
When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Tak...When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Take hovering as an example. A Jeffcott rotor system with a biased rotor and several nonlinear elastic supports is modeled, and the vibration characteristics of the rotor system under a constant maneuver load are analytically studied. By using the multiple-scale method, the differential equations of the system are solved, and the bifurcation equations are obtained. Then, the bifurcations of the system are analyzed by using the singularity theory for the two variables. In the EG-plane, where E refers to the eccentricity of the rotor and G represents the constant maneuver load, two hysteresis point sets and one double limit point set are obtained. The bifurcation diagrams are also plotted. It is indicated that the resonance regions of the two variables will shift to the right when the aircraft is maneuvering. Furthermore, the movement along the horizontal direction is faster than that along the vertical direction. Thus, the different overlapping modes of the two resonance regions will bring about different bifurcation modes due to the nonlinear coupling effects. This result lays a theoretical foundation for controlling the stability of the aero-engine's rotor system under a maneuver load.展开更多
Aero-engine direct thrust control can not only improve the thrust control precision but also save the operating cost by reducing the reserved margin in design and making full use of aircraft engine potential performan...Aero-engine direct thrust control can not only improve the thrust control precision but also save the operating cost by reducing the reserved margin in design and making full use of aircraft engine potential performance.However,it is a big challenge to estimate engine thrust accurately.To tackle this problem,this paper proposes an ensemble of improved wavelet extreme learning machine(EW-ELM)for aircraft engine thrust estimation.Extreme learning machine(ELM)has been proved as an emerging learning technique with high efficiency.Since the combination of ELM and wavelet theory has the both excellent properties,wavelet activation functions are used in the hidden nodes to enhance non-linearity dealing ability.Besides,as original ELM may result in ill-condition and robustness problems due to the random determination of the parameters for hidden nodes,particle swarm optimization(PSO)algorithm is adopted to select the input weights and hidden biases.Furthermore,the ensemble of the improved wavelet ELM is utilized to construct the relationship between the sensor measurements and thrust.The simulation results verify the effectiveness and efficiency of the developed method and show that aero-engine thrust estimation using EW-ELM can satisfy the requirements of direct thrust control in terms of estimation accuracy and computation time.展开更多
A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditio...A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM.展开更多
This paper focuses on the H_∞ model reference tracking control for a switched linear parameter-varying(LPV)model representing an aero-engine. The switched LPV aeroengine model is built based on a family of linearized...This paper focuses on the H_∞ model reference tracking control for a switched linear parameter-varying(LPV)model representing an aero-engine. The switched LPV aeroengine model is built based on a family of linearized models.Multiple parameter-dependent Lyapunov functions technique is used to design a tracking control law for the desirable H_∞ tracking performance. A control synthesis condition is formulated in terms of the solvability of a matrix optimization problem.Simulation result on the aero-engine model shows the feasibility and validity of the switching tracking control scheme.展开更多
基金supported by the Shandong Provincial Natural Science Foundation(No.ZR2019MEE096)the Key National Natural Science Foundation of China(No.U1733201)。
文摘The variations in gas path parameter deviations can fully reflect the healthy state of aeroengine gas path components and units;therefore,airlines usually take them as key parameters for monitoring the aero-engine gas path performance state and conducting fault diagnosis.In the past,the airlines could not obtain deviations autonomously.At present,a data-driven method based on an aero-engine dataset with a large sample size can be utilized to obtain the deviations.However,it is still difficult to utilize aero-engine datasets with small sample sizes to establish regression models for deviations based on deep neural networks.To obtain monitoring autonomy of each aero-engine model,it is crucial to transfer and reuse the relevant knowledge of deviation modelling learned from different aero-engine models.This paper adopts the Residual-Back Propagation Neural Network(Res-BPNN)to deeply extract high-level features and stacks multi-layer Multi-Kernel Maximum Mean Discrepancy(MK-MMD)adaptation layers to map the extracted high-level features to the Reproduce Kernel Hilbert Space(RKHS)for discrepancy measurement.To further reduce the distribution discrepancy of each aero-engine model,the method of maximizing domain-confusion loss based on an adversarial mechanism is introduced to make the features learned from different domains as close as possible,and then the learned features can be confused.Through the above methods,domain-invariant features can be extracted,and the optimal adaptation effect can be achieved.Finally,the effectiveness of the proposed method is verified by using cruise data from different civil aero-engine models and compared with other transfer learning algorithms.
文摘Mutual learning is a cornerstone for building a global community of shared future.Cultural Envoys:Connecting Civilizations introduces the winners of the Orchid Awards,a recent laurel instituted by the China International Communications Group to recognize the work of people worldwide who have made significant contributions to cultural exchanges and mutual learning between China and the rest of the world.
基金supported in part by the National Key R&D Program of China under Grant 2020YFB1806104in part by Innovation and Entrepreneurship of Jiangsu Province High-level Talent Programin part by Natural Sciences and Engineering Research Council of Canada(NSERC).
文摘With the deployment of ultra-dense low earth orbit(LEO)satellite constellations,LEO satellite access network(LEO-SAN)is envisioned to achieve global Internet coverage.Meanwhile,the civil aviation communications have increased dramatically,especially for providing airborne Internet services.However,due to dynamic service demands and onboard LEO resources over time and space,it poses huge challenges in satellite-aircraft access and service management in ultra-dense LEO satellite networks(UDLSN).In this paper,we propose a deep reinforcement learning-based approach for ultra-dense LEO satellite-aircraft access and service management.Firstly,we develop an airborne Internet architecture based on UDLSN and design a management mechanism including medium earth orbit satellites to guarantee lightweight management.Secondly,considering latency-sensitive and latency-tolerant services,we formulate the problem of satellite-aircraft access and service management for civil aviation to ensure service continuity.Finally,we propose a proximal policy optimization-based access and service management algorithm to solve the formulated problem.Simulation results demonstrate the convergence and effectiveness of the proposed algorithm with satisfying the service continuity when applying to the UDLSN.
基金Supported by the National Natural Science Foundation of China(60939003)
文摘The maintenance of an aero-engine usually includes three levels,and the maintenance cost and period greatly differ depending on the different maintenance levels.To plan a reasonable maintenance budget program, airlines would like to predict the maintenance level of aero-engine before repairing in terms of performance parameters,which can provide more economic benefits.The maintenance level decision rules are mined using the historical maintenance data of a civil aero-engine based on the rough set theory,and a variety of possible models of updating rules produced by newly increased maintenance cases added to the historical maintenance case database are investigated by the means of incremental machine learning.The continuously updated rules can provide reasonable guidance suggestions for engineers and decision support for planning a maintenance budget program before repairing. The results of an example show that the decision rules become more typical and robust,and they are more accurate to predict the maintenance level of an aero-engine module as the maintenance data increase,which illustrates the feasibility of the represented method.
文摘Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.
文摘An aero-engine is a typically repairable and complex system and its maintenance level has a close relationship with the maintenance cost. The inaccurate measurement for the maintenance level of an aero-engine can induce higher overhaul maintenance costs. Variable precision rough set (VPRS) theory is used to determine the maintenance level of an aero-engine. According to the relationship between condition information and performance parameters of aero-engine modules, decision rules are established for reflecting the real condition of an aeroengine when its maintenance level needs to be determined. Finally, the CF6 engine is used as an example to illustrate the method to be effective.
基金Supported by the Aeronautical Science Foundation of China(2010ZB52011)the Funding of Jiangsu Innovation Program for Graduate Education(CXLX11-0213)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010055)~~
文摘The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization.
基金supported by the National High Technical Reasearch and Development Programme of China(No.2002AA336100)
文摘The status of research, development of superalloys and materials processing & fabrication technologies for aero-engine applications in China Aviation Industry, with an emphasis on recent achievements at BIAM including directionally solidified and single crystal superalloys for blade and vane applications, wrought superqlloys for aero-engine disks and rings, and powder metalurgy (PM) superalloys for high performance disk applications were described. It was also reviewed the development of new class of high temperature structural materials, such as structural intermetallics, and advanced material processing technologies including rapid solidification, spray forming and so on. The trends of research and development of the above mentioned superalloys and processing technologies are outlined. Cast, wrought and PM superalloys are the workhorse materials for the hot section of current aero-engines. New high temperature materials and advanced processing technologies have been and will be the subject of study. It is speculated that high performance, high purity and low cost superalloys and technologies will play key roles in aero-engines.
文摘As a main difficult problem encountered in electrochemical machining (ECM), the cathode design is tackled, at present, with various numerical analysis methods such as finite difference, finite element and boundary element methods. Among them, the finite element method presents more flexibility to deal with the irregularly shaped workpieces. However, it is very difficult to ensure the convergence of finite element numerical approach. This paper proposes an accurate model and a finite element numerical approach of cathode design based on the potential distribution in inter-electrode gap. In order to ensure the convergence of finite element numerical approach and increase the accuracy in cathode design, the cathode shape should be iterated to eliminate the design errors in computational process. Several experiments are conducted to verify the machining accuracy of the designed cathode. The experimental results have proven perfect convergence and good computing accuracy of the proposed finite element numerical approach by the high surface quality and dimensional accuracy of the machined blades.
基金Supported by Science Fund for Creative Research Groups of NSFC(51621064)National Natural Science Foundation of China(Grant No.51475074,11302043)the Fundamental Research Funds for the Central Universities(DUT15QY37)
文摘The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has signif- icant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and inte- grated finishing and strengthening technologies and dis- cusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.
基金supported by National Natural Science Foundation of China (Grant No. 60879002)Tianjin Municipal Science and Technology Support Plan of China (Grant No. 10ZCKFGX03800)
文摘Fatigue life and reliability of aero-engine blade are always of important significance to flight safety.The establishment of damage model is one of the key factors in blade fatigue research.Conventional linear Miner's sum method is not suitable for aero-engine because of its low accuracy.A back propagation neutral network(BPNN) based on the combination of Levenberg-Marquardt(LM) and finite element method(FEM) is used to describe process of nonlinear damage accumulation behavior in material and predict fatigue life of the blade.Fatigue tests of standard specimen made from TC4 are carried out to obtain material fatigue parameters and S-N curve.A nonlinear continuum damage model(CDM),based on the BPNN with one hidden layer and ten neurons,is built to investigate the nonlinear damage accumulation behavior,in which the results from the tests are used as training set.Comparing with linear models and previous nonlinear models,BPNN has the lowest calculation error in full load range.It has significant accuracy when the load is below 500 MPa.Especially,when the load is 350 MPa,the calculation error of the BPNN is only 0.4%.The accurate model of the blade is built by using 3D coordinate measurement technology.The loading cycle in fatigue analysis is defined from takeoff to cruise in 10 min,and the load history is obtained from finite element analysis(FEA).Then the fatigue life of the compressor blade is predicted by using the BPNN model.The final fatigue life of the aero-engine blade is 6.55 104 cycles(10 916 h) based on the BPNN model,which is effective for the virtual design of aero-engine blade.
文摘Considering the modeling errors of on-board self-tuning model in the fault diagnosis of aero-engine, a new mechanism for compensating the model outputs is proposed. A discrete series predictor based on multi-outputs least square support vector regression (LSSVR) is applied to the compensation of on-board self-tuning model of aero-engine, and particle swarm optimization (PSO) is used to the kernels selection of multi-outputs LSSVR. The method need not reconstruct the model of aero-engine because of the differences in the individuals of the same type engines and engine degradation after use. The concrete steps for the application of the method are given, and the simulation results show the effectiveness of the algorithm.
基金Project supported by National Basic Research Program(973 Program)of China(No.2015CB057400)
文摘When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Take hovering as an example. A Jeffcott rotor system with a biased rotor and several nonlinear elastic supports is modeled, and the vibration characteristics of the rotor system under a constant maneuver load are analytically studied. By using the multiple-scale method, the differential equations of the system are solved, and the bifurcation equations are obtained. Then, the bifurcations of the system are analyzed by using the singularity theory for the two variables. In the EG-plane, where E refers to the eccentricity of the rotor and G represents the constant maneuver load, two hysteresis point sets and one double limit point set are obtained. The bifurcation diagrams are also plotted. It is indicated that the resonance regions of the two variables will shift to the right when the aircraft is maneuvering. Furthermore, the movement along the horizontal direction is faster than that along the vertical direction. Thus, the different overlapping modes of the two resonance regions will bring about different bifurcation modes due to the nonlinear coupling effects. This result lays a theoretical foundation for controlling the stability of the aero-engine's rotor system under a maneuver load.
基金supported by the National Natural Science Foundation of China (Nos.51176075,51576097)the Fouding of Jiangsu Innovation Program for Graduate Education(No.KYLX_0305)
文摘Aero-engine direct thrust control can not only improve the thrust control precision but also save the operating cost by reducing the reserved margin in design and making full use of aircraft engine potential performance.However,it is a big challenge to estimate engine thrust accurately.To tackle this problem,this paper proposes an ensemble of improved wavelet extreme learning machine(EW-ELM)for aircraft engine thrust estimation.Extreme learning machine(ELM)has been proved as an emerging learning technique with high efficiency.Since the combination of ELM and wavelet theory has the both excellent properties,wavelet activation functions are used in the hidden nodes to enhance non-linearity dealing ability.Besides,as original ELM may result in ill-condition and robustness problems due to the random determination of the parameters for hidden nodes,particle swarm optimization(PSO)algorithm is adopted to select the input weights and hidden biases.Furthermore,the ensemble of the improved wavelet ELM is utilized to construct the relationship between the sensor measurements and thrust.The simulation results verify the effectiveness and efficiency of the developed method and show that aero-engine thrust estimation using EW-ELM can satisfy the requirements of direct thrust control in terms of estimation accuracy and computation time.
基金National Defense Advanced Research Foundation of China
文摘A novel Parsimonious Genetic Programming (PGP) algorithm together with a novel aero-engine optimum data-driven dynamic start process model based on PGP is proposed. In application of this method, first, the traditional Genetic Programming(GP) is used to generate the nonlinear input-output models that are represented in a binary tree structure; then, the Orthogonal Least Squares algorithm (OLS) is used to estimate the contribution of the branches of the tree (refer to basic function term that cannot be decomposed anymore according to special rule) to the accuracy of the model, which contributes to eliminate complex redundant subtrees and enhance GP's convergence speed; and finally, a simple, reliable and exact linear-in-parameter nonlinear model via GP evolution is obtained. The real aero-engine start process test data simulation and the comparisons with Support Vector Machines (SVM) validate that the proposed method can generate more applicable, interpretable models and achieve comparable, even superior results to SVM.
基金supported by the National Natural Science Foundation of China(61304058,61233002)IAPI Fundamental Research Funds(2013ZCX03-01)
文摘This paper focuses on the H_∞ model reference tracking control for a switched linear parameter-varying(LPV)model representing an aero-engine. The switched LPV aeroengine model is built based on a family of linearized models.Multiple parameter-dependent Lyapunov functions technique is used to design a tracking control law for the desirable H_∞ tracking performance. A control synthesis condition is formulated in terms of the solvability of a matrix optimization problem.Simulation result on the aero-engine model shows the feasibility and validity of the switching tracking control scheme.