The Mbouda alluvial deposit is located at the foot of the Bamboutos mountains (West Cameroon) where three types of clayey materials are widespread. The populations collect these clays in their natural state in view of...The Mbouda alluvial deposit is located at the foot of the Bamboutos mountains (West Cameroon) where three types of clayey materials are widespread. The populations collect these clays in their natural state in view of constructions using fired bricks or compressed blocks. Unfortunately, these buildings are not strong. This study investigates the causes of the strengthlessness of buildings and suggests solutions to overcome the difficulty. The research content includes field and laboratory studies. The methodology consists of sampling black (AN), white (AB) and red (AR) clays specimens identified in the study area and analysing them simultaneously at MIPROMALO (Cameroon) and at ACME LAB in Vancouver (Canada). The results obtained show a high sand content in the samples AN (64%), AB (55.2%), AR (30.9%). The compressive strength of the built specimens is low at 900˚C considered as the traditional firing temperature AN (0.94 MPa), AB (5.25 MPa), AR (2.18 MPa). The mineralogical series are identically made by kaolinite, chlorite, gibbsite, quartz, muscovite, biotite, goethite, magnetite and hematite. Silica (SiO2) presents higher contents AN (52.87%), AB (48.02%), AR (47.68%) followed by alumina (Al2O3) AN (29.96%), AB (28.13%), AR (24.72%). The other elements are poorly represented.展开更多
This study presents a hybrid framework to predict stability solutions of buried structures under active trapdoor conditions in natural clays with anisotropy and heterogeneity by combining physics-based and data-driven...This study presents a hybrid framework to predict stability solutions of buried structures under active trapdoor conditions in natural clays with anisotropy and heterogeneity by combining physics-based and data-driven modeling.Finite-element limit analysis(FELA)with a newly developed anisotropic undrained shear(AUS)failure criterion is used to identify the underlying active failure mechanisms as well as to develop a numerical(physics-based)database of stability numbers for both planar and circular trapdoors.Practical considerations are given for natural clays to three linearly increasing shear strengths in compression,extension,and direct simple shear in the AUS material model.The obtained numerical solutions are compared and validated with published solutions in the literature.A multivariate adaptive regression splines(MARS)algorithm is further utilized to learn the numerical solutions to act as fast FELA data-driven surrogates for stability evaluation.The current MARS-based modeling provides both relative importance index and accurate design equations that can be used with confidence by practitioners.展开更多
Our study focused on the valuation of Tchiky clays. This work aims to evaluate its properties to explore possible uses in pharmacy. Physico-chemical and mineralogical characterizations were carried out, as well as pha...Our study focused on the valuation of Tchiky clays. This work aims to evaluate its properties to explore possible uses in pharmacy. Physico-chemical and mineralogical characterizations were carried out, as well as pharmacopoeial tests and an evaluation of the antioxidant activity. Thus, chemical analysis by X-ray fluorescence spectrometry gave silicon (55.65%), iron (15.73%), aluminum (13.53%), potassium (6.05%), titanium (3.98%), magnesium (2.10%), and calcium (0.82%). X-ray diffraction showed the presence of kaolinite, quartz and illite. This study also revealed that the sample studied was essentially a plastic clay of hard consistency, with average flowability. The evaluation of the antioxidant activity gave a percentage inhibition of 62.97% for a concentration of 7.5 g/l with an IC50 of 5.5 g/l. These results should allow use as an excipient in pharmacy, particularly in liquid, semi-liquid and pasty formulations.展开更多
In C ?te d’Ivoire, traditional ceramics are widely used in the form of pottery. The latter is used to store food, water and cereals. Analyzes (X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ...In C ?te d’Ivoire, traditional ceramics are widely used in the form of pottery. The latter is used to store food, water and cereals. Analyzes (X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductive plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM) and analysis thermal gravimetric (ATG)) were carried out to determine the morphology, the chemical, physical and pedological constituents of these raw materials. It appears from this study that the clays used in the Mangoro pottery of Katiola contain silica SiO<sub>2</sub>, alumina Al<sub>2</sub>O<sub>3</sub> and iron oxide Fe<sub>2</sub>O<sub>3</sub> as well as kaolinite, muscovite, smectite and quartz.展开更多
The paper talks about the elaboration of geopolymer with two types of kaolinite clays containing muscovite. The kaolinite materials were first calcined at different temperatures, and mixed with an activator solution, ...The paper talks about the elaboration of geopolymer with two types of kaolinite clays containing muscovite. The kaolinite materials were first calcined at different temperatures, and mixed with an activator solution, called liquid precursor, at a different solid/liquid mass ratio depending on their normal consistency to produce geopolymer binders. Results show that the geopolymer products obtained from the different clays have good physichomechanical properties: their open porosity and their water absorption rate decrease while their compressive strength and their apparent density increase with the increase in calcination temperature of the clays. The density of GABD binders varies between 2.92 and 2.47 g/cm<sup>3</sup> and that of GARD binders between 1.86 and 2.16 g/cm<sup>3</sup>. Specimens in the GABD series have the best mechanical performance, ranging from 14.43 to 31.37 MPa, while those in the GARD series oscillate between 6.18 and 11.56 MPa. These properties make kaolinite materials from this region suitable for use as construction materials for adequate waterproof structures.展开更多
Adsorption of phenthoate and acetochlor onto kaolin, montmorillonite, bentonite clays and respective organoclays prepared by the exchange of quaternary ammonium as tetradecyltrimethyl ammonium bromide(TTAB), dodecyltr...Adsorption of phenthoate and acetochlor onto kaolin, montmorillonite, bentonite clays and respective organoclays prepared by the exchange of quaternary ammonium as tetradecyltrimethyl ammonium bromide(TTAB), dodecyltrimethylammonium bromide(DTAB), and cetylpyridinium chloride(CPC) were studied. The adsorption equilibrium data points were fitted to Freundlich isotherm equations. The adsorption of phenthoate and acetochlor were significantly enhanced by surfactant treatment of the clays. The amount of both pesticides adsorbed per unit mass of organoclay followed the order of TTA-kaolin < TTA-montmorillonite < TTA-bentonite, which is inconsistent with the organic carbon content of the clays. The removal efficiency of organomontmorillonite to treat acetochlor is in the order of CP(C 16 )-montmorillonite > TTA(C 14 )-montmorillonite > DTA(C 12 )-montmorillonite. Phenthoate is adsorbed to greater extent than acetochlor by each adsorbent, which may be due to the higher hydrophobicity of phenthoate, indicating considerable hydrophobic interaction between adsorbent/adsorbate systems.展开更多
Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of ...Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data.展开更多
The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of org...The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of organic phenols with montmorillonite, illite and kaolinite in seawater is monovalent anion exchage.(2) Their isotherms of stepwise exchage on clay surfaces belong to the Langmuir type or stepwise type.(3) The discovery of the"steric hindrance effects of stepwise exchange of organic phenols on clays surfaces", and revelation of an exchange mechanisrn diffeient from that in references are the greatest achieverments in this work.展开更多
Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures...Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.展开更多
A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existingmodel for saturated clays originally proposed by the authors. The saturated clays model was formulatedin the framework o...A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existingmodel for saturated clays originally proposed by the authors. The saturated clays model was formulatedin the framework of critical state soil mechanics and modified Cam-clay model. The existing model hasbeen generalized to simulate the experimentally observed behavior of unsaturated clays by introducingBishop's stress and suction as independent stress parameters and modifying the hardening rule and yieldcriterion to take into account the role of suction. Also, according to previous studies, an increase intemperature causes a reduction in specific volume. A reduction in suction (wetting) for a given confiningstress may induce an irreversible volumetric compression (collapse). Thus an increase in suction (drying)raises a specific volume i.e. the movement of normal consolidation line (NCL) to higher values of voidratio. However, some experimental data confirm the assumption that this reduction is dependent on thestress level of soil element. A generalized approach considering the effect of stress level on themagnitude of clays thermal dependency in compression plane is proposed in this study. The number ofmodeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitatethe usefulness of model for practical applications. A step-by-step procedure used for parameter calibrationis also described. The model is finally evaluated using a comprehensive set of experimental datafor the thermo-mechanical behavior of unsaturated soils.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Mesoporous silicoaluminum pillared clays have been synthesized by one-potgallery-templated synthesis using organomontmorillonite, tetraethyl orthosilicate and aluminaisopropoxide as precursor. According to the charact...Mesoporous silicoaluminum pillared clays have been synthesized by one-potgallery-templated synthesis using organomontmorillonite, tetraethyl orthosilicate and aluminaisopropoxide as precursor. According to the characterization by powder X-ray diffraction(PXRD), thermogravimetric analysis (TGA), N2 adsorption isotherms and pyridine adsorptioninfrared (IR) techniques, the synthetic silicoaluminum pillared clays possess regular porosity withhigh thermal stability up to 750 ℃ and Br?nsted /Lewis acidity.展开更多
Evaluation of the cyclic shear modulus of soils is a crucial but challenging task for many geotechnical earthquake engineering and soil dynamic issues. Improper determination of this property unnecessarily drives up d...Evaluation of the cyclic shear modulus of soils is a crucial but challenging task for many geotechnical earthquake engineering and soil dynamic issues. Improper determination of this property unnecessarily drives up design and maintenance costs or even leads to the construction of unsafe structures. Due to the complexities involved in the direct measurement, empirical curves for estimating the cyclic shear modulus have been commonly adopted in practice for simplicity and economical considerations. However, a systematic and robust approach for formulating a reliable model and empirical curve for cyclic shear modulus prediction for clayey soils is still lacking. In this study, the Bayesian model class selection approach is utilized to identify the most significant soil parameters affecting the normalized cyclic shear modulus and a reliable predictive model for normally to moderately over-consolidated clays is proposed. Results show that the predictability and reliability of the proposed model out performs the well-known empirical models. Finally, a new design chart is established for practical usage.展开更多
In this paper, a critical state based thermo-elasto-plastic constitutive model is developed for destructured, naturally structured and artificially structured saturated clays. The model is an extension of the previous...In this paper, a critical state based thermo-elasto-plastic constitutive model is developed for destructured, naturally structured and artificially structured saturated clays. The model is an extension of the previously developed thermo-mechanical model by the authors for saturated clays, considering the effects of structure on the mechanical behaviors of the soil. It is based on change in the position of normal consolidation line(NCL) in a compression plane(e-ln p′) due to the soil’s structure and variation of temperature. The present model is able to simulate the mechanical behavior of structured saturated clays in a triaxial plane at elevated temperatures lower than the boiling point of water. An attempt has been made to use the lowest possible number of parameters compared with that of Came Clay model and to ensure that these new parameters have clear physical interpretations. The sufficiency of the model was verified by the test results on artificially and naturally structured soils using thermal triaxial tests.展开更多
The present paper should be considered as a review of the application of Fourier Transform Infra-Red for surface clay characterization. The application of surface clay materials for water treatment, oil adsorption, ex...The present paper should be considered as a review of the application of Fourier Transform Infra-Red for surface clay characterization. The application of surface clay materials for water treatment, oil adsorption, excipients or as active in drugs has largely increased these recent years. The surface clay material presents hydroxyl groups, which can link very easily water molecules. These hydroxyl groups can react with organic groups and by their vibration in the infra-red region, FT-IR can be easily used as a technical method for surface clay characterization. In this paper, we focus on the determination of Lewis and Bronsted acid sites on the clay surface, a critical review of the sample preparation, the surface characterization of bulk clay and the modified surface clay samples using FT-IR spectroscopy.展开更多
The available data have shown that acid-leached clays had sites for adsorption of impurities in oils. Data obtained on residual impurities in cotton and sunflower-seed oils bleached with the same clay materials produc...The available data have shown that acid-leached clays had sites for adsorption of impurities in oils. Data obtained on residual impurities in cotton and sunflower-seed oils bleached with the same clay materials produced linear Langmuir and Freundlich isotherms. The increase in constant, k with increase in both temperature of thermal activation and concentration of acid used to leach the clay, suggests that bleaching efficiency increased. The value of n decreased with increase in temperature of activation and concentration of acid used to leach the clay suggesting that bleaching capacity increased. The mineral compositions of the clays influenced their surface, structural and bleaching properties.展开更多
This work focuses on the uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays under one-dimensional condition. An elasto-viscoplastic model is briefly introduced based on the rate-depend...This work focuses on the uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays under one-dimensional condition. An elasto-viscoplastic model is briefly introduced based on the rate-dependency of preconsolidation pressure. By comparing the rate-dependency formulation with the creep based formulation, the relationship between rate-dependency and creep behaviors is firstly described. The rate-dependency based formulation is then extended to derive an analytical solution for the stress relaxation behavior with defining a stress relaxation coefficient. Based on this, the relationship between the rate-dependency coefficient and the stress relaxation coefficient is derived. Therefore, the uniqueness between behaviors of rate-dependency, creep and stress relaxation with their key parameters is obtained. The uniqueness is finally validated by comparing the simulated rate-dependency of preconsolidation pressure, the estimated values of secondary compression coefficient and simulations of stress relaxation tests with test results on both reconstituted Illite and Berthierville clay.展开更多
An improved damaging model formulated within the framework of bounding surface for structured clays was proposed. The model was intended to describe the effects of structure degradation due to geotechnical loading. Th...An improved damaging model formulated within the framework of bounding surface for structured clays was proposed. The model was intended to describe the effects of structure degradation due to geotechnical loading. The predictive capability of the model was compared with those of triaxial compression test on Tianjin soft clays. The results show that, by incorporating a new damage function into the model, the reduction of elastic bulk and shear modulus with elastic deformations and the reduction of plastic bulk modulus and shear modulus with plastic deformations are able to be appreciable. Before the axial strain reaches 15%, the axial strain computed from the model is smaller than that from the test under the drained condition. Under the undrained condition, after the axial strain reaches 1%, the axial strain increases quickly because of the complete loss of structure and stiffness; and the result computed from the model is nearly equal to that from the model without the incorporation of the damage function due to less plastic strain under undrained condition test.展开更多
An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load(V), horizontal load(H), and moment(M) to have stability problems. This paper presents the analysis of combin...An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load(V), horizontal load(H), and moment(M) to have stability problems. This paper presents the analysis of combined bearing capacities of a circular spudcan on layered clays with a strong layer overlying a comparatively weaker layer. Numerical models combined with displacement-based load tests, swipe tests, and constant ratio displacement probe tests are adopted to calculate the uniaxial bearing capacities, failure envelopes in combined V-H, V-M planes, and failure envelopes in a combined V-H-M load space, respectively. A parametric study on the effects of vertical load level V, the layer strength ratio s_(u,t)/s_(u,b), and the hard layer thickness t_1 on the bearing capacities is then performed. Results show that the vertical load level is a key factor that influences the values of H and M and the size of the H-M failure envelope. The existence of the underlying weak clay decreases the bearing capacities in all directions, and the vertical capacity Vult is affected more than the horizontal(H_(ult)) and moment(M_(ult)) capacities based on a single uniform deposit. The influence of the underlying weak clay on H-M failure envelope is mainly shown where H and M are coupled in the same direction. In contrast, little difference is observed when H and M are coupled in opposite directions.展开更多
Algal organic materials (AOMs) are one critical factor affecting the efficiency of modified clays used for the mitigation of harrnful algal blooms (HABs). This study was conducted to develop a deeper understanding...Algal organic materials (AOMs) are one critical factor affecting the efficiency of modified clays used for the mitigation of harrnful algal blooms (HABs). This study was conducted to develop a deeper understanding of the mechanisms and factors affecting the adsorption of AOMs onto modified clays. Sodium alginate (polysaccharide) and kaolinite modified with polyaluminium chloride (PAC1) were used as AOMs and modified clay model substances, respectively, and the effects of modifier dosage, contact time, solution pH and ionic strength were investigated through batch adsorption experiments. Kinetics revealed that the alginate adsorption rate was described well by a pseudo-second order model. PACl effectively enhanced the adsorption capacity of kaolinite and increased the adsorption rate, and the optimum additive amount of PACl was 5%. The experimental data fitted both the Freundlich and Langmuir adsorption equations well. The adsorption thermodynamics for alginate onto modified clays suggests that alginate adsorption is a spontaneous process. The adsorption of alginate onto modified clays was highly dependent on pH, with a decrease in adsorption observed with increased pH to 9.48, but the opposite was true above pH 9.48. Finally, adsorption increased with increasing ionic strength.展开更多
文摘The Mbouda alluvial deposit is located at the foot of the Bamboutos mountains (West Cameroon) where three types of clayey materials are widespread. The populations collect these clays in their natural state in view of constructions using fired bricks or compressed blocks. Unfortunately, these buildings are not strong. This study investigates the causes of the strengthlessness of buildings and suggests solutions to overcome the difficulty. The research content includes field and laboratory studies. The methodology consists of sampling black (AN), white (AB) and red (AR) clays specimens identified in the study area and analysing them simultaneously at MIPROMALO (Cameroon) and at ACME LAB in Vancouver (Canada). The results obtained show a high sand content in the samples AN (64%), AB (55.2%), AR (30.9%). The compressive strength of the built specimens is low at 900˚C considered as the traditional firing temperature AN (0.94 MPa), AB (5.25 MPa), AR (2.18 MPa). The mineralogical series are identically made by kaolinite, chlorite, gibbsite, quartz, muscovite, biotite, goethite, magnetite and hematite. Silica (SiO2) presents higher contents AN (52.87%), AB (48.02%), AR (47.68%) followed by alumina (Al2O3) AN (29.96%), AB (28.13%), AR (24.72%). The other elements are poorly represented.
基金the funding support provided by National Natural Science Foundation of China(Grant No.42177121)Thammasat University Research Unit in Structural and Foundation Engineering.
文摘This study presents a hybrid framework to predict stability solutions of buried structures under active trapdoor conditions in natural clays with anisotropy and heterogeneity by combining physics-based and data-driven modeling.Finite-element limit analysis(FELA)with a newly developed anisotropic undrained shear(AUS)failure criterion is used to identify the underlying active failure mechanisms as well as to develop a numerical(physics-based)database of stability numbers for both planar and circular trapdoors.Practical considerations are given for natural clays to three linearly increasing shear strengths in compression,extension,and direct simple shear in the AUS material model.The obtained numerical solutions are compared and validated with published solutions in the literature.A multivariate adaptive regression splines(MARS)algorithm is further utilized to learn the numerical solutions to act as fast FELA data-driven surrogates for stability evaluation.The current MARS-based modeling provides both relative importance index and accurate design equations that can be used with confidence by practitioners.
文摘Our study focused on the valuation of Tchiky clays. This work aims to evaluate its properties to explore possible uses in pharmacy. Physico-chemical and mineralogical characterizations were carried out, as well as pharmacopoeial tests and an evaluation of the antioxidant activity. Thus, chemical analysis by X-ray fluorescence spectrometry gave silicon (55.65%), iron (15.73%), aluminum (13.53%), potassium (6.05%), titanium (3.98%), magnesium (2.10%), and calcium (0.82%). X-ray diffraction showed the presence of kaolinite, quartz and illite. This study also revealed that the sample studied was essentially a plastic clay of hard consistency, with average flowability. The evaluation of the antioxidant activity gave a percentage inhibition of 62.97% for a concentration of 7.5 g/l with an IC50 of 5.5 g/l. These results should allow use as an excipient in pharmacy, particularly in liquid, semi-liquid and pasty formulations.
文摘In C ?te d’Ivoire, traditional ceramics are widely used in the form of pottery. The latter is used to store food, water and cereals. Analyzes (X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), inductive plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM) and analysis thermal gravimetric (ATG)) were carried out to determine the morphology, the chemical, physical and pedological constituents of these raw materials. It appears from this study that the clays used in the Mangoro pottery of Katiola contain silica SiO<sub>2</sub>, alumina Al<sub>2</sub>O<sub>3</sub> and iron oxide Fe<sub>2</sub>O<sub>3</sub> as well as kaolinite, muscovite, smectite and quartz.
文摘The paper talks about the elaboration of geopolymer with two types of kaolinite clays containing muscovite. The kaolinite materials were first calcined at different temperatures, and mixed with an activator solution, called liquid precursor, at a different solid/liquid mass ratio depending on their normal consistency to produce geopolymer binders. Results show that the geopolymer products obtained from the different clays have good physichomechanical properties: their open porosity and their water absorption rate decrease while their compressive strength and their apparent density increase with the increase in calcination temperature of the clays. The density of GABD binders varies between 2.92 and 2.47 g/cm<sup>3</sup> and that of GARD binders between 1.86 and 2.16 g/cm<sup>3</sup>. Specimens in the GABD series have the best mechanical performance, ranging from 14.43 to 31.37 MPa, while those in the GARD series oscillate between 6.18 and 11.56 MPa. These properties make kaolinite materials from this region suitable for use as construction materials for adequate waterproof structures.
文摘Adsorption of phenthoate and acetochlor onto kaolin, montmorillonite, bentonite clays and respective organoclays prepared by the exchange of quaternary ammonium as tetradecyltrimethyl ammonium bromide(TTAB), dodecyltrimethylammonium bromide(DTAB), and cetylpyridinium chloride(CPC) were studied. The adsorption equilibrium data points were fitted to Freundlich isotherm equations. The adsorption of phenthoate and acetochlor were significantly enhanced by surfactant treatment of the clays. The amount of both pesticides adsorbed per unit mass of organoclay followed the order of TTA-kaolin < TTA-montmorillonite < TTA-bentonite, which is inconsistent with the organic carbon content of the clays. The removal efficiency of organomontmorillonite to treat acetochlor is in the order of CP(C 16 )-montmorillonite > TTA(C 14 )-montmorillonite > DTA(C 12 )-montmorillonite. Phenthoate is adsorbed to greater extent than acetochlor by each adsorbent, which may be due to the higher hydrophobicity of phenthoate, indicating considerable hydrophobic interaction between adsorbent/adsorbate systems.
文摘Quantitatively correcting the unconfined compressive strength for sample disturbance is an important research project in the practice of ocean engineering and geotechnical engineering. In this study, the specimens of undisturbed natural marine clay obtained from the same depth at the same site were deliberately disturbed to different levels. Then, the specimens with different extents of sample disturbance were trimmed for both oedometer tests and unconfined compression tests. The degree of sample disturbance SD is obtained from the oedometer test data. The relationship between the unconfined compressive strength q u and SD is studied for investigating the effect of sample disturbance on q u. It is found that the value of q u decreases linearly with the increase in SD. Then, a simple method of correcting q u for sample disturbance is proposed. Its validity is also verified through analysis of the existing published data.
基金Project supported by the National Natural Science Fund. (Nos. E 85111 and 4890275)
文摘The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of organic phenols with montmorillonite, illite and kaolinite in seawater is monovalent anion exchage.(2) Their isotherms of stepwise exchage on clay surfaces belong to the Langmuir type or stepwise type.(3) The discovery of the"steric hindrance effects of stepwise exchange of organic phenols on clays surfaces", and revelation of an exchange mechanisrn diffeient from that in references are the greatest achieverments in this work.
基金financially supported by the Natural Science Foundation of Hunan Province(2021JJ30679)。
文摘Deep excavation during the construction of underground systems can cause movement on the ground,especially in soft clay layers.At high levels,excessive ground movements can lead to severe damage to adjacent structures.In this study,finite element analyses(FEM)and the hardening small strain(HSS)model were performed to investigate the deflection of the diaphragm wall in the soft clay layer induced by braced excavations.Different geometric and mechanical properties of the wall were investigated to study the deflection behavior of the wall in soft clays.Accordingly,1090 hypothetical cases were surveyed and simulated based on the HSS model and FEM to evaluate the wall deflection behavior.The results were then used to develop an intelligent model for predicting wall deflection using the functional linked neural network(FLNN)with different functional expansions and activation functions.Although the FLNN is a novel approach to predict wall deflection;however,in order to improve the accuracy of the FLNN model in predicting wall deflection,three swarm-based optimization algorithms,such as artificial bee colony(ABC),Harris’s hawk’s optimization(HHO),and hunger games search(HGS),were hybridized to the FLNN model to generate three novel intelligent models,namely ABC-FLNN,HHO-FLNN,HGS-FLNN.The results of the hybrid models were then compared with the basic FLNN and MLP models.They revealed that FLNN is a good solution for predicting wall deflection,and the application of different functional expansions and activation functions has a significant effect on the outcome predictions of the wall deflection.It is remarkably interesting that the performance of the FLNN model was better than the MLP model with a mean absolute error(MAE)of 19.971,root-mean-squared error(RMSE)of 24.574,and determination coefficient(R^(2))of 0.878.Meanwhile,the performance of the MLP model only obtained an MAE of 20.321,RMSE of 27.091,and R^(2)of 0.851.Furthermore,the results also indicated that the proposed hybrid models,i.e.,ABC-FLNN,HHO-FLNN,HGS-FLNN,yielded more superior performances than those of the FLNN and MLP models in terms of the prediction of deflection behavior of diaphragm walls with an MAE in the range of 11.877 to 12.239,RMSE in the range of 15.821 to 16.045,and R^(2)in the range of 0.949 to 0.951.They can be used as an alternative tool to simulate diaphragm wall deflections under different conditions with a high degree of accuracy.
文摘A thermo-mechanical constitutive model for unsaturated clays is constructed based on the existingmodel for saturated clays originally proposed by the authors. The saturated clays model was formulatedin the framework of critical state soil mechanics and modified Cam-clay model. The existing model hasbeen generalized to simulate the experimentally observed behavior of unsaturated clays by introducingBishop's stress and suction as independent stress parameters and modifying the hardening rule and yieldcriterion to take into account the role of suction. Also, according to previous studies, an increase intemperature causes a reduction in specific volume. A reduction in suction (wetting) for a given confiningstress may induce an irreversible volumetric compression (collapse). Thus an increase in suction (drying)raises a specific volume i.e. the movement of normal consolidation line (NCL) to higher values of voidratio. However, some experimental data confirm the assumption that this reduction is dependent on thestress level of soil element. A generalized approach considering the effect of stress level on themagnitude of clays thermal dependency in compression plane is proposed in this study. The number ofmodeling parameters is kept to a minimum, and they all have clear physical interpretations, to facilitatethe usefulness of model for practical applications. A step-by-step procedure used for parameter calibrationis also described. The model is finally evaluated using a comprehensive set of experimental datafor the thermo-mechanical behavior of unsaturated soils.2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金Fund supported by the National Natural Science Foundation of China(No.20376075)Zhejiang Provincial Natural Science Foundation(No.201057)are acknowledged.
文摘Mesoporous silicoaluminum pillared clays have been synthesized by one-potgallery-templated synthesis using organomontmorillonite, tetraethyl orthosilicate and aluminaisopropoxide as precursor. According to the characterization by powder X-ray diffraction(PXRD), thermogravimetric analysis (TGA), N2 adsorption isotherms and pyridine adsorptioninfrared (IR) techniques, the synthetic silicoaluminum pillared clays possess regular porosity withhigh thermal stability up to 750 ℃ and Br?nsted /Lewis acidity.
基金Research Committee of the University of Macao under Grant No.MYRG2015-00048-FST
文摘Evaluation of the cyclic shear modulus of soils is a crucial but challenging task for many geotechnical earthquake engineering and soil dynamic issues. Improper determination of this property unnecessarily drives up design and maintenance costs or even leads to the construction of unsafe structures. Due to the complexities involved in the direct measurement, empirical curves for estimating the cyclic shear modulus have been commonly adopted in practice for simplicity and economical considerations. However, a systematic and robust approach for formulating a reliable model and empirical curve for cyclic shear modulus prediction for clayey soils is still lacking. In this study, the Bayesian model class selection approach is utilized to identify the most significant soil parameters affecting the normalized cyclic shear modulus and a reliable predictive model for normally to moderately over-consolidated clays is proposed. Results show that the predictability and reliability of the proposed model out performs the well-known empirical models. Finally, a new design chart is established for practical usage.
文摘In this paper, a critical state based thermo-elasto-plastic constitutive model is developed for destructured, naturally structured and artificially structured saturated clays. The model is an extension of the previously developed thermo-mechanical model by the authors for saturated clays, considering the effects of structure on the mechanical behaviors of the soil. It is based on change in the position of normal consolidation line(NCL) in a compression plane(e-ln p′) due to the soil’s structure and variation of temperature. The present model is able to simulate the mechanical behavior of structured saturated clays in a triaxial plane at elevated temperatures lower than the boiling point of water. An attempt has been made to use the lowest possible number of parameters compared with that of Came Clay model and to ensure that these new parameters have clear physical interpretations. The sufficiency of the model was verified by the test results on artificially and naturally structured soils using thermal triaxial tests.
文摘The present paper should be considered as a review of the application of Fourier Transform Infra-Red for surface clay characterization. The application of surface clay materials for water treatment, oil adsorption, excipients or as active in drugs has largely increased these recent years. The surface clay material presents hydroxyl groups, which can link very easily water molecules. These hydroxyl groups can react with organic groups and by their vibration in the infra-red region, FT-IR can be easily used as a technical method for surface clay characterization. In this paper, we focus on the determination of Lewis and Bronsted acid sites on the clay surface, a critical review of the sample preparation, the surface characterization of bulk clay and the modified surface clay samples using FT-IR spectroscopy.
文摘The available data have shown that acid-leached clays had sites for adsorption of impurities in oils. Data obtained on residual impurities in cotton and sunflower-seed oils bleached with the same clay materials produced linear Langmuir and Freundlich isotherms. The increase in constant, k with increase in both temperature of thermal activation and concentration of acid used to leach the clay, suggests that bleaching efficiency increased. The value of n decreased with increase in temperature of activation and concentration of acid used to leach the clay suggesting that bleaching capacity increased. The mineral compositions of the clays influenced their surface, structural and bleaching properties.
基金Projects(41372285,41272317,51278449,51238009)supported by the National Natural Science Foundation of ChinaProject(20110073120012)supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject(PIAPP-GA2011-286397)supported by the European Program CREEP
文摘This work focuses on the uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays under one-dimensional condition. An elasto-viscoplastic model is briefly introduced based on the rate-dependency of preconsolidation pressure. By comparing the rate-dependency formulation with the creep based formulation, the relationship between rate-dependency and creep behaviors is firstly described. The rate-dependency based formulation is then extended to derive an analytical solution for the stress relaxation behavior with defining a stress relaxation coefficient. Based on this, the relationship between the rate-dependency coefficient and the stress relaxation coefficient is derived. Therefore, the uniqueness between behaviors of rate-dependency, creep and stress relaxation with their key parameters is obtained. The uniqueness is finally validated by comparing the simulated rate-dependency of preconsolidation pressure, the estimated values of secondary compression coefficient and simulations of stress relaxation tests with test results on both reconstituted Illite and Berthierville clay.
基金Project(07JCZDJC09800) supported by Tianjin Natural Science FoundationProject(50508021) supported by the National Natural Science Foundation of China
文摘An improved damaging model formulated within the framework of bounding surface for structured clays was proposed. The model was intended to describe the effects of structure degradation due to geotechnical loading. The predictive capability of the model was compared with those of triaxial compression test on Tianjin soft clays. The results show that, by incorporating a new damage function into the model, the reduction of elastic bulk and shear modulus with elastic deformations and the reduction of plastic bulk modulus and shear modulus with plastic deformations are able to be appreciable. Before the axial strain reaches 15%, the axial strain computed from the model is smaller than that from the test under the drained condition. Under the undrained condition, after the axial strain reaches 1%, the axial strain increases quickly because of the complete loss of structure and stiffness; and the result computed from the model is nearly equal to that from the model without the incorporation of the damage function due to less plastic strain under undrained condition test.
基金supported by the National Key R&D Program of China (No. 2016YFC0302301)the National Natural Science Foundation of China (No. 51479183)
文摘An extreme sea storm process can lead to a jack-up rig under the combined loading condition of vertical load(V), horizontal load(H), and moment(M) to have stability problems. This paper presents the analysis of combined bearing capacities of a circular spudcan on layered clays with a strong layer overlying a comparatively weaker layer. Numerical models combined with displacement-based load tests, swipe tests, and constant ratio displacement probe tests are adopted to calculate the uniaxial bearing capacities, failure envelopes in combined V-H, V-M planes, and failure envelopes in a combined V-H-M load space, respectively. A parametric study on the effects of vertical load level V, the layer strength ratio s_(u,t)/s_(u,b), and the hard layer thickness t_1 on the bearing capacities is then performed. Results show that the vertical load level is a key factor that influences the values of H and M and the size of the H-M failure envelope. The existence of the underlying weak clay decreases the bearing capacities in all directions, and the vertical capacity Vult is affected more than the horizontal(H_(ult)) and moment(M_(ult)) capacities based on a single uniform deposit. The influence of the underlying weak clay on H-M failure envelope is mainly shown where H and M are coupled in the same direction. In contrast, little difference is observed when H and M are coupled in opposite directions.
基金Supported by the National Natural Science Foundation of China for Young Scholars(No.40906055)the National Natural Science Foundation of China for Creative Research Groups(No.41121064)the National Basic Research Programof China (973 Program) (No.2010CB428706)
文摘Algal organic materials (AOMs) are one critical factor affecting the efficiency of modified clays used for the mitigation of harrnful algal blooms (HABs). This study was conducted to develop a deeper understanding of the mechanisms and factors affecting the adsorption of AOMs onto modified clays. Sodium alginate (polysaccharide) and kaolinite modified with polyaluminium chloride (PAC1) were used as AOMs and modified clay model substances, respectively, and the effects of modifier dosage, contact time, solution pH and ionic strength were investigated through batch adsorption experiments. Kinetics revealed that the alginate adsorption rate was described well by a pseudo-second order model. PACl effectively enhanced the adsorption capacity of kaolinite and increased the adsorption rate, and the optimum additive amount of PACl was 5%. The experimental data fitted both the Freundlich and Langmuir adsorption equations well. The adsorption thermodynamics for alginate onto modified clays suggests that alginate adsorption is a spontaneous process. The adsorption of alginate onto modified clays was highly dependent on pH, with a decrease in adsorption observed with increased pH to 9.48, but the opposite was true above pH 9.48. Finally, adsorption increased with increasing ionic strength.