The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demand...Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demands on coke quality in a blast furnace.In a hydrogen-rich blast furnace,the presence of H_(2)O promotes the solution loss reaction.This result improves the reactivity of coke,which is 20%-30%higher in a pure H_(2)O atmosphere than in a pure CO_(2)atmosphere.The activation energy range is 110-300 kJ/mol between coke and CO_(2)and 80-170 kJ/mol between coke and H_(2)O.CO_(2)and H_(2)O are shown to have different effects on coke degradation mechanisms.This review provides a comprehensive overview of the effect of H_(2)O on the structure and properties of coke.By exploring the interactions between H_(2)O and coke,several unresolved issues in the field requiring further research were identified.This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes.展开更多
Understanding the coking behaviors has been considered to be really essential for developing better vacuum residue processing technologies.A battery of thermal cracking tests of typical vacuum residue at 410℃ with va...Understanding the coking behaviors has been considered to be really essential for developing better vacuum residue processing technologies.A battery of thermal cracking tests of typical vacuum residue at 410℃ with various reaction time were performed to evaluate the coke formation process.The total yields of ideal components including naphtha,atmospheric gas oil(AGO)and vacuum gas oil(VGO)of thermal cracking reactions increased from 10.89%to 40.81%,and the conversion ratios increased from8.05%to 43.33%with increasing the reaction time from 10 to 70 min.The asphaltene content increased from 12.14%to a maximum of 22.39%and then decreased,and this maximum of asphaltene content occurred at the end of the coking induction period.The asphaltenes during the coking induction period,at the end and after coking induction period of those tested thermal cracking reactions were characterized to disclose the structure changing rules for coke formation process,and the coke formation pathways were discussed to reveal the coke formation process at molecular level.展开更多
In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction m...In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.展开更多
Effect of sulfur impurity on coke reactivity was investigated by simulating petroleum coke with low-impurity pitch coke and impurities doping. And its mechanism was discussed by X-ray diffraction (XRD), scanning elect...Effect of sulfur impurity on coke reactivity was investigated by simulating petroleum coke with low-impurity pitch coke and impurities doping. And its mechanism was discussed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The results show that sulfur has strong catalysis on both air and CO2 reactivity of coke in the case of no other impurity interference. Its catalysis is probably realized by triggering organic sulfur→H2S→SO2→COS and elemental sulfur (Sx)→SO2 and organic sulfur→H2S→COS→Sx→C2S→COS reaction systems during coke?O2 and coke?CO2 reactions, respectively, which are partly circular with functions of increasing carbon consumption and enlarging coke specific surface area.展开更多
Combustion and sulfur retention experiments of mixed fuel of petroleum cokeand coal were conducted on a pilot-scale circulating fluidized bed (CFB) combustor with the thermalinput of 0. 6 MW. The effects of several pa...Combustion and sulfur retention experiments of mixed fuel of petroleum cokeand coal were conducted on a pilot-scale circulating fluidized bed (CFB) combustor with the thermalinput of 0. 6 MW. The effects of several parameters, such as the primary air percentage, excess aircoefficient, bed temperature, Ca/S molar ratio and mass ratio of petroleum coke to coal on SO_2emission were verified. Experimental results show that when the ratio of petroleum coke to coal inthe mixed fuel increases, the SO_2emission increases. The maximum SO_2 emission appears when purecoke burns. The SO_2 concentration in flue gas reduces with the increase in the primary airpercentage, excess air coefficient and Ca/S molar ratio for all kinds of fuel mixtures. Therangebetween 830 t and 850 t is the optimal temperature for sulfur retention during co-firing ofpetroleum coke and coal with the mass ratio R of 1 and 3 in CFB.展开更多
Ni-Cu/ZrO2-CeO2-Al2O3 catalysts were prepared by co-precipitation method at pH=9 and using Na2CO3 as the precipitant. The Ni loading (mass fraction) of the catalysts was 10%. The catalysts were characterized by X-ra...Ni-Cu/ZrO2-CeO2-Al2O3 catalysts were prepared by co-precipitation method at pH=9 and using Na2CO3 as the precipitant. The Ni loading (mass fraction) of the catalysts was 10%. The catalysts were characterized by X-ray diffraction, temperature-programmed oxidation (TPO), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The effects of calcined temperature of support on coke deposition were studied. TPO, SEM and XPS results indicated there was no peak of higher temperature oxygen consumption on Ni-Cu/ZrO2-CeO2-Al2O3 catalyst (support was calcined at 800 ℃), which could lead to the deactivation of the catalyst. The carbon species were carbonate and inactive carbon (filamentous carbon species) on the surface of catalyst reacting for 40 h which perhaps led to the deactivation of the catalyst.展开更多
The gasification characteristics and gasification kinetics of coke in complex CO2/CO/H2/H2O/N2 systems similar to the gas system of industrial blast furnace (BF) were studied by the method of isothermal thermogravimet...The gasification characteristics and gasification kinetics of coke in complex CO2/CO/H2/H2O/N2 systems similar to the gas system of industrial blast furnace (BF) were studied by the method of isothermal thermogravimetric analysis. The experimental gas compositions and the corresponding temperature were chosen according to data reported for industrial BFs. The gasification behavior of coke was described by the Random Pore Model (RPM), Volumetric Model (VM), and Grain Model (GM). Results showed that the gas composition of the coke gasification zone in BF changes slightly and that the temperature is the most important factor affecting coke gasification. The lower activation energy of coke samples (Coke Reaction Index (CRI)>50) is due to the high Fe2O3 in the ash, lower degree of graphitization, and larger pore structure. In addition, the choice of kinetic model does not differ substantially in describing the gasification mechanism of coke in a BF.展开更多
In this article, coke plant wastewater was treated by a simultaneous nitrifying and denitrifying (SND) fixed biofilm hybrid system. The results showed that suitable parameters of the system were important for the pe...In this article, coke plant wastewater was treated by a simultaneous nitrifying and denitrifying (SND) fixed biofilm hybrid system. The results showed that suitable parameters of the system were important for the performance of the bio-degradation system. The chemical oxygen demand (COD) removal efficiency in this system was satisfactory, higher than 94%, and ammonia nitrogen was higher than 95%. The effluent COD concentration could meet the discharge standard, except for very few situations. The results showed that a sufficient carbon source was important for making ammonia nitrogen concentration meet the discharge standard. Then the TiN removal efficiency in this system can be brought higher than 94%. Dissolved oxygen (DO) is very important to the performance of the SND bio-degradation system, and the suitable DO is about 3.5-4.0 mg/L at the forepart of reactor. In addition, the performance of the system was almost not affected by pH value. The results show that the system is feasible to treat coke plant wastewater.展开更多
To more comprehensively analyze the effect of CO_2 and H_2O on the gasification dissolution reaction and deep reaction of coke, the reactions of coke with CO_2 and H_2O using high temperature gas–solid reaction appar...To more comprehensively analyze the effect of CO_2 and H_2O on the gasification dissolution reaction and deep reaction of coke, the reactions of coke with CO_2 and H_2O using high temperature gas–solid reaction apparatus over the range of 950–1250°C were studied, and the thermodynamic and kinetic analyses were also performed. The results show that the average reaction rate of coke with H_2O is about 1.3–6.5 times that with CO_2 in the experimental temperature range. At the same temperature, the endothermic effect of coke with H_2O is less than that with CO_2. As the pressure increases, the gasification dissolution reaction of coke shifts to the high-temperature zone. The use of hydrogen-rich fuels is conducive to decreasing the energy consumed inside the blast furnace, and a corresponding high-pressure operation will help to suppress the gasification dissolution reaction of coke and reduce its deterioration. The interfacial chemical reaction is the main rate-limiting step over the experimental temperature range. The activation energies of the reaction of coke with CO_2 and H_2O are 169.23 kJ ·mol-1 and 87.13 kJ·mol^(-1), respectively. Additionally, water vapor is more likely to diffuse into the coke interior at a lower temperature and thus aggravates the deterioration of coke in the middle upper part of blast furnace.展开更多
Through different preparation technology, this paper reports that the needle coke is prepared with coal-tar pitch under the effect of magnetic field and ultrasonic cavitation. It studies the effect of physical disturb...Through different preparation technology, this paper reports that the needle coke is prepared with coal-tar pitch under the effect of magnetic field and ultrasonic cavitation. It studies the effect of physical disturbance on the structure of needle coke. The structure of needle coke is characterized by scanning electron microscope and x-ray diffractometer, and the influence mechanism is analysed. Results showed that the structure and property of needle coke could be effectively improved by magnetic field and ultrasonic cavitations, such as degree of order, degree of graphitization and crystallization. Comparatively speaking, the effect of magnetic field was greater. The graphitization degree of needle coke prepared under the effect of magnetic field is up to 45.35%.展开更多
The oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets(CVTP)with Cr2O3 addition were studied,and the reduction swelling index(RSI)and compressive strength(CS)of t...The oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets(CVTP)with Cr2O3 addition were studied,and the reduction swelling index(RSI)and compressive strength(CS)of the reduced CVTP with simulated coke oven gas(COG)injection were investigated.The results showed that the CS of the CVTP decreases and the porosity of the CVTP increases with increasing amount of Cr2O3 added.The Cr2O3 mainly exists in the form of(Cr,Fe)2O3 solid solution in the CVTP and as Fe-Cr in the reduced CVTP.The CS of the reduced CVTP increases and the RSI of the reduced CVTP decreases with increasing amount of Cr2O3 added.The limited aggregation and diffusion of metallic iron contribute to the formation of dense lamellar crystals,which leads to the slight decrease for reduction swelling behavior of reduced CVTP.This work provides a theoretical and technical basis for the utilization of CVTP and other Cr-bearing ores such as chromite with COG recycling technology.展开更多
In fluid catalytic cracking(FCC) unit, it is greatly important to control the coke yield, since the increase of coke yield not only leads to the reduction of total liquid yield, but also affects the heat balance and o...In fluid catalytic cracking(FCC) unit, it is greatly important to control the coke yield, since the increase of coke yield not only leads to the reduction of total liquid yield, but also affects the heat balance and operation of FCC unit. Consequently, it is significant to predict the coke yield accurately. The coke formation and burning reactions are affected by many parameters which influence each other, so it is difficult to establish a prediction model using traditional models. This paper combines the industrial production data and establishes a generalized regression neural network(GRNN) model and a back propagation(BP) neural network model to predict the coke yield respectively. The comparison and analysis results show that the accuracy and stability of the BP neural network prediction results are better than that of the GRNN. Then, the particle swarm optimization to optimize BP neural network(PSO-BP) and genetic algorithm to optimize the BP neural network(GA-BP) were further used to improve the prediction precision. The comparison of these models shows that they can improve the prediction precision. However, considering the accuracy and stability of the prediction results, the GA-BP model is better than PSO-BP model.展开更多
In industrial catalytic processes,coke deposition can cause catalyst deactivation by covering acid sites and/or blocking pores.The regeneration of deactivated catalysts,thereby removing the coke and simultaneously res...In industrial catalytic processes,coke deposition can cause catalyst deactivation by covering acid sites and/or blocking pores.The regeneration of deactivated catalysts,thereby removing the coke and simultaneously restoring the catalytic activity,is highly desired.Despite various chemical reactions and methods are available to remove coke,developing reliable,efficient,and economic regeneration methods for catalytic processes still remains a challenge in industrial practice.In this paper,the current progress of regeneration methods such as oxidation(air,ozone and oxynitride),gasification(carbon dioxide and water steam),and hydrogenation(hydrogen)is reviewed,which hopefully can shed some light on the design and optimization of catalysts and the related processes.展开更多
MgO-modified Ni/Al2O3 catalysts with different Ni loadings were prepared and employed in dry reforming of methane (DRM). The effect of Ni loadings on the activity and coke formation of Ni/MgO-A1203 catalysts were in...MgO-modified Ni/Al2O3 catalysts with different Ni loadings were prepared and employed in dry reforming of methane (DRM). The effect of Ni loadings on the activity and coke formation of Ni/MgO-A1203 catalysts were investigated. The synthesized catalysts were characterized by XRD, N2 adsorption-desorption, SEM, TPO and TPR techniques. The obtained results showed that increasing nickel loading decreased the BET surface area and increased the catalytic activity and amount of deposited carbon. In addition, the effect of gas hourly space velocity (GHSV) and feed ratio were studied.展开更多
Coke plant effluents with high contents of organic compounds are mainly treated by biological aerobic fermentation after physical pre-treatment. In this study, a brown coal condensate wastewater from a low temperature...Coke plant effluents with high contents of organic compounds are mainly treated by biological aerobic fermentation after physical pre-treatment. In this study, a brown coal condensate wastewater from a low temperature coking process was fermented under methanogenic conditions in discontinuous experiments. By this fermentation, acetate, propionate, and the main polyphenolic compounds (catechol, resorcinol and hydroquinone) were degraded to a level below the detection limit. The COD was reduced by 72% with a residual concentration of 2.1 g/L. This anaerobic fermented wastewater had a residual BOD5 of 0.66 g/L and 2.2 L CH4 were formed per litre of wastewater. An abiotic pre-treatment for this wastewater with air had a negative effect on the COD reduction and decrease of colour on the methanogenic fermentation due to the autoxidation of polyphenolic compounds to humic-like compounds. This study showed that methanogenic fermentations in the treatment sequence of brown coal coking wastewaters could reduce energy consumption for aeration in further treatment processes and had the potential for a better effluent quality due to a less formation of recalcitrant humic-like compounds.展开更多
To explore the iron coke application in hydrogen-rich blast furnace,which is an effective method to achieve the purpose of low carbon emissions,the initial gasification temperature of iron coke in CO_(2) and H_(2)O at...To explore the iron coke application in hydrogen-rich blast furnace,which is an effective method to achieve the purpose of low carbon emissions,the initial gasification temperature of iron coke in CO_(2) and H_(2)O atmosphere and its cogasification reaction mechanism with coke were systematically studied.Iron coke was prepared under laboratory conditions,with a 0-7wt%iron ore powder addition.The properties of iron cokes were tested by coke reactivity index(CRI)and coke strength after reaction(CSR),and their phases and morphology were evolution discussed by scanning electron microscopy and X-ray diffraction analysis.The results indicated that the initial gasification temperature of iron coke decreased with the increase in the iron ore powder content under the CO_(2) and H_(2)O_((g))atmosphere.In the 40vol%H_(2)O+60vol%CO_(2) atmosphere,CRI of iron coke with the addition of 3wt%iron ore powder reached 58.7%,and its CSR reached 56.5%.Because of the catalytic action of iron,the reaction capacity of iron coke was greater than that of coke.As iron coke was preferentially gasified,the CRI and CSR of coke were reduced and increased,respectively,when iron coke and coke were cogasified.The results showed that the skeleton function of the coke can be protected by iron coke.展开更多
In order to improve the thermal properties of coke, an industrial experiment on the coke spraying with ZBS additive solution was carried out at coking plant and No. 6 blast furnace (2 000 m^3 ) of Kunming Iron and S...In order to improve the thermal properties of coke, an industrial experiment on the coke spraying with ZBS additive solution was carried out at coking plant and No. 6 blast furnace (2 000 m^3 ) of Kunming Iron and Steel Co Ltd. The coke reaction index (CRI) of the coke spraying with ZBS additive solution decreases by 10. 56 %, and the coke strength after reaction (CSR) increases by 7.80% in comparison with those of the un-sprayed coke. During the experiment, the average iron output increases by 66. 69 t/d, and the coke rate is reduced by 5. 21 kg per ton iron, while the fluctuation of furnace temperture is small, and sulphur content in hot metal and 100% of hot metal are acceptable.展开更多
The catalysis of K2CO3 on the reactivity of top charged coke and stamp charged coke from Pansteel in China was studied. The coke reaction index of the stamp charged coke was 1%-2% higher than that of the top charged c...The catalysis of K2CO3 on the reactivity of top charged coke and stamp charged coke from Pansteel in China was studied. The coke reaction index of the stamp charged coke was 1%-2% higher than that of the top charged coke. Under the catalysis of K2CO3, the coke reaction index of both cokes approximately increased by 4%, 6%, 10% and 6% at 900, 1000, 1100 and 1200℃, respectively. The reactivity of the K-enriched stamp charged coke was 1%-2% higher than that of the K-enriched top charged coke below 1100℃. However, only negligible differences were found in the temperature zone between 1100 and 1200℃. Scanning electron microscopy images illustrated that pores in the top charged coke were smaller and equally distributed, while relatively more big pores exist non-homogenously in stamp charged coke. Due to the different processes in production, the stamp charged coke was more porous and most of the pores tended to be applanate. Cracks were observed in the microstructure of the stamp charged coke during the carbon solution reaction, implying the inferior quality of the stamp charged coke to the top charged coke at high temperature. Diffusion of K during the carbon solution reaction was studied by the energy dispersive spectrometry. It is found that K gradually spreads into the center of lumpy coke with the rising of temperature and is equally distributed on the edges of pores at 1200℃. Besides, oxidation reactions of functional groups become faster with the catalysis of K.content展开更多
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
基金financially supported by the Young Elite Scientist Sponsorship Program by CAST(No.YESS20210090)the National Natural Science Foundation of China(No.51974019),Beijing Natural Science Foundation(J210017)China Baowu Low Carbon Metallurgy Innovation Foundation(Nos.BWLCF202119 and BWLCF 202117)。
文摘Hydrogen-enriched blast furnace ironmaking has become an essential route to reduce CO_(2)emissions in the ironmaking process.However,hydrogen-enriched reduction produces large amounts of H_(2)O,which places new demands on coke quality in a blast furnace.In a hydrogen-rich blast furnace,the presence of H_(2)O promotes the solution loss reaction.This result improves the reactivity of coke,which is 20%-30%higher in a pure H_(2)O atmosphere than in a pure CO_(2)atmosphere.The activation energy range is 110-300 kJ/mol between coke and CO_(2)and 80-170 kJ/mol between coke and H_(2)O.CO_(2)and H_(2)O are shown to have different effects on coke degradation mechanisms.This review provides a comprehensive overview of the effect of H_(2)O on the structure and properties of coke.By exploring the interactions between H_(2)O and coke,several unresolved issues in the field requiring further research were identified.This review aims to provide valuable insights into coke behavior in hydrogen-rich environments and promote the further development of hydrogen-rich blast furnace ironmaking processes.
文摘Understanding the coking behaviors has been considered to be really essential for developing better vacuum residue processing technologies.A battery of thermal cracking tests of typical vacuum residue at 410℃ with various reaction time were performed to evaluate the coke formation process.The total yields of ideal components including naphtha,atmospheric gas oil(AGO)and vacuum gas oil(VGO)of thermal cracking reactions increased from 10.89%to 40.81%,and the conversion ratios increased from8.05%to 43.33%with increasing the reaction time from 10 to 70 min.The asphaltene content increased from 12.14%to a maximum of 22.39%and then decreased,and this maximum of asphaltene content occurred at the end of the coking induction period.The asphaltenes during the coking induction period,at the end and after coking induction period of those tested thermal cracking reactions were characterized to disclose the structure changing rules for coke formation process,and the coke formation pathways were discussed to reveal the coke formation process at molecular level.
基金supported by the Qingdao Postdoctoral Program Funding(QDBSH20220202045)Shandong provincial Natural Science Foundation(ZR2021ME049,ZR2022ME176)+1 种基金National Natural Science Foundation of China(22078176)Taishan Industrial Experts Program(TSCX202306135).
文摘In this study,the impact of different reaction times on the preparation of powdered activated carbon(PAC)using a one-step rapid activation method under flue gas atmosphere is investigated,and the underlying reaction mechanism is summarized.Results indicate that the reaction process of this method can be divided into three stages:stage I is the rapid release of volatiles and the rapid consumption of O_(2),primarily occurring within a reaction time range of 0-0.5 s;stage II is mainly the continuous release and diffusion of volatiles,which is the carbonization and activation coupling reaction stage,and the carbonization process is the main in this stage.This stage mainly occurs at the reaction time range of 0.5 -2.0 s when SL-coal is used as material,and that is 0.5-3.0 s when JJ-coal is used as material;stage III is mainly the activation stage,during which activated components diffuse to both the surface and interior of particles.This stage mainly involves the reaction stage of CO_(2)and H2O(g)activation,and it mainly occurs at the reaction time range of 2.0-4.0 s when SL-coal is used as material,and that is 3.0-4.0 s when JJ-coal is used as material.Besides,the main function of the first two stages is to provide more diffusion channels and contact surfaces/activation sites for the diffusion and activation of the activated components in the third stage.Mastering the reaction mechanism would serve as a crucial reference and foundation for designing the structure,size of the reactor,and optimal positioning of the activator nozzle in PAC preparation.
基金Project(51374253)supported by the National Natural Science Foundation of China
文摘Effect of sulfur impurity on coke reactivity was investigated by simulating petroleum coke with low-impurity pitch coke and impurities doping. And its mechanism was discussed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The results show that sulfur has strong catalysis on both air and CO2 reactivity of coke in the case of no other impurity interference. Its catalysis is probably realized by triggering organic sulfur→H2S→SO2→COS and elemental sulfur (Sx)→SO2 and organic sulfur→H2S→COS→Sx→C2S→COS reaction systems during coke?O2 and coke?CO2 reactions, respectively, which are partly circular with functions of increasing carbon consumption and enlarging coke specific surface area.
文摘Combustion and sulfur retention experiments of mixed fuel of petroleum cokeand coal were conducted on a pilot-scale circulating fluidized bed (CFB) combustor with the thermalinput of 0. 6 MW. The effects of several parameters, such as the primary air percentage, excess aircoefficient, bed temperature, Ca/S molar ratio and mass ratio of petroleum coke to coal on SO_2emission were verified. Experimental results show that when the ratio of petroleum coke to coal inthe mixed fuel increases, the SO_2emission increases. The maximum SO_2 emission appears when purecoke burns. The SO_2 concentration in flue gas reduces with the increase in the primary airpercentage, excess air coefficient and Ca/S molar ratio for all kinds of fuel mixtures. Therangebetween 830 t and 850 t is the optimal temperature for sulfur retention during co-firing ofpetroleum coke and coal with the mass ratio R of 1 and 3 in CFB.
文摘Ni-Cu/ZrO2-CeO2-Al2O3 catalysts were prepared by co-precipitation method at pH=9 and using Na2CO3 as the precipitant. The Ni loading (mass fraction) of the catalysts was 10%. The catalysts were characterized by X-ray diffraction, temperature-programmed oxidation (TPO), scanning electron microscope (SEM), and X-ray photoelectron spectroscopy (XPS). The effects of calcined temperature of support on coke deposition were studied. TPO, SEM and XPS results indicated there was no peak of higher temperature oxygen consumption on Ni-Cu/ZrO2-CeO2-Al2O3 catalyst (support was calcined at 800 ℃), which could lead to the deactivation of the catalyst. The carbon species were carbonate and inactive carbon (filamentous carbon species) on the surface of catalyst reacting for 40 h which perhaps led to the deactivation of the catalyst.
基金financially supported by the National Key Research and Development Program of China (Nos. 2017YFB0304300 and 2017YFB0304303)the National Science Foundation of China (No. 51774032)the Chinese Fundamental Research Funds for the Central Universities (No. FRF-TP-17-086A1)
文摘The gasification characteristics and gasification kinetics of coke in complex CO2/CO/H2/H2O/N2 systems similar to the gas system of industrial blast furnace (BF) were studied by the method of isothermal thermogravimetric analysis. The experimental gas compositions and the corresponding temperature were chosen according to data reported for industrial BFs. The gasification behavior of coke was described by the Random Pore Model (RPM), Volumetric Model (VM), and Grain Model (GM). Results showed that the gas composition of the coke gasification zone in BF changes slightly and that the temperature is the most important factor affecting coke gasification. The lower activation energy of coke samples (Coke Reaction Index (CRI)>50) is due to the high Fe2O3 in the ash, lower degree of graphitization, and larger pore structure. In addition, the choice of kinetic model does not differ substantially in describing the gasification mechanism of coke in a BF.
文摘In this article, coke plant wastewater was treated by a simultaneous nitrifying and denitrifying (SND) fixed biofilm hybrid system. The results showed that suitable parameters of the system were important for the performance of the bio-degradation system. The chemical oxygen demand (COD) removal efficiency in this system was satisfactory, higher than 94%, and ammonia nitrogen was higher than 95%. The effluent COD concentration could meet the discharge standard, except for very few situations. The results showed that a sufficient carbon source was important for making ammonia nitrogen concentration meet the discharge standard. Then the TiN removal efficiency in this system can be brought higher than 94%. Dissolved oxygen (DO) is very important to the performance of the SND bio-degradation system, and the suitable DO is about 3.5-4.0 mg/L at the forepart of reactor. In addition, the performance of the system was almost not affected by pH value. The results show that the system is feasible to treat coke plant wastewater.
基金financially supported by the National Natural Science Foundation of China (No. 51474002)the National Science Foundation for Young Scientists of China (No. 51304014)the Yong Elite Scientists Sponsorship Program by CAST (No. 2017QNRC001)
文摘To more comprehensively analyze the effect of CO_2 and H_2O on the gasification dissolution reaction and deep reaction of coke, the reactions of coke with CO_2 and H_2O using high temperature gas–solid reaction apparatus over the range of 950–1250°C were studied, and the thermodynamic and kinetic analyses were also performed. The results show that the average reaction rate of coke with H_2O is about 1.3–6.5 times that with CO_2 in the experimental temperature range. At the same temperature, the endothermic effect of coke with H_2O is less than that with CO_2. As the pressure increases, the gasification dissolution reaction of coke shifts to the high-temperature zone. The use of hydrogen-rich fuels is conducive to decreasing the energy consumed inside the blast furnace, and a corresponding high-pressure operation will help to suppress the gasification dissolution reaction of coke and reduce its deterioration. The interfacial chemical reaction is the main rate-limiting step over the experimental temperature range. The activation energies of the reaction of coke with CO_2 and H_2O are 169.23 kJ ·mol-1 and 87.13 kJ·mol^(-1), respectively. Additionally, water vapor is more likely to diffuse into the coke interior at a lower temperature and thus aggravates the deterioration of coke in the middle upper part of blast furnace.
基金Project supported by the National Natural Science Foundation of China (Grant No. 20843002)the Scientific and Technological Foundation of Shanxi Province of China (Grant No. 20080321065)
文摘Through different preparation technology, this paper reports that the needle coke is prepared with coal-tar pitch under the effect of magnetic field and ultrasonic cavitation. It studies the effect of physical disturbance on the structure of needle coke. The structure of needle coke is characterized by scanning electron microscope and x-ray diffractometer, and the influence mechanism is analysed. Results showed that the structure and property of needle coke could be effectively improved by magnetic field and ultrasonic cavitations, such as degree of order, degree of graphitization and crystallization. Comparatively speaking, the effect of magnetic field was greater. The graphitization degree of needle coke prepared under the effect of magnetic field is up to 45.35%.
基金financially supported by the National Natural Science Foundation of China (Nos.51674084, 51174051, and 51574082)
文摘The oxidation induration and reduction swelling behavior of chromium-bearing vanadium titanomagnetite pellets(CVTP)with Cr2O3 addition were studied,and the reduction swelling index(RSI)and compressive strength(CS)of the reduced CVTP with simulated coke oven gas(COG)injection were investigated.The results showed that the CS of the CVTP decreases and the porosity of the CVTP increases with increasing amount of Cr2O3 added.The Cr2O3 mainly exists in the form of(Cr,Fe)2O3 solid solution in the CVTP and as Fe-Cr in the reduced CVTP.The CS of the reduced CVTP increases and the RSI of the reduced CVTP decreases with increasing amount of Cr2O3 added.The limited aggregation and diffusion of metallic iron contribute to the formation of dense lamellar crystals,which leads to the slight decrease for reduction swelling behavior of reduced CVTP.This work provides a theoretical and technical basis for the utilization of CVTP and other Cr-bearing ores such as chromite with COG recycling technology.
文摘In fluid catalytic cracking(FCC) unit, it is greatly important to control the coke yield, since the increase of coke yield not only leads to the reduction of total liquid yield, but also affects the heat balance and operation of FCC unit. Consequently, it is significant to predict the coke yield accurately. The coke formation and burning reactions are affected by many parameters which influence each other, so it is difficult to establish a prediction model using traditional models. This paper combines the industrial production data and establishes a generalized regression neural network(GRNN) model and a back propagation(BP) neural network model to predict the coke yield respectively. The comparison and analysis results show that the accuracy and stability of the BP neural network prediction results are better than that of the GRNN. Then, the particle swarm optimization to optimize BP neural network(PSO-BP) and genetic algorithm to optimize the BP neural network(GA-BP) were further used to improve the prediction precision. The comparison of these models shows that they can improve the prediction precision. However, considering the accuracy and stability of the prediction results, the GA-BP model is better than PSO-BP model.
文摘In industrial catalytic processes,coke deposition can cause catalyst deactivation by covering acid sites and/or blocking pores.The regeneration of deactivated catalysts,thereby removing the coke and simultaneously restoring the catalytic activity,is highly desired.Despite various chemical reactions and methods are available to remove coke,developing reliable,efficient,and economic regeneration methods for catalytic processes still remains a challenge in industrial practice.In this paper,the current progress of regeneration methods such as oxidation(air,ozone and oxynitride),gasification(carbon dioxide and water steam),and hydrogenation(hydrogen)is reviewed,which hopefully can shed some light on the design and optimization of catalysts and the related processes.
基金supported by the University of Kashan(Grant No.158426/16)
文摘MgO-modified Ni/Al2O3 catalysts with different Ni loadings were prepared and employed in dry reforming of methane (DRM). The effect of Ni loadings on the activity and coke formation of Ni/MgO-A1203 catalysts were investigated. The synthesized catalysts were characterized by XRD, N2 adsorption-desorption, SEM, TPO and TPR techniques. The obtained results showed that increasing nickel loading decreased the BET surface area and increased the catalytic activity and amount of deposited carbon. In addition, the effect of gas hourly space velocity (GHSV) and feed ratio were studied.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0853)
文摘Coke plant effluents with high contents of organic compounds are mainly treated by biological aerobic fermentation after physical pre-treatment. In this study, a brown coal condensate wastewater from a low temperature coking process was fermented under methanogenic conditions in discontinuous experiments. By this fermentation, acetate, propionate, and the main polyphenolic compounds (catechol, resorcinol and hydroquinone) were degraded to a level below the detection limit. The COD was reduced by 72% with a residual concentration of 2.1 g/L. This anaerobic fermented wastewater had a residual BOD5 of 0.66 g/L and 2.2 L CH4 were formed per litre of wastewater. An abiotic pre-treatment for this wastewater with air had a negative effect on the COD reduction and decrease of colour on the methanogenic fermentation due to the autoxidation of polyphenolic compounds to humic-like compounds. This study showed that methanogenic fermentations in the treatment sequence of brown coal coking wastewaters could reduce energy consumption for aeration in further treatment processes and had the potential for a better effluent quality due to a less formation of recalcitrant humic-like compounds.
基金financially supported by the National Natural Science Foundation of China(No.51576164)the Joint Research Fund of China Bao-Wu Iron and Steel Group Company Limited(Nos.U1860108 and U1860203)Science and Technology Commission of Shanghai Municipality,China(Nos.21DZ1208900 and 19DZ2270200)。
文摘To explore the iron coke application in hydrogen-rich blast furnace,which is an effective method to achieve the purpose of low carbon emissions,the initial gasification temperature of iron coke in CO_(2) and H_(2)O atmosphere and its cogasification reaction mechanism with coke were systematically studied.Iron coke was prepared under laboratory conditions,with a 0-7wt%iron ore powder addition.The properties of iron cokes were tested by coke reactivity index(CRI)and coke strength after reaction(CSR),and their phases and morphology were evolution discussed by scanning electron microscopy and X-ray diffraction analysis.The results indicated that the initial gasification temperature of iron coke decreased with the increase in the iron ore powder content under the CO_(2) and H_(2)O_((g))atmosphere.In the 40vol%H_(2)O+60vol%CO_(2) atmosphere,CRI of iron coke with the addition of 3wt%iron ore powder reached 58.7%,and its CSR reached 56.5%.Because of the catalytic action of iron,the reaction capacity of iron coke was greater than that of coke.As iron coke was preferentially gasified,the CRI and CSR of coke were reduced and increased,respectively,when iron coke and coke were cogasified.The results showed that the skeleton function of the coke can be protected by iron coke.
文摘In order to improve the thermal properties of coke, an industrial experiment on the coke spraying with ZBS additive solution was carried out at coking plant and No. 6 blast furnace (2 000 m^3 ) of Kunming Iron and Steel Co Ltd. The coke reaction index (CRI) of the coke spraying with ZBS additive solution decreases by 10. 56 %, and the coke strength after reaction (CSR) increases by 7.80% in comparison with those of the un-sprayed coke. During the experiment, the average iron output increases by 66. 69 t/d, and the coke rate is reduced by 5. 21 kg per ton iron, while the fluctuation of furnace temperture is small, and sulphur content in hot metal and 100% of hot metal are acceptable.
基金supported by the National Key Technologies R&D Program of China (No.2011BAC01B02)
文摘The catalysis of K2CO3 on the reactivity of top charged coke and stamp charged coke from Pansteel in China was studied. The coke reaction index of the stamp charged coke was 1%-2% higher than that of the top charged coke. Under the catalysis of K2CO3, the coke reaction index of both cokes approximately increased by 4%, 6%, 10% and 6% at 900, 1000, 1100 and 1200℃, respectively. The reactivity of the K-enriched stamp charged coke was 1%-2% higher than that of the K-enriched top charged coke below 1100℃. However, only negligible differences were found in the temperature zone between 1100 and 1200℃. Scanning electron microscopy images illustrated that pores in the top charged coke were smaller and equally distributed, while relatively more big pores exist non-homogenously in stamp charged coke. Due to the different processes in production, the stamp charged coke was more porous and most of the pores tended to be applanate. Cracks were observed in the microstructure of the stamp charged coke during the carbon solution reaction, implying the inferior quality of the stamp charged coke to the top charged coke at high temperature. Diffusion of K during the carbon solution reaction was studied by the energy dispersive spectrometry. It is found that K gradually spreads into the center of lumpy coke with the rising of temperature and is equally distributed on the edges of pores at 1200℃. Besides, oxidation reactions of functional groups become faster with the catalysis of K.content