This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary ...This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary even order of accuracy.The main idea is to make use of the lower order compact schemes recursively,so as to obtain the high order compact schemes formally.Moreover,the schemes can be implemented efficiently by solving a series of tridiagonal systems recursively or the fast Fourier transform(FFT).With mathematical induction,the eigenvalues of the proposed differencing operators are shown to be bounded away from zero,which indicates the positive definiteness of the operators.To obtain numerical boundary conditions for the high order schemes,the simplified inverse Lax-Wendroff(SILW)procedure is adopted and the stability analysis is performed by the Godunov-Ryabenkii method and the eigenvalue spectrum visualization method.Various numerical experiments are provided to demonstrate the effectiveness and robustness of our algorithms.展开更多
A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure inte...A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure interaction with an H-O type of non-staggered gridsincorporating the domain decomposition method (DDM), which could save the computational CPU time dueto re-meshing. The computational domain was divided into nine sub-domains including one ALEsub-domain and eight Eulerian sub-domains. The convection term and dissipation term in the N-Sequations were discretized using the third-order upwind compact scheme and the fourth-order centralcompact scheme, respectively. The motion of the cylinder was modeled by a spring-damper-mass systemand solved using the Runge-Kutta method. By simulating the non-linear fluid-structure interaction,the ''lock-in'', ''beating'' and ''phase switch'' phenomena were successfully captured, and the resultsagree with experimental data Furthermore, the vortex structure, the unsteady lift and drag on thecylinder, and the cylinder displacement at various natural frequency of the cylinder for Re = 200were discussed in detail, by which a jump transition of the wake structure was captured.展开更多
A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can e...A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can ensure the nonlinear compact schemes TVD property. Two compact TVD (CTVD) schemes were tested, one is thirdorder accuracy, and the other is fifth-order. The performance of the numerical algorithms was assessed by one-dimensional complex waves and Riemann problems, as well as a twodimensional shock-vortex interaction and a shock-boundary flow interaction. Numerical results show their high-order accuracy and high resolution, and low oscillations across discontinuities.展开更多
In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws...In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.展开更多
In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depend...In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depends both of independent variables. The idea of the immersed interface method is applied to deal with the discontinuities in the wave number and certain derivatives of the solution. Numerical experiments are included to confirm the accuracy and efficiency of the proposed method.展开更多
To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal...To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal orders,or extending stencil widths,are avoided in the new optimized schemes by utilizing fluxes from both cell-edges and cell-nodes.Optimizations are implemented with Fourier analysis for linear schemes and the approximate dispersion relation(ADR)for nonlinear schemes.Classical difference schemes are restored near discontinuities to suppress numerical oscillations with use of a shock sensor based on smoothness indicators.The results of several benchmark numerical tests indicate that the new optimized difference schemes outperform the classical schemes,in terms of accuracy and resolution for smooth wave and vortex,especially for long-time simulations.Using optimized schemes increases the total CPU time by less than 4%.展开更多
For nonlinear hyperbolic problems, conservation of the numerical scheme is important for convergence to the correct weak solutions. In this paper the conservation of the well-known compact scheme up to fourth order of...For nonlinear hyperbolic problems, conservation of the numerical scheme is important for convergence to the correct weak solutions. In this paper the conservation of the well-known compact scheme up to fourth order of accuracy on a single and uniform grid is studied, and a conservative interface treatment is derived for compact schemes on patched grids. For a pure initial value problem, the compact scheme is shown to be equivalent to a scheme in the usual conservative form. For the case of a mixed initial boundary value problem, the compact scheme is conservative only if the rounding errors are small enough. For a patched grid interface, a conservative interface condition useful for mesh refinement and for parallel computation is derived and its order of local accuracy is analyzed.展开更多
This paper continues to construct and study the explicit compact (EC) schemes for conservation laws. First, we axtend STCE/SE method on non-staggered grid, which has same well resolution as one in [1], and just requir...This paper continues to construct and study the explicit compact (EC) schemes for conservation laws. First, we axtend STCE/SE method on non-staggered grid, which has same well resolution as one in [1], and just requires half of the computational works. Then, we consider some constructions of the EC schemes for two-dimensional conservation laws, and some 1D and 2D numerical experiments are also given.展开更多
Some new sixth-order compact finite difference schemes for Poisson/Helmholtz equations on rectangular domains in both two-and three-dimensions are developed and analyzed.Different from a few sixth-order compact finite...Some new sixth-order compact finite difference schemes for Poisson/Helmholtz equations on rectangular domains in both two-and three-dimensions are developed and analyzed.Different from a few sixth-order compact finite difference schemes in the literature,the finite difference and weight coefficients of the new methods have analytic simple expressions.One of the new ideas is to use a weighted combination of the source term at staggered grid points which is important for grid points near the boundary and avoids partial derivatives of the source term.Furthermore,the new compact schemes are exact for 2D and 3D Poisson equations if the solution is a polynomial less than or equal to 6.The coefficient matrices of the new schemes are M-matrices for Helmholtz equations with wave number K≤0,which guarantee the discrete maximum principle and lead to the convergence of the new sixth-order compact schemes.Numerical examples in both 2D and 3D are presented to verify the effectiveness of the proposed schemes.展开更多
Within the projection schemes for the incompressible Navier-Stokes equations(namely"pressure-correction"method),we consider the simplest method(of order one in time)which takes into account the pressure in b...Within the projection schemes for the incompressible Navier-Stokes equations(namely"pressure-correction"method),we consider the simplest method(of order one in time)which takes into account the pressure in both steps of the splitting scheme.For this scheme,we construct,analyze and implement a new high order compact spatial approximation on nonstaggered grids.This approach yields a fourth order accuracy in space with an optimal treatment of the boundary conditions(without error on the velocity)which could be extended to more general splitting.We prove the unconditional stability of the associated Cauchy problem via von Neumann analysis.Then we carry out a normal mode analysis so as to obtain more precise results about the behavior of the numerical solutions.Finally we present detailed numerical tests for the Stokes and the Navier-Stokes equations(including the driven cavity benchmark)to illustrate the theoretical results.展开更多
In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from...In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.展开更多
This paper proposes a kind of compact extrapolation schemes for a linear Schr?dinger equation. The schemes are convergent with fourth-order accuracy both in space and time. Especially, a specific scheme of sixth-order...This paper proposes a kind of compact extrapolation schemes for a linear Schr?dinger equation. The schemes are convergent with fourth-order accuracy both in space and time. Especially, a specific scheme of sixth-order accuracy in space is given. The stability and discrete invariants of the schemes are analyzed. The schemes satisfy discrete conservation laws of original Schr?dinger equation. The numerical example indicates the efficiency of the new schemes.展开更多
A three-point fifth-order accurate generalized compact scheme (GC scheme) with a spectral-like resolution is constructed in a general way. The scheme satisfies the principle of stability and the principle about suppre...A three-point fifth-order accurate generalized compact scheme (GC scheme) with a spectral-like resolution is constructed in a general way. The scheme satisfies the principle of stability and the principle about suppression of the oscillations, therefore numerical errors can decay automatically and no spurious oscillations are generated around shocks. The third-order TVD type Runge-Kutta method is employed for the time integration, thus making the GC scheme best suited for unsteady problems. Numerical results show that the GC scheme is shock-capturing. The time-dependent boundary conditions proposed by Thompson are well employed when the algorithm is applied to the Euler equations of gas dynamics.展开更多
A set of small-stencil new Pade schemes with the same denominator are presented to solve high-order nonlinear evolution equations. Using this scheme, the fourth-order precision can not only be kept, but also the final...A set of small-stencil new Pade schemes with the same denominator are presented to solve high-order nonlinear evolution equations. Using this scheme, the fourth-order precision can not only be kept, but also the final three-diagonal discrete systems are solved by simple Doolittle methods, or ODE systems by Runge-Kutta technique. Numerical samples show that the schemes are very satisfactory. And the advantage of the schemes is very clear compared to other finite difference schemes.展开更多
High order accurate scheme is highly desirable for Slow computation with shocks. After analysis has been made for the reason of the generation of non-physical oscillations around the shock in numerical computations, a...High order accurate scheme is highly desirable for Slow computation with shocks. After analysis has been made for the reason of the generation of non-physical oscillations around the shock in numerical computations, a third-order, upwind biased, shock capturing scheme was proposed. Also, a new shock fitting method, called pseudo shock fitting method, was suggested, which in principle can be with any order of accuracy. Test cases for one dimensional flows show that the new method is very satisfactory.展开更多
In this article,we improve the order of precision of the two-dimensional Poisson equation by combining extrapolation techniques with high order schemes.The high order solutions obtained traditionally generate non-spar...In this article,we improve the order of precision of the two-dimensional Poisson equation by combining extrapolation techniques with high order schemes.The high order solutions obtained traditionally generate non-sparse matrices and the calculation time is very high.We can obtain sparse matrices by applying compact schemes.In this article,we compare compact and exponential finite difference schemes of fourth order.The numerical solutions are calculated in quadruple precision(Real*16 or extended precision)in FORTRAN language,and iteratively obtained until reaching the round-off error magnitude around 1.0E−32.This procedure is performed to ensure that there is no iteration error.The Repeated Richardson Extrapolation(RRE)method combines numerical solutions in different grids,determining higher orders of accuracy.The main contribution of this work is based on a process that initializes with fourth order solutions combining with RRE in order to find solutions of sixth,eighth,and tenth order of precision.The multigrid Full Approximation Scheme(FAS)is also applied to accelerate the convergence and obtain the numerical solutions on the fine grids.展开更多
Based on the successive iteration in the Taylor series expansion method, a three-point explicit compact difference scheme with arbitrary order of accuracy is derived in this paper. Numerical characteristics of the sch...Based on the successive iteration in the Taylor series expansion method, a three-point explicit compact difference scheme with arbitrary order of accuracy is derived in this paper. Numerical characteristics of the scheme are studied by the Fourier analysisl Unlike the conventional compact difference schemes which need to solve the equation to obtain the unknown derivatives in each node, the proposed scheme is explicit and can achieve arbitrary order of accuracy in space. Application examples for the convectiondiffusion problem with a sharp front gradient and the typical lid-driven cavity flow are given. It is found that the proposed compact scheme is not only simple to implement and economical to use, but also is effective to simulate the convection-dominated problem and obtain high-order accurate solution in coarse grid systems.展开更多
The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechan...The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.展开更多
Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at pr...Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan.展开更多
In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspac...In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspace correction. The basic train of thought is the introduction of the units function decomposition and reasonable distribution of the overlap of correction. The residual correction is conducted on each subspace while the computation is completely parallel. The theoretical analysis shows that this method is completely characterized by parallel.展开更多
基金supported by the NSFC grant 11801143J.Lu’s research is partially supported by the NSFC grant 11901213+3 种基金the National Key Research and Development Program of China grant 2021YFA1002900supported by the NSFC grant 11801140,12171177the Young Elite Scientists Sponsorship Program by Henan Association for Science and Technology of China grant 2022HYTP0009the Program for Young Key Teacher of Henan Province of China grant 2021GGJS067.
文摘This paper considers the finite difference(FD)approximations of diffusion operators and the boundary treatments for different boundary conditions.The proposed schemes have the compact form and could achieve arbitrary even order of accuracy.The main idea is to make use of the lower order compact schemes recursively,so as to obtain the high order compact schemes formally.Moreover,the schemes can be implemented efficiently by solving a series of tridiagonal systems recursively or the fast Fourier transform(FFT).With mathematical induction,the eigenvalues of the proposed differencing operators are shown to be bounded away from zero,which indicates the positive definiteness of the operators.To obtain numerical boundary conditions for the high order schemes,the simplified inverse Lax-Wendroff(SILW)procedure is adopted and the stability analysis is performed by the Godunov-Ryabenkii method and the eigenvalue spectrum visualization method.Various numerical experiments are provided to demonstrate the effectiveness and robustness of our algorithms.
文摘A numerical study was conducted for the vortex-induced vibrations of anelastic circular cylinder at low Reynolds numbers. An Arbitrary Lagrangian-Eulerian (ALE) method wasemployed to deal with the fluid-structure interaction with an H-O type of non-staggered gridsincorporating the domain decomposition method (DDM), which could save the computational CPU time dueto re-meshing. The computational domain was divided into nine sub-domains including one ALEsub-domain and eight Eulerian sub-domains. The convection term and dissipation term in the N-Sequations were discretized using the third-order upwind compact scheme and the fourth-order centralcompact scheme, respectively. The motion of the cylinder was modeled by a spring-damper-mass systemand solved using the Runge-Kutta method. By simulating the non-linear fluid-structure interaction,the ''lock-in'', ''beating'' and ''phase switch'' phenomena were successfully captured, and the resultsagree with experimental data Furthermore, the vortex structure, the unsteady lift and drag on thecylinder, and the cylinder displacement at various natural frequency of the cylinder for Re = 200were discussed in detail, by which a jump transition of the wake structure was captured.
基金Project supported by the National Natural Science Foundation of China (Nos. 10172015 and 90205010)
文摘A new method was proposed for constructing total variation diminishing (TVD) upwind schemes in conservation forms. Two limiters were used to prevent nonphysical oscillations across discontinuity. Both limiters can ensure the nonlinear compact schemes TVD property. Two compact TVD (CTVD) schemes were tested, one is thirdorder accuracy, and the other is fifth-order. The performance of the numerical algorithms was assessed by one-dimensional complex waves and Riemann problems, as well as a twodimensional shock-vortex interaction and a shock-boundary flow interaction. Numerical results show their high-order accuracy and high resolution, and low oscillations across discontinuities.
基金Project supported by the National Natural Science Foundation of China(No.11571366)the Basic Research Foundation of National Numerical Wind Tunnel Project(No.NNW2018-ZT4A08)
文摘In this paper,the maximum-principle-preserving(MPP)and positivitypreserving(PP)flux limiting technique will be generalized to a class of high-order weighted compact nonlinear schemes(WCNSs)for scalar conservation laws and the compressible Euler systems in both one and two dimensions.The main idea of the present method is to rewrite the scheme in a conservative form,and then define the local limiting parameters via case-by-case discussion.Smooth test problems are presented to demonstrate that the proposed MPP/PP WCNSs incorporating a third-order Runge-Kutta method can attain the desired order of accuracy.Other test problems with strong shocks and high pressure and density ratios are also conducted to testify the performance of the schemes.
文摘In this paper, fourth-order compact finite difference schemes are proposed for solving Helmholtz equation with piecewise wave numbers in polar coordinates with axis-symmetric and in some cases that the solution depends both of independent variables. The idea of the immersed interface method is applied to deal with the discontinuities in the wave number and certain derivatives of the solution. Numerical experiments are included to confirm the accuracy and efficiency of the proposed method.
基金Project supported by the National Key Project(No.GJXM92579)the Defense Industrial Technology Development Program(No.C1520110002)the State Administration of Science,Technology and Industry for National Defence,China。
文摘To improve the spectral characteristics of the high-order weighted compact nonlinear scheme(WCNS),optimized flux difference schemes are proposed.The disadvantages in previous optimization routines,i.e.,reducing formal orders,or extending stencil widths,are avoided in the new optimized schemes by utilizing fluxes from both cell-edges and cell-nodes.Optimizations are implemented with Fourier analysis for linear schemes and the approximate dispersion relation(ADR)for nonlinear schemes.Classical difference schemes are restored near discontinuities to suppress numerical oscillations with use of a shock sensor based on smoothness indicators.The results of several benchmark numerical tests indicate that the new optimized difference schemes outperform the classical schemes,in terms of accuracy and resolution for smooth wave and vortex,especially for long-time simulations.Using optimized schemes increases the total CPU time by less than 4%.
基金This work was supported by Chinese NSF(Contract No.10025210).Running head:Conservation of Compact Schemes.
文摘For nonlinear hyperbolic problems, conservation of the numerical scheme is important for convergence to the correct weak solutions. In this paper the conservation of the well-known compact scheme up to fourth order of accuracy on a single and uniform grid is studied, and a conservative interface treatment is derived for compact schemes on patched grids. For a pure initial value problem, the compact scheme is shown to be equivalent to a scheme in the usual conservative form. For the case of a mixed initial boundary value problem, the compact scheme is conservative only if the rounding errors are small enough. For a patched grid interface, a conservative interface condition useful for mesh refinement and for parallel computation is derived and its order of local accuracy is analyzed.
基金This work was supported in part by National Natural Science Foundation of China, the StateMajor Key Project for Basic Research
文摘This paper continues to construct and study the explicit compact (EC) schemes for conservation laws. First, we axtend STCE/SE method on non-staggered grid, which has same well resolution as one in [1], and just requires half of the computational works. Then, we consider some constructions of the EC schemes for two-dimensional conservation laws, and some 1D and 2D numerical experiments are also given.
基金supported by the National Natural Science Foundation of China(Grant No.42274101)and the Excellent Youth Foundation of Hunan Province of China(Grant No.2018JJ1042)Hongling Hu was supported by the National Natural Science Foundation of China(Grant No.12071128)the Natural Science Foundation of Hunan Province(Grant No.2021JJ30434).Zhilin Li was partially supported by a Simons Grant No.633724.
文摘Some new sixth-order compact finite difference schemes for Poisson/Helmholtz equations on rectangular domains in both two-and three-dimensions are developed and analyzed.Different from a few sixth-order compact finite difference schemes in the literature,the finite difference and weight coefficients of the new methods have analytic simple expressions.One of the new ideas is to use a weighted combination of the source term at staggered grid points which is important for grid points near the boundary and avoids partial derivatives of the source term.Furthermore,the new compact schemes are exact for 2D and 3D Poisson equations if the solution is a polynomial less than or equal to 6.The coefficient matrices of the new schemes are M-matrices for Helmholtz equations with wave number K≤0,which guarantee the discrete maximum principle and lead to the convergence of the new sixth-order compact schemes.Numerical examples in both 2D and 3D are presented to verify the effectiveness of the proposed schemes.
文摘Within the projection schemes for the incompressible Navier-Stokes equations(namely"pressure-correction"method),we consider the simplest method(of order one in time)which takes into account the pressure in both steps of the splitting scheme.For this scheme,we construct,analyze and implement a new high order compact spatial approximation on nonstaggered grids.This approach yields a fourth order accuracy in space with an optimal treatment of the boundary conditions(without error on the velocity)which could be extended to more general splitting.We prove the unconditional stability of the associated Cauchy problem via von Neumann analysis.Then we carry out a normal mode analysis so as to obtain more precise results about the behavior of the numerical solutions.Finally we present detailed numerical tests for the Stokes and the Navier-Stokes equations(including the driven cavity benchmark)to illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China under Grant No.11571181the Natural Science Foundation of Jiangsu Province of China under Grant No.BK20171454.
文摘In this paper,two fourth-order compact finite difference schemes are derived to solve the nonlinear fourth-order wave equation which can be viewed as a generalized model from the nonlinear beam equation.Differing from the existing compact finite difference schemes which preserve the total energy in a recursive sense,the new schemes are proved to per-fectly preserve the total energy in the discrete sense.By using the standard energy method and the cut-off function technique,the optimal error estimates of the numerical solutions are established,and the convergence rates are of O(h^(4)+τ^(2))with mesh-size h and time-step τ.In order to improve the computational efficiency,an iterative algorithm is proposed as the outer solver and the double sweep method for pentadiagonal linear algebraic equations is introduced as the inner solver to solve the nonlinear difference schemes at each time step.The convergence of the iterative algorithm is also rigorously analyzed.Several numerical results are carried out to test the error estimates and conservative properties.
基金The Director Innovation Foundation of ICMSEC and AMSS, the Foundation of CAS, the NNSFC (No. 91130003, No. 11021101) and the NSF of Shandong Province (No. ZR2013AQ005, No. BS2013HZ026)
文摘This paper proposes a kind of compact extrapolation schemes for a linear Schr?dinger equation. The schemes are convergent with fourth-order accuracy both in space and time. Especially, a specific scheme of sixth-order accuracy in space is given. The stability and discrete invariants of the schemes are analyzed. The schemes satisfy discrete conservation laws of original Schr?dinger equation. The numerical example indicates the efficiency of the new schemes.
基金The project supported by the National Natural Science Foundation of China (19972038)Foundation of the National CFD Laboratory of China
文摘A three-point fifth-order accurate generalized compact scheme (GC scheme) with a spectral-like resolution is constructed in a general way. The scheme satisfies the principle of stability and the principle about suppression of the oscillations, therefore numerical errors can decay automatically and no spurious oscillations are generated around shocks. The third-order TVD type Runge-Kutta method is employed for the time integration, thus making the GC scheme best suited for unsteady problems. Numerical results show that the GC scheme is shock-capturing. The time-dependent boundary conditions proposed by Thompson are well employed when the algorithm is applied to the Euler equations of gas dynamics.
文摘A set of small-stencil new Pade schemes with the same denominator are presented to solve high-order nonlinear evolution equations. Using this scheme, the fourth-order precision can not only be kept, but also the final three-diagonal discrete systems are solved by simple Doolittle methods, or ODE systems by Runge-Kutta technique. Numerical samples show that the schemes are very satisfactory. And the advantage of the schemes is very clear compared to other finite difference schemes.
文摘High order accurate scheme is highly desirable for Slow computation with shocks. After analysis has been made for the reason of the generation of non-physical oscillations around the shock in numerical computations, a third-order, upwind biased, shock capturing scheme was proposed. Also, a new shock fitting method, called pseudo shock fitting method, was suggested, which in principle can be with any order of accuracy. Test cases for one dimensional flows show that the new method is very satisfactory.
文摘In this article,we improve the order of precision of the two-dimensional Poisson equation by combining extrapolation techniques with high order schemes.The high order solutions obtained traditionally generate non-sparse matrices and the calculation time is very high.We can obtain sparse matrices by applying compact schemes.In this article,we compare compact and exponential finite difference schemes of fourth order.The numerical solutions are calculated in quadruple precision(Real*16 or extended precision)in FORTRAN language,and iteratively obtained until reaching the round-off error magnitude around 1.0E−32.This procedure is performed to ensure that there is no iteration error.The Repeated Richardson Extrapolation(RRE)method combines numerical solutions in different grids,determining higher orders of accuracy.The main contribution of this work is based on a process that initializes with fourth order solutions combining with RRE in order to find solutions of sixth,eighth,and tenth order of precision.The multigrid Full Approximation Scheme(FAS)is also applied to accelerate the convergence and obtain the numerical solutions on the fine grids.
基金Project supported by the National Natural Science Foundation of China(No.50479053)
文摘Based on the successive iteration in the Taylor series expansion method, a three-point explicit compact difference scheme with arbitrary order of accuracy is derived in this paper. Numerical characteristics of the scheme are studied by the Fourier analysisl Unlike the conventional compact difference schemes which need to solve the equation to obtain the unknown derivatives in each node, the proposed scheme is explicit and can achieve arbitrary order of accuracy in space. Application examples for the convectiondiffusion problem with a sharp front gradient and the typical lid-driven cavity flow are given. It is found that the proposed compact scheme is not only simple to implement and economical to use, but also is effective to simulate the convection-dominated problem and obtain high-order accurate solution in coarse grid systems.
基金Supported by the National Natural Science Foundation of China (Nos.50876114 and 10602043)the Program for New Century Excellent Talents in University,and the Scientific Research Key Project Fund of Ministry of Education (No.106142)
文摘The explicit compact difference scheme, proposed in Three-point explicit compact difference scheme with arbitrary order of accuracy and its application in CFD by Lin et al., published in Applied Mathematics and Mechanics (English Edition), 2007, 28(7), 943-953, has the same performance as the conventional finite difference schemes. It is just another expression of the conventional finite difference schemes. The proposed expression does not have the advantages of a compact difference scheme. Nonetheless, we can more easily obtain and implement compared with the conventional expression in which the coefficients can only be obtained by solving equations, especially for higher accurate schemes.
基金The project was financially supported by the National Natural Science Foundation of China (Grant No50479053)
文摘Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan.
基金Supported by the School Youth Foundation Project Funding of Anqing Teacher’s College(KJ201108)
文摘In this paper, a modified additive Schwarz finite difference algorithm is applied in the heat conduction equation of the compact difference scheme. The algorithm is on the basis of domain decomposition and the subspace correction. The basic train of thought is the introduction of the units function decomposition and reasonable distribution of the overlap of correction. The residual correction is conducted on each subspace while the computation is completely parallel. The theoretical analysis shows that this method is completely characterized by parallel.