针对OFDM系统中存在高峰值平均功率比(PAPR)影响系统性能,而传统的选择性映射(SLM)解决方法具有高复杂度且不能完全避免系统中高峰值信号出现的缺点,在研究映射和限幅算法的基础上,提出了一种S L M-C联合算法,该算法利用选择性映射方法...针对OFDM系统中存在高峰值平均功率比(PAPR)影响系统性能,而传统的选择性映射(SLM)解决方法具有高复杂度且不能完全避免系统中高峰值信号出现的缺点,在研究映射和限幅算法的基础上,提出了一种S L M-C联合算法,该算法利用选择性映射方法和限幅方法在性能上互补的特性来降低P A P R。Matlab仿真结果表明,该联合算法有效地降低了OFDM系统的峰均比,且具有复杂度低,易实现等优点。展开更多
正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中,峰均功率比(Peak to AveragePower Ratio,PAPR)过高会导致收发器的非线性失真,严重影响系统的性能。传统的部分传输序列(Partial TransmitSequence,PTS)算法能够...正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中,峰均功率比(Peak to AveragePower Ratio,PAPR)过高会导致收发器的非线性失真,严重影响系统的性能。传统的部分传输序列(Partial TransmitSequence,PTS)算法能够有效地降低PAPR,然而其计算复杂度随着分块数目增长呈指数增加。在研究PTS的基础上提出了双重迭代PTS算法,该算法利用增加迭代次数,并且每次迭代时选择不同的相位旋转因子集合来优化OFDM系统的峰均比性能。该算法在峰均比性能上优于常规OFDM系统以及普通迭代PTS算法,在降低峰均比性能和计算复杂度之间取得了较好的折衷。展开更多
为解决OFDM(Orthogonal Frequency Division Multiplexing)系统中IPTS(Iterative Partial Transmit Sequences)抑制PAPR(Peak-To-Average Power Ratio)强度有限的问题,提出了采用梯度递减的搜索方法将传输数据分为D层、对传输数据进行...为解决OFDM(Orthogonal Frequency Division Multiplexing)系统中IPTS(Iterative Partial Transmit Sequences)抑制PAPR(Peak-To-Average Power Ratio)强度有限的问题,提出了采用梯度递减的搜索方法将传输数据分为D层、对传输数据进行逐层筛选、并将每层内相位因子的搜索与IPTS技术相结合的改进算法。仿真结果表明,改进算法在较IPTS复杂度增加不大的前提下,其抑制PAPR的能力有显著提高。在128个子载波的OFDM系统中,PTS子序列数V取8,外层分块数D取2,累积分布函数(CCDF:Complementary Cumulative Distribution Function)为10-5时,改进算法的PAPR值比IPTS算法降低近0.5 dB。展开更多
he logical tree methods are used for evaluate quantitatively relationship between frequency and magnitude, and deduce uncertainties of annual occurrence rate of earthquakes in the periods of lower magnitude earthquake...he logical tree methods are used for evaluate quantitatively relationship between frequency and magnitude, and deduce uncertainties of annual occurrence rate of earthquakes in the periods of lower magnitude earthquake. The uncertainties include deviations from the self-similarity of frequency-magnitude relations, different fitting methods, different methods obtained the annual occurrence rate, magnitude step used in fitting, start magnitude, error of magnitude and so on. Taking Xianshuihe River source zone as an example, we analyze uncertainties of occurrence rate of earthquakes M4, which is needed in risk evaluation extrapolating from frequency-magnitude relations of stronger earthquakes. The annual occurrence rate of M4 is usually required for seismic hazard assessment.The sensitivity analysis and examinations indicate that, in the same frequencymagnitude relations fitting method, the most sensitive factor is annual occurrence rate, the second is magnitude step and the following is start magnitude. Effect of magnitude error is rather small.Procedure of estimating the uncertainties is as follows:①Establishing a logical tree described uncertainties in frequencymagnitude relations by available data and knowledge about studied region.② Calculating frequencymagnitude relations for each end branches. ③ Examining sensitivities of each uncertainty factors, amending structure of logical tree and adjusting original weights. ④ Recalculating frequencymagnitude relations of end branches and complementary cumulative distribution function (CCDF) in each magnitude intervals.⑤ Obtaining an annual occurrence rate of M4 earthquakes under given fractiles.Taking fractiles as 20% and 80%, annual occurrence rate of M 4 events in Xianshuihe seismic zone is 0.643 0. The annual occurrence rate is 0.631 8 under fractiles of 50%, which is very close to that under fractiles 20% and 80%.展开更多
文摘针对OFDM系统中存在高峰值平均功率比(PAPR)影响系统性能,而传统的选择性映射(SLM)解决方法具有高复杂度且不能完全避免系统中高峰值信号出现的缺点,在研究映射和限幅算法的基础上,提出了一种S L M-C联合算法,该算法利用选择性映射方法和限幅方法在性能上互补的特性来降低P A P R。Matlab仿真结果表明,该联合算法有效地降低了OFDM系统的峰均比,且具有复杂度低,易实现等优点。
文摘正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)系统中,峰均功率比(Peak to AveragePower Ratio,PAPR)过高会导致收发器的非线性失真,严重影响系统的性能。传统的部分传输序列(Partial TransmitSequence,PTS)算法能够有效地降低PAPR,然而其计算复杂度随着分块数目增长呈指数增加。在研究PTS的基础上提出了双重迭代PTS算法,该算法利用增加迭代次数,并且每次迭代时选择不同的相位旋转因子集合来优化OFDM系统的峰均比性能。该算法在峰均比性能上优于常规OFDM系统以及普通迭代PTS算法,在降低峰均比性能和计算复杂度之间取得了较好的折衷。
文摘为解决OFDM(Orthogonal Frequency Division Multiplexing)系统中IPTS(Iterative Partial Transmit Sequences)抑制PAPR(Peak-To-Average Power Ratio)强度有限的问题,提出了采用梯度递减的搜索方法将传输数据分为D层、对传输数据进行逐层筛选、并将每层内相位因子的搜索与IPTS技术相结合的改进算法。仿真结果表明,改进算法在较IPTS复杂度增加不大的前提下,其抑制PAPR的能力有显著提高。在128个子载波的OFDM系统中,PTS子序列数V取8,外层分块数D取2,累积分布函数(CCDF:Complementary Cumulative Distribution Function)为10-5时,改进算法的PAPR值比IPTS算法降低近0.5 dB。
文摘he logical tree methods are used for evaluate quantitatively relationship between frequency and magnitude, and deduce uncertainties of annual occurrence rate of earthquakes in the periods of lower magnitude earthquake. The uncertainties include deviations from the self-similarity of frequency-magnitude relations, different fitting methods, different methods obtained the annual occurrence rate, magnitude step used in fitting, start magnitude, error of magnitude and so on. Taking Xianshuihe River source zone as an example, we analyze uncertainties of occurrence rate of earthquakes M4, which is needed in risk evaluation extrapolating from frequency-magnitude relations of stronger earthquakes. The annual occurrence rate of M4 is usually required for seismic hazard assessment.The sensitivity analysis and examinations indicate that, in the same frequencymagnitude relations fitting method, the most sensitive factor is annual occurrence rate, the second is magnitude step and the following is start magnitude. Effect of magnitude error is rather small.Procedure of estimating the uncertainties is as follows:①Establishing a logical tree described uncertainties in frequencymagnitude relations by available data and knowledge about studied region.② Calculating frequencymagnitude relations for each end branches. ③ Examining sensitivities of each uncertainty factors, amending structure of logical tree and adjusting original weights. ④ Recalculating frequencymagnitude relations of end branches and complementary cumulative distribution function (CCDF) in each magnitude intervals.⑤ Obtaining an annual occurrence rate of M4 earthquakes under given fractiles.Taking fractiles as 20% and 80%, annual occurrence rate of M 4 events in Xianshuihe seismic zone is 0.643 0. The annual occurrence rate is 0.631 8 under fractiles of 50%, which is very close to that under fractiles 20% and 80%.