期刊文献+
共找到134篇文章
< 1 2 7 >
每页显示 20 50 100
Degradation Characteristic of PDLLA/HA Composite Fiber in vitro 被引量:1
1
作者 万涛 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期266-267,共2页
The in vitro degradation characteristic of the poly D, L-lactic acid ( PDLIA )/ hydroxyapatite ( HA ) compound were investigated. The compoundfibers were immersed in static phosphate buffer at 37℃ to degrade fo... The in vitro degradation characteristic of the poly D, L-lactic acid ( PDLIA )/ hydroxyapatite ( HA ) compound were investigated. The compoundfibers were immersed in static phosphate buffer at 37℃ to degrade for 22 weeks. The changes in pH value of the buffer solution, the mechanical strength and morphological of inside and outside of composite fibers with degrurlation characteristic were observed. Results show that pH value of the buffer solution stabilized to aboat 7.0 before 12 weeks, however after 20 weeks that pH value quick declined. After 7 weeks that composite fibers of mechanical strength cannot mensuration. SEM observation revealed ttua bimodal degradation occurred in composite fibers. 展开更多
关键词 PDLLA/HA composite fiber Degradation characteristic SEM
下载PDF
PVDF/6H-SiC composite fiber films with enhanced piezoelectric performance by interfacial engineering for diversified applications
2
作者 Linlin Zhou Tao Yang +7 位作者 Chunyu Guo Kang Wang Enhui Wang Laipan Zhu Hailong Wang Sheng Cao Kuo-Chih Chou Xinmei Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第3期238-245,共8页
Piezoelectric silicon carbide(SiC)has been quite attractive due to its superior chemical and physical properties as well as wide potential applications.However,the inherent brittleness and unsatisfactory piezoelectric... Piezoelectric silicon carbide(SiC)has been quite attractive due to its superior chemical and physical properties as well as wide potential applications.However,the inherent brittleness and unsatisfactory piezoelectric response of piezoelectric semiconductors remain the major obstacles to their diversified applications.Here,flexible multifunctional PVDF/6H-SiC composite fiber films are fabricated and utilized to assemble both piezoelectric nanogenerators(PENGs)and stress/temperature/light sensors.The open cir-cuit voltage(V_(oc))and the density of short circuit current(I_(sc))of the PENG based on the PVDF/5 wt%6H-SiC composite fiber films reach 28.94 V and 0.24μA cm^(-2),showing a significant improvement of 240%and 300%compared with that based on the pure PVDF films.The effect of 6H-SiC nanoparticles(NPs)on inducing interfacial polarization and stress concentration in composite fiber films is proved by first-principles calculation and finite element analysis.The stress/temperature/light sensors based on the composite fiber film also show high sensitivity to the corresponding stimuli.This study shows that the PVDF/6H-SiC composite fiber film is a promising candidate for assembling high-performance energy harvesters and diverse sensors. 展开更多
关键词 6H-SIC PVDF Multifunctional composite fiber film Energy harvester Stress/temperature/light sensor
原文传递
Effect of Accelerated Aging Temperature under Artificial Seawater on the Properties of Carbon Fiber/Epoxy Composites and the Erosion Mechanism
3
作者 XU Jinwei LU Yunfei +3 位作者 DING He DENG Zongyi SHI Minxian HUANG Zhixiong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1365-1371,共7页
In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of se... In order to explore the effect of artificial accelerated aging temperature on the performance of carbon fiber/epoxy resin composites,we used artificial seawater as the aging medium,designed the aging environment of seawater at different temperatures under normal pressure,and studied the aging behavior of carbon fiber/epoxy composites.The infrared spectroscopy results show that,with the increase of aging temperature,the degree of hydrolysis of the composite is greater.At the same time,after 250 days of aging of artificial seawater at regular temperature,40 and 60 ℃,the moisture absorption rates of composite materials were 0.45%,0.63%,and 1.05%,and the retention rates of interlaminar shear strength were 91%,78%,and 62%,respectively.It is shown that the temperature of the aging environment has a significant impact on the hygroscopic behavior and mechanical properties of the composite,that is,the higher the temperature,the faster the moisture absorption of the composite,and the faster the decay of the mechanical properties of the composite. 展开更多
关键词 carbon fiber/epoxy composites artificial seawater aging temperature moisture absorption mechanical properties
下载PDF
Study of the Diffusion Behavior of Seawater Absorption in Multi-Walled Carbon Nanotubes/Halloysite Nanotubes Hybrid Nanofillers Modified Epoxy-Based Glass/Carbon Fiber Composites
4
作者 Praful Choudhari Vivek Kulkarni Sanjeevakumar Khandal 《Modern Mechanical Engineering》 2024年第2期25-38,共14页
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har... In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients. 展开更多
关键词 Glass/Carbon fiber Hybrid composites Multiwall Carbon Nanotubes (MWCNTs) Halloysite Nanotubes (HNTs) Diffusion Behaviour Impact Properties Seawater Aging
下载PDF
Fatigue‑Resistant and Hysteresis‑Free Composite Fibers with a Heterogeneous Hierarchical Structure 被引量:1
5
作者 Siming Li Junwei Xu +6 位作者 Yan Mu Peng Wang Heng Zhu Binhong Liu Zhe Chen Zilong Han Shaoxing Qu 《Advanced Fiber Materials》 SCIE EI CAS 2023年第5期1643-1656,共14页
Fatigue-resistant and hysteresis-free composite fibers hold great promise for the next generation of wearable electronic devices.In this study,a novel approach for the fabrication of composite fibers with outstanding ... Fatigue-resistant and hysteresis-free composite fibers hold great promise for the next generation of wearable electronic devices.In this study,a novel approach for the fabrication of composite fibers with outstanding elasticity and mechanical stability is proposed.The design incorporates a heterogeneous hierarchical structure(HHS),which mimics the structure of arteries,to achieve enhanced fatigue resistance and hysteresis-free performance.The composite fibers,Ecoflex-polyacrylamide fibers(EPFs),are created through the combination of heterogeneous elastomers and strong interfacial coupling.The results show that the EPFs exhibit exceptional fatigue resistance,being able to withstand up to 10,000 load–unload cycles at strains of 300%without any noticeable changes in their mechanical properties.The potential applications of these EPFs are demonstrated through their use as strain sensors for monitoring human motion in both air and water,as well as in energyharvesting e-textiles. 展开更多
关键词 Heterogeneous hierarchical structure composite fibers Fatigue resistance Hysteresis free Wearable electronic devices
原文传递
Preparation of Regenerated Silk Fibroin Hybrid Fibers with Hydrogen Peroxide Sensing Properties by Wet Spinning
6
作者 Song Lu Jianjun Guo +3 位作者 Richard Ansah Herman Xinyi Wu Lin Ma Guohua Wu 《Journal of Renewable Materials》 EI CAS 2024年第6期1043-1055,共13页
Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of gr... Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of great concern in many countries where silk is used.Hydrogen peroxide as a naturally occurring compound is an important indicator of detection in both biology and the environment.This study aims to develop a composite fiber with hydrogen peroxide-sensing properties using discarded silk materials.To achieve this goal,firstly,polydopamine(PDA)was used to encapsulate the ZnFe_(2)O_(4) NPs to achieve the improvement of dispersion,and then regenerated silk fibroin(RSF)and PDA@ZnFe_(2)O_(4)/RSF hybrid fibers are prepared by wet spinning.Research has shown that PDA@ZnFe_(2)O_(4)/RSF demonstrates exceptional sensitivity,selectivity,and stability in detecting hydrogen peroxide,while maintaining high mechanical strength.Furthermore,the complete hybridization of PDA@ZnFe_(2)O_(4) with silk fibroin not only results in the combination of the durability of silk fibroin and PDA@ZnFe_(2)O_(4)’s rigidity,ensuring a reliable service life,but also makes PDA@ZnFe_(2)O_(4)/RSF exhibit excellent catalytic activity and biocompatibility.Therefore,the composite fiber exhibits exceptional mechanical properties and reliable hydrogen peroxide sensing capabilities,making it a promising material for biological and medical applications. 展开更多
关键词 Regenerated silk fibroin modified zinc ferrite nanoparticles composite fiber hydrogen peroxide sensor wet spinning
下载PDF
TiO2-PES Fibrous Composite Material for Ammonia Removal Using UV-A Photocatalyst
7
作者 Anh Phuong Le Thi Masaru Ohshiro Takaomi Kobayashi 《Journal of Materials Science and Chemical Engineering》 2024年第1期1-19,共19页
This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co... This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under  UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications. 展开更多
关键词 Ammonia Removal PHOTOCATALYST TiO2-PES composite fiber Fibrous Material
下载PDF
Microwave Absorption and Mechanical Properties of Short-cutted Carbon Fiber/glass Fiber Hybrid Veil Reinforced Epoxy Composites 被引量:1
8
作者 陈威 ZHEN Bowen +4 位作者 XIE Yuxuan 贺行洋 SU Ying WANG Jun WU Yan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期248-254,共7页
This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)... This work aims at investigating the microwave absorption and mechanical properties of short-cutted carbon fiber/glass fiber hybrid veil reinforced epoxy composites.The short-cutted carbon fibers(CFs)/glass fibers(GFs)hybrid veil were prepared by papermaking technology,and composites liquid molding was employed to manufacture CFs/GFs hybrid epoxy composites.The microstructure,microwave absorbing properties and mechanical properties of the hybrid epoxy composites were studied by using SEM,vector network analyzer and universal material testing,respectively.The reflection coefficient of the composites were calculated by the measured complex permittivity and permeability in the X-band(8.2-12.4 GHz)range.The optimum microwave absorption properties can be obtained when the content of CFs in the hybrid veil is 6 wt%and the thickness of the composites is 2 mm,the minimum reflection coefficient of-31.8 dB and the effective absorption bandwidth is 2.1 GHz,which is ascribed to benefitting impedance matching characteristic and dielectric loss of the carbon fiber.Simultaneously the tensile strength and modulus can achieve 104.0 and 2.98GPa,demonstrating that the CFs/GFs hybrid epoxy composites can be a promising candidate of microwave absorbing materials with high mechanical properties. 展开更多
关键词 microwave absorption fiber reinforced composites PAPERMAKING carbon fiber
下载PDF
Static Bending Creep Properties of Glass Fiber Surface Composite Wood
9
作者 Shang Zhang Jie Wang +4 位作者 Benjamin Rose Yushan Yang Qingfeng Ding Bengang Zhang Chunlei Dong 《Journal of Renewable Materials》 SCIE EI 2023年第6期2881-2891,共11页
To study the static bending creep properties of glass fiber reinforced wood,glass fiber reinforced poplar(GFRP)specimens were obtained by pasting glass fiber on the upper and lower surfaces of Poplar(Populus euramevic... To study the static bending creep properties of glass fiber reinforced wood,glass fiber reinforced poplar(GFRP)specimens were obtained by pasting glass fiber on the upper and lower surfaces of Poplar(Populus euramevicana,P),the performance of Normal Creep(NC)and Mechanical Sorptive Creep(MSC)of GFRP and their influencing factors were tested and analyzed.The test results and analysis show that:(1)The MOE and MOR of Poplar were increased by 17.06%and 10.00%respectively by the glass fiber surface reinforced composite.(2)The surface reinforced P with glass fiber cloth only exhibits the NC pattern of wood and loses the MSC characteristics of wood,regardless of the constant or alternating changes in relative humidity.(3)The instantaneous elastic deformation,viscoelastic deformation,viscous deformation and total creep deflection of GFRP are positively correlated with the stress level of the external load applied to the specimen.Still,the specimen’s creep recovery rate is negatively correlated with the stress level of the external load applied to the specimen.The static creep deflection and viscous deformation of GFRP increase with the increase of the relative humidity of the environment.(4)The MSC maximum creep deflection of GFRP increased by only 7.41%over the NC maximum creep deflection,but the MSC maximum creep deflection of P increased by 199.25%over the NC maximum creep deflection.(5)The Burgers 4-factor model and the Weibull distribution equation can fit the NC and NC recovery processes of GFRP well. 展开更多
关键词 Glass fiber reinforced composite wood Normal Creep(NC) wood creep Mechanical Sorptive Creep(MSC) creep model
下载PDF
Development,modeling and application of piezoelectric fiber composites 被引量:14
10
作者 林秀娟 周科朝 +1 位作者 张晓泳 张斗 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期98-107,共10页
Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelec... Piezoelectric materials are capable of actuation and sensing and have been used in a wide variety of smart devices and structures.Active fiber composite and macro fiber composite are newly developed types of piezoelectric composites,and show superior properties to monolithic piezoelectric wafer due to their distinctive structures.Numerous work has focused on the performance prediction of the composites by evaluation of structural parameters and properties of the constituent materials with analytical and numerical methods.Various applications have been explored for the piezoelectric fiber composites,including vibration and noise control,health monitoring,morphing of structures and energy harvesting,in which the composites play key role and demonstrate the necessity for further development. 展开更多
关键词 PIEZOELECTRIC active fiber composite macro fiber composite MODELING smart applications
下载PDF
Experimental and simulation research on thermal stamping of carbon fiber composite sheet 被引量:4
11
作者 张琦 高强 蔡进 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期217-223,共7页
To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments... To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results. 展开更多
关键词 thermal stamping carbon fiber composite sheet shear angle BENDING deep drawing
下载PDF
Biological composite fibers with extraordinary mechanical strength and toughness mediated by multiple intermolecular interacting networks 被引量:6
12
作者 Sikang Wan Wenhao Cheng +5 位作者 Jingjing Li Fan Wang Xiwen Xing Jing Sun Hongjie Zhang Kai Liu 《Nano Research》 SCIE EI CSCD 2022年第10期9192-9198,共7页
Numerous strategies involving multiple cross-linking networks have been applied for fabricating robust hydrogels.Inspired by this,the development of mechanically strong and tough biological fibers by the incorporation... Numerous strategies involving multiple cross-linking networks have been applied for fabricating robust hydrogels.Inspired by this,the development of mechanically strong and tough biological fibers by the incorporation of intermolecular linking networks is becoming important.Herein,we present a versatile strategy for the fabrication of protein-saccharide composite fibers through protein-initiated double interacting networks.Three types of lysine-rich bioengineered proteins were introduced and the present multiple cross-linking interactions including electrostatic forces and covalent bonds significantly enhanced the mechanical properties of as-obtained composite fibers.In stark contrast to pristine saccharide or other polymer fibers,the as-obtained composite fibers exhibited outstanding mechanical performance,showing a breaking strength of~768 MPa,Young’s modulus of~24 GPa,and toughness of~69 MJ∙m^(–3),respectively.Thus,this established approach has great potentials to fabricate new generation renewable biological fibers with high performance. 展开更多
关键词 biomaterial composite fiber PROTEIN intermolecular networks mechanical performance
原文传递
INTERFACE DAMAGE ANALYSIS OF FIBER REINFORCED COMPOSITES WITH DUCTILE MATRIX 被引量:1
13
作者 周储伟 王鑫伟 +1 位作者 杨卫 方岱宁 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2000年第2期119-123,共5页
A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensi... A cohesive zone model is employed to simulate the fiber/matrix interface damage of composites with ductile matrix. The study is carried out to investigate the dependence of the interface damage and the composite tensile strength on the micro parameters of the composite. These parameters contain fiber packing pattern, fiber volume fraction, and the modulus ratio of the fiber to the matrix. The investigation reveals that though the high fiber vo lume fraction, the high fiber′s modulus and the square fiber packing can supply strong reinforcement to the composite, the interface damage is susceptible in these cases. The tensile strength of the composite is dominated by the interface strength when the interface debonding occurs. 展开更多
关键词 fiber reinforced composite micro mechanics cohesive zone model interface damage tensile strength
下载PDF
Ballistic impact simulation of Kevlar-129 fiber reinforced composite material 被引量:1
14
作者 张明 原梅妮 +1 位作者 向丰华 王振兴 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2015年第3期286-290,共5页
The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite el... The penetration resistance of Kevlar-129 fiber reinforced composite materials was investigated with AUTODYN software.The ballistic limits of the fragment that pierced 6kinds of target plates were obtained by finite element simulation when the 10 g fragment simulation projectile(FSP)impacting to the target plates of different thickness values of 8,10,12,14,16 and 18mm with appropriate velocity,respectively,and the influences of thickness on the ballistic limits and the specific energy absorption were analyzed.The results show that the ballistic limit of Kevlar-129 fiber reinforced composite plates presents linear growth with the increase of the target thickness in the range from 8to 18 mm.The specific energy absorption of plates presents approximately linear growth,but there is slightly slow growth in the range from 10 to 16mm of the target thickness.It also can be found that the influences of plate thickness and surface density on the varying pattern of specific energy absorption are almost the same.Therefore,both of them can be used to characterize the variation of specific energy absorption under the impact of the FSP fragment. 展开更多
关键词 ballistic limit finite element specific energy absorption Kevlar fiber reinforced composite material
下载PDF
Impact Responses of the Carbon Fiber Fabric Reinforced Composites 被引量:1
15
作者 姜春兰 李明 +1 位作者 张庆明 马晓青 《Journal of Beijing Institute of Technology》 EI CAS 2000年第3期225-230,共6页
To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decay... To study the response characteristics of the carbon fiber fabric reinforced composites under impact loading, one dimensional strain impact test, multi gauge technique and Lagrange analysis method are used. The decaying rule of the stress σ , strain ε , strain rate ε · and density ρ with time and space is obtained. By the theory of dynamics, the impact response characteristics of the material is analyzed and discussed. 展开更多
关键词 carbon fiber reinforced plastics (CFRP) composite IMPACT Lagrange analysis
下载PDF
TENSILE STRENGTH OF RANDOM ORIENTED SHORT FIBER COMPOSITE
16
作者 唐德敏 许晓秋 +1 位作者 冯建新 方洞浦 《Transactions of Tianjin University》 EI CAS 1998年第2期59-62,共4页
This paper shows a calculation model and a method for predicting the tensile strength of the random distributed short fiber composite.On the basis of Renjie Mao's model,the longitudinal tensile strength of the ali... This paper shows a calculation model and a method for predicting the tensile strength of the random distributed short fiber composite.On the basis of Renjie Mao's model,the longitudinal tensile strength of the aligned short fiber composite is formulated.Considering the transverse tensile strength and in plane shear strength of the unidirectional fiber composite,and the stress transformation relations of two couples of axes,the stress of the unidirectional fiber composite when it is loaded at an arbitrary angle is obtained.With the aid of an equivalence relation,the calculation formulation of the tensile strength of the random short fiber reinforced composite is deduced. 展开更多
关键词 random short fiber composite tensile strength calculation model
下载PDF
Properties and Structure of Multi-walled Carbon Nanotubes/Cellulose Composites Fibers Using Ionic Liquid as Solvent
17
作者 蔡涛 杨瑜榕 +1 位作者 王明葵 张慧慧 《Journal of Donghua University(English Edition)》 EI CAS 2011年第6期591-594,共4页
To take advantage of cellulose material and prepare a kind of high performance fiber,multi-walled carbon nanotubes(MWNTs) were used as fillers to produce MWNTs/cellulose composite fibers using ionic liquid as solvent.... To take advantage of cellulose material and prepare a kind of high performance fiber,multi-walled carbon nanotubes(MWNTs) were used as fillers to produce MWNTs/cellulose composite fibers using ionic liquid as solvent.The thermal properties,mechanical properties,and structure of the composite fibers were investigated.The wide angle X-ray diffraction(WAXD) measurements show that MWNTs/cellulose composite fibers have cellulose Ⅱ crystal structure.The results obtained from thermal gravimetric analysis(TGA) indicate that the addition of low nanotubes amounts leads to an increase in the degrade temperature.The tensile mechanical properties show that initial modulus and tensile strength considerably increase in the presence of nanotubes with a maximum for 66.7% and 22.7%. 展开更多
关键词 carbon nanotubes ionic liquid composite fiber mechanical properties
下载PDF
Mechanical and Microstructural Characteristics of the Fiber-Reinforced Composite Materials
18
作者 Yanbing Pan 《Journal of Minerals and Materials Characterization and Engineering》 CAS 2022年第6期477-488,共12页
Composite fiber materials are superior materials due to their high strength and light weight. Composites reflect the properties of their constituents, which is proportional to the volume fraction of each phase. There ... Composite fiber materials are superior materials due to their high strength and light weight. Composites reflect the properties of their constituents, which is proportional to the volume fraction of each phase. There are different fiber reinforcement types and each affects its flexural, tensile and compression strength. When selecting a composite for a specific application, the forces excreted on the composite must be known in order to determine the reinforcement type. Unidirectional fiber reinforcement will allow very strong load resistance but only in one direction where as a random orientated fiber reinforcement can resist less load but can maintain this quota in all directions. These materials are said to be anisotropic. Certain composite fibers, taking into consideration their weights, are physically stronger than conventional metals. In this paper, specific light-weight components with different reinforcement types, volume fraction and phase content were newly composed, tested, characterized and evaluated. By applying a novel method, a model which including the various matrix compositions, reinforcement types of each specific component, and its dual-properties was developed according to the structure characteristics. It was shown that certain reinforced composites such as carbon fiber, tend to be much stronger than metals when taking account its weight ratio. The outcome of this research lays a good foundation for the further carbon fiber-based material design work. 展开更多
关键词 composite fibers Flexural Strength Polyester Matrix REINFORCEMENT
下载PDF
EXPERIMENTAL STUDY ON PEK -C MODIFIED EPOXIES AND THE CARBON FIBER COMPOSITES FOR AEROSPACE APPLICATION 被引量:7
19
作者 李暘暘 益小苏 唐邦明 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2000年第4期242-249,共8页
The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took pl... The morphological structure of various epoxies toughened with a special amorphous thermoplastic PEK-C and their carbon fiber composites were studied by using SEM. For both cases, phase separation and inversion took place to form fine epoxy-rich globules dispersing in the PEK-C matrix, in which the epoxy-rich phase had the absolutely higher volume fraction. The phase structure and the interfacial properties were also studied by means of FTIR, DSC, and DMTA as well. An accompanying mechanical determination revealed that an improved toughness was achieved both in the blend casts and in the carbon fiber composites. A composite structural model was hence suggested. 展开更多
关键词 PEK-C thermoset/thermoplastic binary system phase behavior interface TOUGHNESS carbon fiber composites
下载PDF
STRUCTURE AND PROPERTIES OF COMPOSITE POLYURETHANE HOLLOW FIBER MEMBRANES 被引量:3
20
作者 Xian-fengLi Chang-faXiao 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2005年第2期203-210,共8页
Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure wa... Composite polyurethane(PU)-SiO_2 hollow fiber membranes were successfully prepared via optimizing thetechnique of dry-jet wet spinning,and their pressure-responsibilities were confirmed by the relationships of pure water flux-transmembrane pressure(PWF-TP)for the first time.The origin for this phenomenon was analyzed on the basis of membranestructure and material characteristics.The effects of SiO_2 content on the structure and properties of membrane wereinvestigated.The experimental results indicated that SiO_2 in membrane created a great many interfacial micro-voids andplayed an important role in pressure-responsibility,PWF and rejection of membrane:with the increase of SiO_2 content,theability of membrane recovery weakened,PWF increased,and rejection decreased slightly. 展开更多
关键词 POLYURETHANE Silicon dioxide composite hollow fiber membrane Pressure-responsibility.
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部