According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak s...According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.展开更多
The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar f...The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar fuel production is in its early stages of development,constrained by low conversion efficiency and challenges in scaling up production.Concentrated solar energy(CSE)technology has matured alongside the rapid growth of solar thermal power plants.This review provides an overview of current CSE methods and solar fuel production,analyzes their integration compatibility,and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry,thermochemistry,and photo-thermal co-catalysis for solar fuel production.The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE.Lastly,it explores emerging novel CSE technology methods in the field of solar fuel production.展开更多
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten...Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.展开更多
Access to electricity is poor in the Economic Community of West African States (ECOWAS). Concentrating Solar Power (CSP) presents better opportunities for increasing access to electricity and for diversifying sources ...Access to electricity is poor in the Economic Community of West African States (ECOWAS). Concentrating Solar Power (CSP) presents better opportunities for increasing access to electricity and for diversifying sources of energy in the ECOWAS region;however, to date, except for Burkina Faso, no site evaluation pertaining to the region has ever been performed for CSP. This study provides potential assessment and site ranking for large-scale CSP projects in the ECOWAS region. It computes the nominal potential power and gives the corresponding energy yield with many scenarios. By considering only 1% of the suitable land area with daily DNI greater or equal to 5 kWh/m2, a land slope less or equal to 5% and distance to transmission line not more than 100 km, the study showed, for example, that West Africa has a potential nominal capacity of 21.3 GW for parabolic trough technology.展开更多
Cyanobacteria possess a delicate system known as the carbon concentrating mechanism (CCM), which can efficiently elevate the intracellular inorganic carbon (Ci) concentration via active transportation. The system ...Cyanobacteria possess a delicate system known as the carbon concentrating mechanism (CCM), which can efficiently elevate the intracellular inorganic carbon (Ci) concentration via active transportation. The system requires energy supplied by photosystems; therefore, the activity of the Ci transporter is closely related to light intensity. However, the relationship between CCM and light intensity has rarely been evaluated. Here, we present an improved quantitative model of CCM in which light is incorporated, and developed a CCM model that modified after Fridlyand et al. in 1996. Some equations used in this model were inducted to describe the relationship between transport capacity and light intensity, by which the response of the CCM to light change is simulated. Our results indicate that the efficiency of the carbon concentrating system is sensitive to light intensity. When the external Ci concentration was low, CO2 uptake dominated the total Ci uptake with increasing light intensity, while under high external Ci concentrations HCO3^- uptake primarily contributed to the total Ci uptake. Variations in the ratio of energy allocated between the transport systems could markedly affect the operation of CCM. Indeed, our simulations suggest that various combinations of Ci fluxes can provide a possible approach to detect the way by which the cell distributes energy produced by the photosystems to the two active Ci transport processes. The proportion of the energy consumed on CCM to the total energy expenditure for the fixation of one CO2 molecule was determined at 18%-40%.展开更多
A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework c...A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework can be used to evaluate the energy and exergy losses in each component. Furthermore, the energy and exergy efficiencies have also been computed and compared for the individual components as well as for the overall plant.展开更多
Bifacial PV cells have the capacity to produce solar electricity from both sides and, thus, amongst other advantages, allow a significantly increase both in peak and annual power output while utilizing the same amount...Bifacial PV cells have the capacity to produce solar electricity from both sides and, thus, amongst other advantages, allow a significantly increase both in peak and annual power output while utilizing the same amount of silicone. According to the manufacturer, the bifacial cells are around 1.3 times more expensive than the single-sided cells. This way, bifacial PV cells can effectively reduce the cost of solar power for certain applications. Today, the most common application for these cells is in stationary vertical collectors which are exposed to sunlight from both sides, as the relative position of the sun changes throughout the day. Another possible application is to utilize these cells in concentrating collectors. Three test prototypes utilizing bifacial PV cells were built. The initial two prototypes were built for indoor testing and differed only in geometry of the reflector, one being asymmetric and the other symmetric. Both prototypes were evaluated in an indoor solar simulator. Both reflector designs yielded positive electrical performance results and similar efficiencies from both sides of the cell were achieved. However, lower fill factor than expected was achieved for both designs when compared to the single cell tests. The results are discussed and suggestions for further testing are presented. A third prototype was built in order to perform outdoor evaluations. This prototype utilized a bifacial PV cells string laminated in silicone enclosed between 2 standard glass panes and a collector box with an asymmetric CPC concentrator. The prototype peak electrical efficiency and temperature dependence were evaluated. A comparison between the performance of the bottom and top sides of the asymmetric collector is also presented. Additionally, the incidence modifier angle (IAM) is also briefly discussed.展开更多
CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and else...CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and elsewhere. This paper summarises the findings of a study by the European Academies Science Advisory Council which has examined the current status and development challenges of CSP, and consequently has evaluated the potential contribution of CSP in Europe and the MENA region to 2050. It identifies the actions that will be required by scientists, engineers, policy makers, politicians, business and investors alike, to enable this vast solar resource to make a major contribution to establishing a sustainable energy system. The study concludes that cost reductions of 50%-60% in CSP electricity may reasonably be expected in the next 10-15 years, enabling the technology to be cost competitive with fossil-fired power generation at some point between 2020 and 2030. Incorporation of storage delivers added value in enabling CSP to deliver dispatchable power. Incentive schemes will be needed in Europe and MENA countries to enable this point to be achieved. Such schemes should reflect the true value of electricity to the grid, effectively drive research and development, and ensure transparency of performance and cost data.展开更多
The objective of this present study is to manufacture a new silicone-based adhesive which is used for gluing and bonding the second optical elements (SOE) with Concentrating Photovoltaic solar cell (CPV) in order to g...The objective of this present study is to manufacture a new silicone-based adhesive which is used for gluing and bonding the second optical elements (SOE) with Concentrating Photovoltaic solar cell (CPV) in order to guarantee a thickness that can provide a good silicone adherence to obtain long term stability and keeping a good solar transmittance performance, too. This new adhesive is made up of a mixture of silicone and transparent glass balls. The experimental part consists of the choice of the best size of glass balls with the suitable proportion of the glass balls weight in the mixture. For this purpose, ten samples were manufactured for every category of glass balls and weight ratio. Glass ball sizes between 100 and 1100 μm, and weight ratios between 1 and 10% were analyzed. For each category of glass balls, four proportions were mixed with the silicone. The thicknesses and transmittance of every sample were measured with appropriate instruments. The experimental results illustrate that the mixture containing balls with sizes inferior to 106 μm, is the best mixture which assures adhesive minimum thickness value necessary for an efficient mechanical bond and preserves also a good transmittance of solar irradiance.展开更多
The Chinese Academy of Sci-ences (CAS) has begun introducingthe trial implementation of theKnowledge Innovation Program(KIP)in an all-round manner just as,at the beginning of the new century,the state is about to impl...The Chinese Academy of Sci-ences (CAS) has begun introducingthe trial implementation of theKnowledge Innovation Program(KIP)in an all-round manner just as,at the beginning of the new century,the state is about to implement itsTenth Five-Year Plan for thecountry’s ongoing economic andsocial development. This will展开更多
Jilin Province is one of the main grain-producing provinces of China,which has dominant position in maize production,by the view of its advantages in policy,location,breed and market. And after entering WTO,some measu...Jilin Province is one of the main grain-producing provinces of China,which has dominant position in maize production,by the view of its advantages in policy,location,breed and market. And after entering WTO,some measures have been taken to enhance maize competitive ability. But there are some difficulties in concentrating production to maize advantaged areas. This paper expounds the basis that Jilin Province becomes the advantage area of maize,analyzes the problems and puts forward the supporting policy. Some strategic measures are proposed,as developing comparable advantages,carrying out the strategy of un-equilibrium development and cultivating advantaged product areas of maize to rapidly improve the international competitive ability and productivity of maize in Jilin Province,cast the agricultural predicament off and promote the agricultural development into a new stage.展开更多
Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employ...Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar ceils was obtained based on Shockley-Queisser's theory. An efficiency exceeding the Shockley--Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells.展开更多
In this study, several methods were compared for the efficiency to concentrate venom from the tentacles of jellyfish Rhopilema esculentum Kishinouye. The results show that the methods using either freezing-dry or gel ...In this study, several methods were compared for the efficiency to concentrate venom from the tentacles of jellyfish Rhopilema esculentum Kishinouye. The results show that the methods using either freezing-dry or gel absorption to remove water to concentrate venom are not applicable due to the low concentration of the compounds dissolved. Although the recovery efficiency and the total venom obtained using the dialysis dehydration method are high, some proteins can be lost during the concentrating process. Comparing to the lyophilization method, ultrafiltration is a simple way to concentrate the compounds at high percentage but the hemolytic activities of the proteins obtained by ultrafiltration appear to be lower. Our results suggest that overall lyophilization is the best and recommended method to concentrate venom from the tentacles of jellyfish. It shows not only the high recovery efficiency for the venoms but high hemolytic activities as well.展开更多
Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical effici...Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE.展开更多
A novel spherical macroporous epoxy-dicyandiamide chelate resin was synthesized simply and rapidly from epoxy resin and used for the preconcentration and separation of trace amounts of Au (Ⅲ ), Hg (Ⅱ ), Pd (Ⅳ) an...A novel spherical macroporous epoxy-dicyandiamide chelate resin was synthesized simply and rapidly from epoxy resin and used for the preconcentration and separation of trace amounts of Au (Ⅲ ), Hg (Ⅱ ), Pd (Ⅳ) and Ru (Ⅲ) ions from solution samples. The analyzed ions can be quantitatively concentrated by the resin at a flow rate of 2. 0 mL/min at pH 4, and can also be desorbed with 15 mL of 4 mol/L HCl + 0. 3 g thiourea from the resin column with recoveries of 96. 5%-99. 0%. After the chelate resin was reused for 7 times, the recoveries of these ions were still over 92%, and 400-1 000 times of excess of Fe(Ⅲ ), Al(Ⅲ ), Ni( II), Mn( Ⅱ ), Cr (Ⅲ ), Cu ( Ⅱ ), Cd (Ⅱ ) and Pb (Ⅱ ) caused little interference with the determination of these ions by an inductively coupled plasma optical emission spectrometer (ICP-OES ). The capacities of the resin for the analytes are in the range of 0. 35~0. 92 mmol/g. The RSDs of the proposed method are in the range of 1. 1 % ~4. 0% for each kind of the analyzed ions. The recoveries of a standard added in real solution samples are between 96. 5% and 98. 5%, and the results for the analyzed ions in a powder sample are in good agreement with their reported values.展开更多
This study was performed to optimize the conditions for concentrating protein in commercial rapeseed meal by ultrasonic-assisted alcohol washing method. The effects of sonication time,particle size,ultrasonic power an...This study was performed to optimize the conditions for concentrating protein in commercial rapeseed meal by ultrasonic-assisted alcohol washing method. The effects of sonication time,particle size,ultrasonic power and liquid to solid ratio on protein content were investigated. The result showed that the optimal conditions for concentrating protein in rapeseed meal were: sonication time of 40 min,particle size of 40 mesh,ultrasonic power of 800 W and liquid to solid ratio of 9∶ 1. Under these conditions,the protein content in rapeseed meal was increased to 55. 47%,which was 10. 43% higher than that in rapeseed meal not treated by sonication.展开更多
In this paper, detailed optical of the solar parabolic dish concentrator is presented. The system has diameter D = 2,800 mm and focal length f = 1,400 mm. The efficient conversion of solar radiation in heat at these t...In this paper, detailed optical of the solar parabolic dish concentrator is presented. The system has diameter D = 2,800 mm and focal length f = 1,400 mm. The efficient conversion of solar radiation in heat at these temperature levels requires a use of concentrating solar collectors. In this paper, detailed optical design of the solar parabolic dish concentrator is presented. The parabolic dish of the solar system consists from 12 curvilinear trapezoidal reflective petals. This paper presents optical simulations of the parabolic solar concentrator unit using the ray-tracing software TracePro. The total flux on receiver and the distribution of irradiance for absorbed flux on center and periphery receiver are given. The total flux at the focal region is 4,031.3 W. The goal of this paper is to present optical design of a low-tech solar concentrator, that can be used as a potentially low-cost tool for laboratory-scale research on the medium-temperature thermal processes, cooling, industrial processes, solar cooking and polygeneration systems, etc.展开更多
This paper proposes a new power generating system that combines wind power(WP),photovoltaic(PV),trough concentrating solar power(CSP)with a supercritical carbon dioxide(S-CO_(2))Brayton power cycle,a thermal energy st...This paper proposes a new power generating system that combines wind power(WP),photovoltaic(PV),trough concentrating solar power(CSP)with a supercritical carbon dioxide(S-CO_(2))Brayton power cycle,a thermal energy storage(TES),and an electric heater(EH)subsystem.The wind power/photovoltaic/concentrating solar power(WP-PV-CSP)with the S-CO_(2) Brayton cycle system is powered by renewable energy.Then,it constructs a bi-level capacity-operation collaborative optimization model and proposes a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)nested linear programming(LP)algorithm to solve this optimization problem,aiming to obtain a set of optimal capacity configurations that balance carbon emissions,economics,and operation scheduling.Afterwards,using Zhangbei area,a place in China which has significant wind and solar energy resources as a practical application case,it utilizes a bi-level optimization model to improve the capacity and annual load scheduling of the system.Finally,it establishes three reference systems to compare the annual operating characteristics of the WP-PV-CSP(S-CO_(2))system,highlighting the benefits of adopting the S-CO_(2) Brayton cycle and equipping the system with EH.After capacity-operation collaborative optimization,the levelized cost of energy(LCOE)and carbon emissions of the WP-PV-CSP(S-CO_(2))system are decreased by 3.43%and 92.13%,respectively,compared to the reference system without optimization.展开更多
The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly ...The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials(PV/T-CPCM).An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance.The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance,but the open-circuit voltage is negatively correlated with the temperature of the PV modules.When the solar irradiance is 500 W⋅m^(−2) and the temperature of the PV modules is 27.5℃,the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V,respectively.Higher solar irradiance results in higher thermal power,whereas the thermal efficiency is under lower solar irradiance(136.2-167.1 W⋅m^(−2) is twice under higher solar irradiance(272.3-455.7 W⋅m^(−2))).In addition,a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption.When the mass flow rate increases from 0.01 to 0.02 kg⋅s^(-1),the temperature difference between the inlet and outlet decreases by 1.8℃,and the primary energy-saving efficiency decreases by 0.53%.The intermittent operation of a water pump can reduce the energy consumption of the system,and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions.展开更多
基金support of the projects Youth Science Foundation of Gansu Province(Source-Grid-Load Multi-Time Interval Optimization Scheduling Method Considering Wind-PV-CSP Combined DC Transmission,No.22JR11RA148)Youth Science Foundation of Lanzhou Jiaotong University(Research on Coordinated Dispatching Control Strategy of High Proportion New Energy Transmission Power System with CSP Power Generation,No.2020011).
文摘According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.
基金support by the National Key Research and Development Program of China(2022YFB3803600)the National Natural Science Foundation of China(No.52276212)+3 种基金the Natural Science Foundation of Jiangsu Province(No.BK20231211)the Suzhou Science and Technology Program(SYG202101)the Key Research and Development Program in Shaanxi Province of China(No.2023-YBGY-300)the China Fundamental Research Funds for the Central Universities.
文摘The climate crisis necessitates the development of non-fossil energy sources.Harnessing solar energy for fuel production shows promise and offers the potential to utilize existing energy infrastructure.However,solar fuel production is in its early stages of development,constrained by low conversion efficiency and challenges in scaling up production.Concentrated solar energy(CSE)technology has matured alongside the rapid growth of solar thermal power plants.This review provides an overview of current CSE methods and solar fuel production,analyzes their integration compatibility,and delves into the theoretical mechanisms by which CSE impacts solar energy conversion efficiency and product selectivity in the context of photo-electrochemistry,thermochemistry,and photo-thermal co-catalysis for solar fuel production.The review also summarizes approaches to studying the photoelectric and photothermal effects of CSE.Lastly,it explores emerging novel CSE technology methods in the field of solar fuel production.
文摘Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.
文摘Access to electricity is poor in the Economic Community of West African States (ECOWAS). Concentrating Solar Power (CSP) presents better opportunities for increasing access to electricity and for diversifying sources of energy in the ECOWAS region;however, to date, except for Burkina Faso, no site evaluation pertaining to the region has ever been performed for CSP. This study provides potential assessment and site ranking for large-scale CSP projects in the ECOWAS region. It computes the nominal potential power and gives the corresponding energy yield with many scenarios. By considering only 1% of the suitable land area with daily DNI greater or equal to 5 kWh/m2, a land slope less or equal to 5% and distance to transmission line not more than 100 km, the study showed, for example, that West Africa has a potential nominal capacity of 21.3 GW for parabolic trough technology.
基金Supported by National Special Research Programs for Non-Profit Trades (Oceanography) (No.200705024)the Knowledge Innovation Program of Chinese Academy of Sciences (No.KZCX3-SW-214)
文摘Cyanobacteria possess a delicate system known as the carbon concentrating mechanism (CCM), which can efficiently elevate the intracellular inorganic carbon (Ci) concentration via active transportation. The system requires energy supplied by photosystems; therefore, the activity of the Ci transporter is closely related to light intensity. However, the relationship between CCM and light intensity has rarely been evaluated. Here, we present an improved quantitative model of CCM in which light is incorporated, and developed a CCM model that modified after Fridlyand et al. in 1996. Some equations used in this model were inducted to describe the relationship between transport capacity and light intensity, by which the response of the CCM to light change is simulated. Our results indicate that the efficiency of the carbon concentrating system is sensitive to light intensity. When the external Ci concentration was low, CO2 uptake dominated the total Ci uptake with increasing light intensity, while under high external Ci concentrations HCO3^- uptake primarily contributed to the total Ci uptake. Variations in the ratio of energy allocated between the transport systems could markedly affect the operation of CCM. Indeed, our simulations suggest that various combinations of Ci fluxes can provide a possible approach to detect the way by which the cell distributes energy produced by the photosystems to the two active Ci transport processes. The proportion of the energy consumed on CCM to the total energy expenditure for the fixation of one CO2 molecule was determined at 18%-40%.
文摘A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework can be used to evaluate the energy and exergy losses in each component. Furthermore, the energy and exergy efficiencies have also been computed and compared for the individual components as well as for the overall plant.
文摘Bifacial PV cells have the capacity to produce solar electricity from both sides and, thus, amongst other advantages, allow a significantly increase both in peak and annual power output while utilizing the same amount of silicone. According to the manufacturer, the bifacial cells are around 1.3 times more expensive than the single-sided cells. This way, bifacial PV cells can effectively reduce the cost of solar power for certain applications. Today, the most common application for these cells is in stationary vertical collectors which are exposed to sunlight from both sides, as the relative position of the sun changes throughout the day. Another possible application is to utilize these cells in concentrating collectors. Three test prototypes utilizing bifacial PV cells were built. The initial two prototypes were built for indoor testing and differed only in geometry of the reflector, one being asymmetric and the other symmetric. Both prototypes were evaluated in an indoor solar simulator. Both reflector designs yielded positive electrical performance results and similar efficiencies from both sides of the cell were achieved. However, lower fill factor than expected was achieved for both designs when compared to the single cell tests. The results are discussed and suggestions for further testing are presented. A third prototype was built in order to perform outdoor evaluations. This prototype utilized a bifacial PV cells string laminated in silicone enclosed between 2 standard glass panes and a collector box with an asymmetric CPC concentrator. The prototype peak electrical efficiency and temperature dependence were evaluated. A comparison between the performance of the bottom and top sides of the asymmetric collector is also presented. Additionally, the incidence modifier angle (IAM) is also briefly discussed.
文摘CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and elsewhere. This paper summarises the findings of a study by the European Academies Science Advisory Council which has examined the current status and development challenges of CSP, and consequently has evaluated the potential contribution of CSP in Europe and the MENA region to 2050. It identifies the actions that will be required by scientists, engineers, policy makers, politicians, business and investors alike, to enable this vast solar resource to make a major contribution to establishing a sustainable energy system. The study concludes that cost reductions of 50%-60% in CSP electricity may reasonably be expected in the next 10-15 years, enabling the technology to be cost competitive with fossil-fired power generation at some point between 2020 and 2030. Incorporation of storage delivers added value in enabling CSP to deliver dispatchable power. Incentive schemes will be needed in Europe and MENA countries to enable this point to be achieved. Such schemes should reflect the true value of electricity to the grid, effectively drive research and development, and ensure transparency of performance and cost data.
文摘The objective of this present study is to manufacture a new silicone-based adhesive which is used for gluing and bonding the second optical elements (SOE) with Concentrating Photovoltaic solar cell (CPV) in order to guarantee a thickness that can provide a good silicone adherence to obtain long term stability and keeping a good solar transmittance performance, too. This new adhesive is made up of a mixture of silicone and transparent glass balls. The experimental part consists of the choice of the best size of glass balls with the suitable proportion of the glass balls weight in the mixture. For this purpose, ten samples were manufactured for every category of glass balls and weight ratio. Glass ball sizes between 100 and 1100 μm, and weight ratios between 1 and 10% were analyzed. For each category of glass balls, four proportions were mixed with the silicone. The thicknesses and transmittance of every sample were measured with appropriate instruments. The experimental results illustrate that the mixture containing balls with sizes inferior to 106 μm, is the best mixture which assures adhesive minimum thickness value necessary for an efficient mechanical bond and preserves also a good transmittance of solar irradiance.
文摘The Chinese Academy of Sci-ences (CAS) has begun introducingthe trial implementation of theKnowledge Innovation Program(KIP)in an all-round manner just as,at the beginning of the new century,the state is about to implement itsTenth Five-Year Plan for thecountry’s ongoing economic andsocial development. This will
文摘Jilin Province is one of the main grain-producing provinces of China,which has dominant position in maize production,by the view of its advantages in policy,location,breed and market. And after entering WTO,some measures have been taken to enhance maize competitive ability. But there are some difficulties in concentrating production to maize advantaged areas. This paper expounds the basis that Jilin Province becomes the advantage area of maize,analyzes the problems and puts forward the supporting policy. Some strategic measures are proposed,as developing comparable advantages,carrying out the strategy of un-equilibrium development and cultivating advantaged product areas of maize to rapidly improve the international competitive ability and productivity of maize in Jilin Province,cast the agricultural predicament off and promote the agricultural development into a new stage.
基金supported by the National Natural Science Foundation of China(Grant Nos.91233202,21173260,and 51072221)the National Basic Research Program of China(Grant No.2012CB932903)
文摘Based on the facts that multijunction solar cells can increase the efficiency and concentration can reduce the cost dramatically, a special design of parallel multijunction solar cells was presented. The design employed a diffractive optical element (DOE) to split and concentrate the sunlight. A rainbow region and a zero-order diffraction region were generated on the output plane where solar cells with corresponding band gaps were placed. An analytical expression of the light intensity distribution on the output plane of the special DOE was deduced, and the limiting photovoltaic efficiency of such parallel multijunction solar ceils was obtained based on Shockley-Queisser's theory. An efficiency exceeding the Shockley--Queisser limit (33%) can be expected using multijunction solar cells consisting of separately fabricated subcells. The results provide an important alternative approach to realize high photovoltaic efficiency without the need for expensive epitaxial technology widely used in tandem solar cells, thus stimulating the research and application of high efficiency and low cost solar cells.
基金Supported by the Award Foundation of Scientific Research for Excellent Young and Middle-age Scientist of Shandong Province (No. 2006BS07003)the Knowledge Innovation Project of Chinese Academy of Sciences (KZCX2-YW-R-104)
文摘In this study, several methods were compared for the efficiency to concentrate venom from the tentacles of jellyfish Rhopilema esculentum Kishinouye. The results show that the methods using either freezing-dry or gel absorption to remove water to concentrate venom are not applicable due to the low concentration of the compounds dissolved. Although the recovery efficiency and the total venom obtained using the dialysis dehydration method are high, some proteins can be lost during the concentrating process. Comparing to the lyophilization method, ultrafiltration is a simple way to concentrate the compounds at high percentage but the hemolytic activities of the proteins obtained by ultrafiltration appear to be lower. Our results suggest that overall lyophilization is the best and recommended method to concentrate venom from the tentacles of jellyfish. It shows not only the high recovery efficiency for the venoms but high hemolytic activities as well.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.91233202,21173260,and 51072221)the National Basic Research Program of China(Grant No.2012CB932903
文摘Two improved algorithms are proposed to extend a diffractive optical element (DOE) to work under the broad spec- trum of sunlight. An optimum design has been found for the DOE, with a weighted average optical efficiency of about 6.8% better than that of the previous design. The optimization of designing high optical efficiency DOEs will pave the way for future designs of high-efficiency, low-cost lateral multijunction solar cells based on such a DOE.
基金the Natural Science Foundation and Science Committee Foundation of Ningxia.
文摘A novel spherical macroporous epoxy-dicyandiamide chelate resin was synthesized simply and rapidly from epoxy resin and used for the preconcentration and separation of trace amounts of Au (Ⅲ ), Hg (Ⅱ ), Pd (Ⅳ) and Ru (Ⅲ) ions from solution samples. The analyzed ions can be quantitatively concentrated by the resin at a flow rate of 2. 0 mL/min at pH 4, and can also be desorbed with 15 mL of 4 mol/L HCl + 0. 3 g thiourea from the resin column with recoveries of 96. 5%-99. 0%. After the chelate resin was reused for 7 times, the recoveries of these ions were still over 92%, and 400-1 000 times of excess of Fe(Ⅲ ), Al(Ⅲ ), Ni( II), Mn( Ⅱ ), Cr (Ⅲ ), Cu ( Ⅱ ), Cd (Ⅱ ) and Pb (Ⅱ ) caused little interference with the determination of these ions by an inductively coupled plasma optical emission spectrometer (ICP-OES ). The capacities of the resin for the analytes are in the range of 0. 35~0. 92 mmol/g. The RSDs of the proposed method are in the range of 1. 1 % ~4. 0% for each kind of the analyzed ions. The recoveries of a standard added in real solution samples are between 96. 5% and 98. 5%, and the results for the analyzed ions in a powder sample are in good agreement with their reported values.
基金Supported by Ph.D.Program of Huanggang Normal University(2015002803)the Fund of Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains(2015TD07)
文摘This study was performed to optimize the conditions for concentrating protein in commercial rapeseed meal by ultrasonic-assisted alcohol washing method. The effects of sonication time,particle size,ultrasonic power and liquid to solid ratio on protein content were investigated. The result showed that the optimal conditions for concentrating protein in rapeseed meal were: sonication time of 40 min,particle size of 40 mesh,ultrasonic power of 800 W and liquid to solid ratio of 9∶ 1. Under these conditions,the protein content in rapeseed meal was increased to 55. 47%,which was 10. 43% higher than that in rapeseed meal not treated by sonication.
文摘In this paper, detailed optical of the solar parabolic dish concentrator is presented. The system has diameter D = 2,800 mm and focal length f = 1,400 mm. The efficient conversion of solar radiation in heat at these temperature levels requires a use of concentrating solar collectors. In this paper, detailed optical design of the solar parabolic dish concentrator is presented. The parabolic dish of the solar system consists from 12 curvilinear trapezoidal reflective petals. This paper presents optical simulations of the parabolic solar concentrator unit using the ray-tracing software TracePro. The total flux on receiver and the distribution of irradiance for absorbed flux on center and periphery receiver are given. The total flux at the focal region is 4,031.3 W. The goal of this paper is to present optical design of a low-tech solar concentrator, that can be used as a potentially low-cost tool for laboratory-scale research on the medium-temperature thermal processes, cooling, industrial processes, solar cooking and polygeneration systems, etc.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.52090060).
文摘This paper proposes a new power generating system that combines wind power(WP),photovoltaic(PV),trough concentrating solar power(CSP)with a supercritical carbon dioxide(S-CO_(2))Brayton power cycle,a thermal energy storage(TES),and an electric heater(EH)subsystem.The wind power/photovoltaic/concentrating solar power(WP-PV-CSP)with the S-CO_(2) Brayton cycle system is powered by renewable energy.Then,it constructs a bi-level capacity-operation collaborative optimization model and proposes a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)nested linear programming(LP)algorithm to solve this optimization problem,aiming to obtain a set of optimal capacity configurations that balance carbon emissions,economics,and operation scheduling.Afterwards,using Zhangbei area,a place in China which has significant wind and solar energy resources as a practical application case,it utilizes a bi-level optimization model to improve the capacity and annual load scheduling of the system.Finally,it establishes three reference systems to compare the annual operating characteristics of the WP-PV-CSP(S-CO_(2))system,highlighting the benefits of adopting the S-CO_(2) Brayton cycle and equipping the system with EH.After capacity-operation collaborative optimization,the levelized cost of energy(LCOE)and carbon emissions of the WP-PV-CSP(S-CO_(2))system are decreased by 3.43%and 92.13%,respectively,compared to the reference system without optimization.
基金supported by the Hebei Province Postdoctoral Merit Funding Program(Grant No.:B2022005004)the Science and Tech-nology Nova Plan of Hebei University of Technology(Grant No.:JBKYXX2207)+2 种基金the National Natural Science Foundation of China(Grant No.:51978231)the S&T Program of Hebei(Project No.:216Z4502G)the Natural Science Foundation of Hebei Province(Grant No.:E2020202196).
文摘The photovoltaic/thermal(PV/T)system is a promising option for countering energy shortages.To improve the performance of PV/T systems,compound parabolic concentrators(CPCs)and phase-change materials(PCMs)were jointly applied to construct a concentrating photovoltaic/thermal system integrated with phase-change materials(PV/T-CPCM).An open-air environment is used to analyze the effects of different parameters and the intermittent operation strategy on the system performance.The results indicate that the short-circuit current and open-circuit voltage are positively correlated with the solar irradiance,but the open-circuit voltage is negatively correlated with the temperature of the PV modules.When the solar irradiance is 500 W⋅m^(−2) and the temperature of the PV modules is 27.5℃,the short-circuit current and open-circuit voltage are 1.0 A and 44.5 V,respectively.Higher solar irradiance results in higher thermal power,whereas the thermal efficiency is under lower solar irradiance(136.2-167.1 W⋅m^(−2) is twice under higher solar irradiance(272.3-455.7 W⋅m^(−2))).In addition,a higher mass flow rate corresponds to a better cooling effect and greater pump energy consumption.When the mass flow rate increases from 0.01 to 0.02 kg⋅s^(-1),the temperature difference between the inlet and outlet decreases by 1.8℃,and the primary energy-saving efficiency decreases by 0.53%.The intermittent operation of a water pump can reduce the energy consumption of the system,and the combination of liquid cooling with PCMs provides better thermal regulation and energy-saving effects under various conditions.