The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differenti...The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differential equations: an elliptic equation for electric potential, two convection-diffusion equations for electron concentration and hole concentration, and a heat conduction equation for temperature. The first equation is solved by the conservative block-centered method. The concentrations and temperature are computed by the block-centered upwind difference method on a changing mesh, where the block-centered method and upwind approximation are used to discretize the diffusion and convection, respectively. The computations on a changing mesh show very well the local special properties nearby the P-N junction. The upwind scheme is applied to approximate the convection, and numerical dispersion and nonphysical oscillation are avoided. The block-centered difference computes concentrations, temperature, and their adjoint vector functions simultaneously.The local conservation of mass, an important rule in the numerical simulation of a semiconductor device, is preserved during the computations. An optimal order convergence is obtained. Numerical examples are provided to show efficiency and application.展开更多
The single thiolated arylethynylene molecule with 9,10-dihydroanthracene core(denoted as TADHA) possesses pronounced negative differential conductance(NDC) behavior at lower bias regime. The adsorption effects of ...The single thiolated arylethynylene molecule with 9,10-dihydroanthracene core(denoted as TADHA) possesses pronounced negative differential conductance(NDC) behavior at lower bias regime. The adsorption effects of F2 molecule on the current and NDC behavior of TADHA molecular junctions are studied by applying non-equilibrium Green's formalism combined with density functional theory. The numerical results show that the F2 molecule adsorbed on the benzene ring of TADHA molecule near the electrode can dramatically suppresses the current of TADHA molecular junction. When the F2 molecule adsorbed on the conjugated segment of 9,10-dihydroanthracene core of TADHA molecule, an obviously asymmetric effect on the current curves induces the molecular system showing apparent rectifier behavior. However, the current especially the NDC behavior have been significantly enlarged when F2 addition reacted with triple bond of TADHA molecule.展开更多
Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. ...Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. These devices can be surgically implanted or attached using adhesive plates, dental sticks, elastic headbands, or bone conduction spectacles. Optimal fitting of bone conduction spectacles requires appropriate frame selection and contact pressure in the temporal and mastoid areas. The ANSI S3.6 and DIN EN ISO 389-3 standards recommend a contact area of approximately 1.75 cm2 and a maximum force of 5.4 N for effective sound transmission and comfort. Methods: This study aimed to evaluate the technical fit and mechanical stability of universal bone conduction hearing spectacles compared to established systems. A Sen-Pressure 02 thin-film sensor connected to an Arduino Uno R3 board measured contact force in the temporal and mastoid areas. Several BCHDs were tested, including the Bruckhoff la belle BC D50/70, Radioear B71 headset, Radioear B71 elastic headband, Cochlear Baha SoundArc M, and Cochlear Baha elastic headband, on a PVC artificial head, with data analyzed using ANOVA and LSD post hoc tests. Results: The la belle BC D50/70 spectacles showed comparable contact force to established BCHDs, ensuring adequate sound transmission and comfort. Significant differences were observed between the systems, with the Radioear B71 headset exhibiting the highest forces. The la belle BC D50/70 had similar forces to the Radioear B71 elastic headband. Conclusion: The la belle BC D50/70 universal bone conduction hearing spectacles are a technically equivalent alternative to established BCHDs, maintaining pressure below 5.4 N. Future research should explore the impact of different contact forces on performance and comfort, and the integration of force control in modified spectacles. This study indicates that the la belle BC D50/70 is a viable alternative that meets audiological practice requirements.展开更多
基金supported the Natural Science Foundation of Shandong Province(ZR2016AM08)Natural Science Foundation of Hunan Province(2018JJ2028)National Natural Science Foundation of China(11871312).
文摘The numerical simulation of a three-dimensional semiconductor device is a fundamental problem in information science. The mathematical model is defined by an initialboundary nonlinear system of four partial differential equations: an elliptic equation for electric potential, two convection-diffusion equations for electron concentration and hole concentration, and a heat conduction equation for temperature. The first equation is solved by the conservative block-centered method. The concentrations and temperature are computed by the block-centered upwind difference method on a changing mesh, where the block-centered method and upwind approximation are used to discretize the diffusion and convection, respectively. The computations on a changing mesh show very well the local special properties nearby the P-N junction. The upwind scheme is applied to approximate the convection, and numerical dispersion and nonphysical oscillation are avoided. The block-centered difference computes concentrations, temperature, and their adjoint vector functions simultaneously.The local conservation of mass, an important rule in the numerical simulation of a semiconductor device, is preserved during the computations. An optimal order convergence is obtained. Numerical examples are provided to show efficiency and application.
基金Project supported by the National Natural Science Foundation of China(Grant No.11374195)the Taishan Scholar Project of Shandong Province,Chinathe Jinan Youth Science and Technology Star Project,China(Grant No.201406004)
文摘The single thiolated arylethynylene molecule with 9,10-dihydroanthracene core(denoted as TADHA) possesses pronounced negative differential conductance(NDC) behavior at lower bias regime. The adsorption effects of F2 molecule on the current and NDC behavior of TADHA molecular junctions are studied by applying non-equilibrium Green's formalism combined with density functional theory. The numerical results show that the F2 molecule adsorbed on the benzene ring of TADHA molecule near the electrode can dramatically suppresses the current of TADHA molecular junction. When the F2 molecule adsorbed on the conjugated segment of 9,10-dihydroanthracene core of TADHA molecule, an obviously asymmetric effect on the current curves induces the molecular system showing apparent rectifier behavior. However, the current especially the NDC behavior have been significantly enlarged when F2 addition reacted with triple bond of TADHA molecule.
文摘Background: Non-implantable bone anchored hearing devices (BCHDs) are utilized for patients with conductive or mixed hearing loss who are unsuitable for conventional hearing aids or have unresolved middle ear issues. These devices can be surgically implanted or attached using adhesive plates, dental sticks, elastic headbands, or bone conduction spectacles. Optimal fitting of bone conduction spectacles requires appropriate frame selection and contact pressure in the temporal and mastoid areas. The ANSI S3.6 and DIN EN ISO 389-3 standards recommend a contact area of approximately 1.75 cm2 and a maximum force of 5.4 N for effective sound transmission and comfort. Methods: This study aimed to evaluate the technical fit and mechanical stability of universal bone conduction hearing spectacles compared to established systems. A Sen-Pressure 02 thin-film sensor connected to an Arduino Uno R3 board measured contact force in the temporal and mastoid areas. Several BCHDs were tested, including the Bruckhoff la belle BC D50/70, Radioear B71 headset, Radioear B71 elastic headband, Cochlear Baha SoundArc M, and Cochlear Baha elastic headband, on a PVC artificial head, with data analyzed using ANOVA and LSD post hoc tests. Results: The la belle BC D50/70 spectacles showed comparable contact force to established BCHDs, ensuring adequate sound transmission and comfort. Significant differences were observed between the systems, with the Radioear B71 headset exhibiting the highest forces. The la belle BC D50/70 had similar forces to the Radioear B71 elastic headband. Conclusion: The la belle BC D50/70 universal bone conduction hearing spectacles are a technically equivalent alternative to established BCHDs, maintaining pressure below 5.4 N. Future research should explore the impact of different contact forces on performance and comfort, and the integration of force control in modified spectacles. This study indicates that the la belle BC D50/70 is a viable alternative that meets audiological practice requirements.