In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy ...In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.展开更多
In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results a...In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.展开更多
Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-d...Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.展开更多
A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are ...A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.展开更多
By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of ...By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.展开更多
In this article, we get non-selfsimilar elementary waves of the conservation laws in another kind of view, which is different from the usual self-similar transformation. The solution has different global structure. Th...In this article, we get non-selfsimilar elementary waves of the conservation laws in another kind of view, which is different from the usual self-similar transformation. The solution has different global structure. This article is divided into three parts. The first part is introduction. In the second part, we discuss non-selfsimilar elementary waves and their interactions of a class of twodimensional conservation laws. In this case, we consider the case that the initial discontinuity is parabola with u+ 〉 0, while explicit non-selfsirnilar rarefaction wave can be obtained. In the second part, we consider the solution structure of case u+ 〈 0. The new solution structures are obtained by the interactions between different elementary waves, and will continue to interact with other states. Global solutions would be very different from the situation of one dimension.展开更多
In this paper, the super spectral viscosity (SSV) method is developed by introducing a spectrally small amount of high order regularization which is only activated on high frequencies. The resulting SSV approximatio...In this paper, the super spectral viscosity (SSV) method is developed by introducing a spectrally small amount of high order regularization which is only activated on high frequencies. The resulting SSV approximation is stable and convergent to the exact entropy solution. A Gegenbauer-Chebyshev post-processing for the SSV solution is proposed to remove the spurious oscillations at the disconti-nuities and recover accuracy from the spectral approximation. The ssv method is applied to the scahr periodic Burgers equation and the one-dimensional system of Euler equations of gas dynamics. The numerical results exhibit high accuracy and resolution to the exact entropy solution,展开更多
This article is concerned with the pointwise error estimates for vanishing vis- cosity approximations to scalar convex conservation laws with boundary.By the weighted error function and a bootstrap extrapolation techn...This article is concerned with the pointwise error estimates for vanishing vis- cosity approximations to scalar convex conservation laws with boundary.By the weighted error function and a bootstrap extrapolation technique introduced by Tadmor-Tang,an optimal pointwise convergence rate is derived for the vanishing viscosity approximations to the initial-boundary value problem for scalar convex conservation laws,whose weak entropy solution is piecewise C 2 -smooth with interaction of elementary waves and the ...展开更多
In this paper, the Riemann solutions for scalar conservation laws with discontinuous flux function were constructed. The interactions of elementary waves of the conservation laws were concerned, and the numerical simu...In this paper, the Riemann solutions for scalar conservation laws with discontinuous flux function were constructed. The interactions of elementary waves of the conservation laws were concerned, and the numerical simulations were given.展开更多
We study the large time behavior of solutions of scalar conservation laws with periodic initial data. Under a very weak nonlinearity condition,we prove that the solutions converge to constants as time tends to infinit...We study the large time behavior of solutions of scalar conservation laws with periodic initial data. Under a very weak nonlinearity condition,we prove that the solutions converge to constants as time tends to infinity. Our results improve the earlier ones since we only require the flux to be nonlinear at the mean value of the initial data.展开更多
Based on the modified Sawad^Kotera equation, we introduce a 3 ~ 3 matrix spectral problem with two potentials and derive a hierarchy of new nonlinear evolution equations. The second member in the hierarchy is a genera...Based on the modified Sawad^Kotera equation, we introduce a 3 ~ 3 matrix spectral problem with two potentials and derive a hierarchy of new nonlinear evolution equations. The second member in the hierarchy is a generalization of the modified Sawad-Kotera equation, by which a Lax pair of the modified Sawada-Kotera equation is obtained. With the help of the Miura transformation, explicit solutions of the Sawad-Kotera equation, the Kaup-Kupershmidt equation, and the modified Sawad-Kotera equation are given. Moreover, infinite sequences of conserved quantities of the first two nonlinear evolution equations in the hierarchy and the modified Sawada-Kotera equation are constructed with the aid of their Lax pairs.展开更多
Using the classical Lie method of infinitesimals, we first obtain the symmetry of the (2+1)-dimensional Burgers-Korteweg-de-Vries (3D-BKdV) equation. Then we reduce the 3D-BKdV equation using the symmetry and giv...Using the classical Lie method of infinitesimals, we first obtain the symmetry of the (2+1)-dimensional Burgers-Korteweg-de-Vries (3D-BKdV) equation. Then we reduce the 3D-BKdV equation using the symmetry and give some exact solutions of the 3D-BKdV equation. When using the direct method, we restrict a condition and get a relationship between the new solutions and the old ones. Given a solution of the 3D-BKdV equation, we can get a new one from the relationship. The relationship between the symmetry obtained by using the classical Lie method and that obtained by using the direct method is also mentioned. At last, we give the conservation laws of the 3D-BKdV equation.展开更多
By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which invo...By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.展开更多
A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CW...A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments.展开更多
In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear fo...In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented.展开更多
The laws of conservation of energy, linear momentum. and angular momentum of a system form a closed unit according to Noether's theorem. A generalization of these laws (including spin) for elementary par- ticles ...The laws of conservation of energy, linear momentum. and angular momentum of a system form a closed unit according to Noether's theorem. A generalization of these laws (including spin) for elementary par- ticles taking into account the states of negative energies of the Dirac vacuum is given. A new interpretation of the β-decay of nuclei without neutrinos. using interactions with Dirac's anti-world is discussed, which ex- plains all characteristics of the β-continuum. A quantum-electrodynamic theory of β-decay is presented in which Fermi's constant g of weak interactions is determined from first principles (without neutrinos). The lat- ter is an expression of e, h, c, m, M, and R, i.e., g is not an independent constant of physics nor is it necessa- ry to measure it.展开更多
The problem of the presence of Cantor part in the derivative of a solution to a hyperbolic system of conservation laws is considered. An overview of the techniques involved in the proof is given, and a collection of r...The problem of the presence of Cantor part in the derivative of a solution to a hyperbolic system of conservation laws is considered. An overview of the techniques involved in the proof is given, and a collection of related problems concludes the paper.展开更多
A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarc...A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. After that, the self- consistent sources of the new six-component super soliton hierarchy are presented. Furthermore, we establish the infinitely many conservation laws for the integrable super soliton hierarchy.展开更多
In this paper, by using the classical Lie symmetry approach, Lie point symmetries and reductions of one Blaszak– Marciniak(BM) four-field lattice equation are obtained. Two kinds of exact solutions of a rational form...In this paper, by using the classical Lie symmetry approach, Lie point symmetries and reductions of one Blaszak– Marciniak(BM) four-field lattice equation are obtained. Two kinds of exact solutions of a rational form and an exponential form are given. Moreover, we show that the equation has a sequence of generalized symmetries and conservation laws of polynomial form, which further confirms the integrability of the BM system.展开更多
Based on the matrix Lie super algebra and supertrace identity, the integrable super-Geng hierarchy with self-consistent is established. Furthermore, we establish the infinitely many conservation laws for the integrabl...Based on the matrix Lie super algebra and supertrace identity, the integrable super-Geng hierarchy with self-consistent is established. Furthermore, we establish the infinitely many conservation laws for the integrable super-Geng hierarchy. The methods derived by us can be generalized to other nonlinear equation hierarchies.展开更多
基金supported by the NSFC grant 12101128supported by the NSFC grant 12071392.
文摘In this paper,we propose a finite volume Hermite weighted essentially non-oscillatory(HWENO)method based on the dimension by dimension framework to solve hyperbolic conservation laws.It can maintain the high accuracy in the smooth region and obtain the high resolution solution when the discontinuity appears,and it is compact which will be good for giving the numerical boundary conditions.Furthermore,it avoids complicated least square procedure when we implement the genuine two dimensional(2D)finite volume HWENO reconstruction,and it can be regarded as a generalization of the one dimensional(1D)HWENO method.Extensive numerical tests are performed to verify the high resolution and high accuracy of the scheme.
文摘In this paper,we study systems of conservation laws in one space dimension.We prove that for classical solutions in Sobolev spaces H^(s),with s>3/2,the data-to-solution map is not uniformly continuous.Our results apply to all nonlinear scalar conservation laws and to nonlinear hyperbolic systems of two equations.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004zx16 tCorresponding author, E-maih zzlh100@163.com
文摘Using the modified find some new exact solutions to Lie point symmetry groups and also get conservation laws, of the CK's direct method, we build the relationship between new solutions and old ones and the (3+1)-dimensional potentiaial-YTSF equation. Baaed on the invariant group theory, Lie symmetries of the (3+1)-dimensional potential-YTSF equation are obtained. We equation with the given Lie symmetry.
基金supported by the National Natural Science Foundation of China(11390363 and 11172041)Beijing Higher Education Young Elite Teacher Project(YETP1190)
文摘A local pseudo arc-length method(LPALM)for solving hyperbolic conservation laws is presented in this paper.The key idea of this method comes from the original arc-length method,through which the critical points are bypassed by transforming the computational space.The method is based on local changes of physical variables to choose the discontinuous stencil and introduce the pseudo arc-length parameter,and then transform the governing equations from physical space to arc-length space.In order to solve these equations in arc-length coordinate,it is necessary to combine the velocity of mesh points in the moving mesh method,and then convert the physical variable in arclength space back to physical space.Numerical examples have proved the effectiveness and generality of the new approach for linear equation,nonlinear equation and system of equations with discontinuous initial values.Non-oscillation solution can be obtained by adjusting the parameter and the mesh refinement number for problems containing both shock and rarefaction waves.
基金The Project supported by the Natural Science Foundation of Shandong Province of China under Grant No.Q2005A01
文摘By applying a direct symmetry method, we get the symmetry of the asymmetric Nizhnik-Novikov-Veselov equation (ANNV). Taking the special case, we have a finite-dimensional symmetry. By using the equivalent vector of the symmetry, we construct an eight-dimensional symmetry algebra and get the optimal system of group-invariant solutions. To every case of the optimal system, we reduce the ANNV equation and obtain some solutions to the reduced equations. Furthermore, we find some new explicit solutions of the ANNV equation. At last, we give the conservation laws of the ANNV equation.
基金Sponsored by the National Natural Science Foundation of China (10671116,10871199, and 10001023)Hou Yingdong Fellowship (81004), The China Scholarship Council, Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, Natural Science Foundation of Guangdong (06027210 and 000804)Natural Science Foundation of Guangdong Education Bureau (200030)
文摘In this article, we get non-selfsimilar elementary waves of the conservation laws in another kind of view, which is different from the usual self-similar transformation. The solution has different global structure. This article is divided into three parts. The first part is introduction. In the second part, we discuss non-selfsimilar elementary waves and their interactions of a class of twodimensional conservation laws. In this case, we consider the case that the initial discontinuity is parabola with u+ 〉 0, while explicit non-selfsirnilar rarefaction wave can be obtained. In the second part, we consider the solution structure of case u+ 〈 0. The new solution structures are obtained by the interactions between different elementary waves, and will continue to interact with other states. Global solutions would be very different from the situation of one dimension.
文摘In this paper, the super spectral viscosity (SSV) method is developed by introducing a spectrally small amount of high order regularization which is only activated on high frequencies. The resulting SSV approximation is stable and convergent to the exact entropy solution. A Gegenbauer-Chebyshev post-processing for the SSV solution is proposed to remove the spurious oscillations at the disconti-nuities and recover accuracy from the spectral approximation. The ssv method is applied to the scahr periodic Burgers equation and the one-dimensional system of Euler equations of gas dynamics. The numerical results exhibit high accuracy and resolution to the exact entropy solution,
基金supported by the NSF China#10571075NSF-Guangdong China#04010473+1 种基金The research of the second author was supported by Jinan University Foundation#51204033the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State education Ministry#2005-383
文摘This article is concerned with the pointwise error estimates for vanishing vis- cosity approximations to scalar convex conservation laws with boundary.By the weighted error function and a bootstrap extrapolation technique introduced by Tadmor-Tang,an optimal pointwise convergence rate is derived for the vanishing viscosity approximations to the initial-boundary value problem for scalar convex conservation laws,whose weak entropy solution is piecewise C 2 -smooth with interaction of elementary waves and the ...
基金Project supported by National Natural Science Foundation of China(Grant No .10271072)
文摘In this paper, the Riemann solutions for scalar conservation laws with discontinuous flux function were constructed. The interactions of elementary waves of the conservation laws were concerned, and the numerical simulations were given.
文摘We study the large time behavior of solutions of scalar conservation laws with periodic initial data. Under a very weak nonlinearity condition,we prove that the solutions converge to constants as time tends to infinity. Our results improve the earlier ones since we only require the flux to be nonlinear at the mean value of the initial data.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171312)the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 200804590008)
文摘Based on the modified Sawad^Kotera equation, we introduce a 3 ~ 3 matrix spectral problem with two potentials and derive a hierarchy of new nonlinear evolution equations. The second member in the hierarchy is a generalization of the modified Sawad-Kotera equation, by which a Lax pair of the modified Sawada-Kotera equation is obtained. With the help of the Miura transformation, explicit solutions of the Sawad-Kotera equation, the Kaup-Kupershmidt equation, and the modified Sawad-Kotera equation are given. Moreover, infinite sequences of conserved quantities of the first two nonlinear evolution equations in the hierarchy and the modified Sawada-Kotera equation are constructed with the aid of their Lax pairs.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004 zx 16
文摘Using the classical Lie method of infinitesimals, we first obtain the symmetry of the (2+1)-dimensional Burgers-Korteweg-de-Vries (3D-BKdV) equation. Then we reduce the 3D-BKdV equation using the symmetry and give some exact solutions of the 3D-BKdV equation. When using the direct method, we restrict a condition and get a relationship between the new solutions and the old ones. Given a solution of the 3D-BKdV equation, we can get a new one from the relationship. The relationship between the symmetry obtained by using the classical Lie method and that obtained by using the direct method is also mentioned. At last, we give the conservation laws of the 3D-BKdV equation.
文摘By using the generalized characteristic analysis method, the two-dimensional four-wave Riemann problem for scalar conservation laws, which is nonconvex along the y direction, was studied. Riemann solutions, which involve the Guckenheimer structure, were constructed.
基金the National Natural Science Foundation of China (60134010)The English text was polished by Yunming Chen.
文摘A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments.
基金Supported by the National Natural Science Foundation of China under Grant No.60772023by the Slpported Project under Grant No.SKLSDE-2010ZX-07 of the State Key Laboratory of Software Development Environment,Beijing University of Aeronautics and As tronautics+2 种基金by the Specialized Research Fund for the Doctoral Program of Higher Educatioi under Grant No.200800130006Chinese Ministry of Education,and by the Innovation Foundation for Ph.D.Graduates under Grant Nos.30-0350 and 30-0366Beijing University of Aeronautics and Astronautics
文摘In this paper, an infinite sequence of conservation laws for a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids are constructed based on the Backlund transformation. Hirota bilinear form and symbolic computation are applied to obtain three kinds of solutions. Variable coefficients can affect the conserved density, associated flux, and appearance of the characteristic lines. Effects of the wave number on the soliton structures are also discussed and types of soliton structures, e.g., the double-periodic soliton, parallel soliton and soliton complexes, are presented.
文摘The laws of conservation of energy, linear momentum. and angular momentum of a system form a closed unit according to Noether's theorem. A generalization of these laws (including spin) for elementary par- ticles taking into account the states of negative energies of the Dirac vacuum is given. A new interpretation of the β-decay of nuclei without neutrinos. using interactions with Dirac's anti-world is discussed, which ex- plains all characteristics of the β-continuum. A quantum-electrodynamic theory of β-decay is presented in which Fermi's constant g of weak interactions is determined from first principles (without neutrinos). The lat- ter is an expression of e, h, c, m, M, and R, i.e., g is not an independent constant of physics nor is it necessa- ry to measure it.
文摘The problem of the presence of Cantor part in the derivative of a solution to a hyperbolic system of conservation laws is considered. An overview of the techniques involved in the proof is given, and a collection of related problems concludes the paper.
基金supported by the National Natural Science Foundation of China(Grant Nos.11547175,11271008 and 61072147)the First-class Discipline of University in Shanghai,Chinathe Science and Technology Department of Henan Province,China(Grant No.152300410230)
文摘A new six-component super soliton hierarchy is obtained based on matrix Lie super algebras. Super trace identity is used to furnish the super Hamiltonian structures for the resulting nonlinear super integrable hierarchy. After that, the self- consistent sources of the new six-component super soliton hierarchy are presented. Furthermore, we establish the infinitely many conservation laws for the integrable super soliton hierarchy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11075055 and 11275072), the Innovative Research Team Program of the National Science Foundation of China (Grant No. 61021104), the National High Technology Research and Development Program of China (Grant No. 2011AA010101), the Shanghai Knowledge Service Platform for Trustworthy Internet of Things, China (Grant No. ZF1213), the Doctor Foundation of Henan Polytechnic University, China (Grant No. B2011-006), the Youth Foundation of Henan Polytechnic University, China (Grant No. Q2012-30A), and the Science and Technology Research Key Project of Education Department of Henan Province, China (Grant No. 13A 110329).
文摘In this paper, by using the classical Lie symmetry approach, Lie point symmetries and reductions of one Blaszak– Marciniak(BM) four-field lattice equation are obtained. Two kinds of exact solutions of a rational form and an exponential form are given. Moreover, we show that the equation has a sequence of generalized symmetries and conservation laws of polynomial form, which further confirms the integrability of the BM system.
基金Supported by the National Natural Science Foundation of China(11271008, 61072147, 11547175) Supported by the Science and Technology Department of Henan Province(152300410230)+1 种基金 Supported by the Key Scientific Research Projects of Henan Province(16A110026) Supported by the Education Department of Henan Province(13All0101)
文摘Based on the matrix Lie super algebra and supertrace identity, the integrable super-Geng hierarchy with self-consistent is established. Furthermore, we establish the infinitely many conservation laws for the integrable super-Geng hierarchy. The methods derived by us can be generalized to other nonlinear equation hierarchies.