Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining,...Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil.展开更多
Iron-based amorphous crystalline powder Fe_(78)Si_(9)B_(13)^(AP)is used as a permeability reaction barrier(PRB)combined with an electrokinetic method(EK-PRB)to study the removal rate of Cu in contaminated soil.After t...Iron-based amorphous crystalline powder Fe_(78)Si_(9)B_(13)^(AP)is used as a permeability reaction barrier(PRB)combined with an electrokinetic method(EK-PRB)to study the removal rate of Cu in contaminated soil.After treating Cucontaminated soil for 5 days under different voltage gradients and soil water content,the soil pH is between 3.1 and 7.2.The increase of voltage gradient and soil water content can effectively promote the movement of Cu^(2+) to the cathode.The voltage gradient is 3 V/cm,and the water content of 40%is considered to be an optional experimental condition.Therefore,under this condition,the effects of Fe_(78)Si_(9)B_(13)^(AP)and zero-valent iron(ZVI)as PRB on the removal rate of total Cu in soil and the transformation of chemical forms of Cu are studied.Compared with ZVI,Fe_(78)Si_(9)B_(13)^(AP)as PRB has a better remediation effect.EK-Fe_(78)Si_(9)B_(13)^(AP)can remove 80.3%of total Cu in soil,and the biologically available Cu is reduced to 3.6%,which effectively reduces the environmental risk of contaminated soil.展开更多
[Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted res...[Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted research on heavy metals contents of plants growing in soil of Qibao Mountain orefield in Liuyang, Hunan Province, and on characteristics of enrichment and transfer of heavy metals (Cu, Pb, Cd, Zn) under influence of the two ramie species. [Result] It was concluded that trend of Cu content in different parts of ramie was as follows: rootskinleafbone; trend of Pb was rootleafskinbone; trend of Cd was rootskinboneleaf; the trend of Zn was rootskinboneleaf. In farmland A (with low content of heavy metal), for per square meter of plough horizon, effect of Zhong 1 on heavy metals transferring volume and the period for restoration of the soil into national standard one (Category Ⅲ of Environmental Quality Standard for Soil) have been concluded. Specifically, for Cu, the corresponding values were 3 404.44 mg and 8.59 y, respectively; for Pb, the values were 3 638.5 mg and 13.52 y; for Cd, the values were 720.48 mg and 1.49 y; for Zn, the values were 37 324.8 mg and 0.67 y. [Conclusion] Soil contaminated by Cu, Pb, Cd, and Zn in orefield can be rapidly restored by growing ramie.展开更多
Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed ...Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added.展开更多
[Objective] The remediation effect of the plant to Cd-contaminated soil was studied. [Method] By taking simulation test and field test, the ryegrass (Lolium perenne L.) was planted, and the remediation effect of the...[Objective] The remediation effect of the plant to Cd-contaminated soil was studied. [Method] By taking simulation test and field test, the ryegrass (Lolium perenne L.) was planted, and the remediation effect of the plant to contaminated sites was studied. [Result] The ryegrass was planted in the eluotropic soil for 0-60 d, Cd content in the soil showed a rapid decreasing trend; after 60 d, the enrich- ment ability of the plant to Cd gradually weakened over time; after 75 d of phytore- mediation, the Cd content in the soil decreased greatly, and the remediation effi- ciency was 90.66%. [Conclusion] Ryegrass remediation technology had good reme- diation effect to Cd-contaminated soil.展开更多
There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from s...There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions.展开更多
The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy...The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy metal contaminated soil(HMCS).The objective of this paper is to investigate the effects of fiber content,fiber length,cement content,curing time,heavy metal types and concentration on the mechanical properties of soils.To this end,a series of direct shear test,unconfined compression strength(UCS)test,dry-wet cycle and freeze-thaw cycle test are performed.The results confirm that the appropriate reinforcement of polypropylene fibers and cement is an effective way to recycle HMCS as substitutable fillers in roadbed,which exhibits benefits in environment and economy development.展开更多
This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitroge...This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.展开更多
The effects of different phosphate-amendments on lead (Pb) uptake, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cauliflower (Brassica oleracea L.) in contaminated soil...The effects of different phosphate-amendments on lead (Pb) uptake, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cauliflower (Brassica oleracea L.) in contaminated soils with 2500, or 5000 mg P2O5/kg soil of hydroxyapatite (HA), phosphate rock (PR), single-superphosphate (SSP) and the mix of HA/SSP (HASSP) were evaluated in pot experiments. Results showed that the Pb concentrations in shoots and roots decreased by 18.3%-51.6% and 16.8%-57.3% among the treatments respectively compared to the control samples. The efficiency order of these phosphate-amendments in reducing Pb uptake was as follows: HASSP= HA 〉 SSP ,= PR. With the addition of SSP, HA and the mix of HA/SSP, the SOD activity in shoot was reduced markedly (P 〈 0.05) compared with that in the control group. For example, the SOD activities in shoot by the treatments of HASSP, SSP, and HA in 5000 mg P2O5/kg were found to be only 51.3%, 56.2%, and 56.7%, respectively. Similar effects were also observed on the level of MDA in the shoots with a decrease in 24.5%-56.3%. The results verified the inference that phosphate compounds could be used to reduce the plant uptake of Pb and resist the Pb stress in the plant vegetated in Pb-contaminated soils.展开更多
Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves...Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.展开更多
Objective To determine the DNA damaging potential and the genotoxicity of individual compounds in pesticide contaminated soil. Methods In the present study, DNA damaging potential of pesticide-contaminated soil and th...Objective To determine the DNA damaging potential and the genotoxicity of individual compounds in pesticide contaminated soil. Methods In the present study, DNA damaging potential of pesticide-contaminated soil and the genotoxicity of individual compounds present in the soil were assessed using fluofimetdc analysis of DNA unwinding assay. Results The contaminated soil sample showed 79% (P〈0.001) of DNA strand break, whereas technical grade of major catbaryl and α-naphthol constituents of the contaminated soil showed 64% (P〈0.01) and 60% (P〈0.02) damage respectively. Conclusion Our results indicate that the toxicity caused by contaminated soil is mainly due to carbatyl and α -napthol, which are the major constituents of the soil sample analyzed by CrC-MS.展开更多
This study aims to optimize the treatment of phenol-contaminated soil by potassium ferrate. Variations in pH value can accurately reflect the state and reaction status of the entire treatment process. Therefore, the p...This study aims to optimize the treatment of phenol-contaminated soil by potassium ferrate. Variations in pH value can accurately reflect the state and reaction status of the entire treatment process. Therefore, the pH value could be an important variable for optimizing the reaction conditions and achieving the automatic control of the process. About 99.89% of phenol was removed after 10 min of the pH-contxolled reaction at a rotational speed of 40-70 r/min, with the initial phenol concentration equating to 10.0 g/kg and the total water consumption reaching 2.72 L (at a soil/water ratio of 1:0.68). The test results could provide a basis for practical application of automatic reaction control by pH value.展开更多
Restoration of contaminated soil and groundwater could be divided into two phases. The first phase takes aim at reducing human being's health risks by active remediation, while the second phase aims at eliminating ec...Restoration of contaminated soil and groundwater could be divided into two phases. The first phase takes aim at reducing human being's health risks by active remediation, while the second phase aims at eliminating ecological risks by natural attenuation (NA). Because of cost-effective and sustainable cleanup, monitored natural attenuation (MNA) and enhanced natural attenuation (ENA) have been gaining more attention recently, especially in the respects of ecological risk-oriented contaminated land management and a follow-up measure after active remediation. The uses and procedures of MNA for contaminated site cleanup and remediation in USA and EU were introduced firstly, and then possible applications of MNA in China were suggested. More developments and practices of MNA and ENA for managing contaminated sites in China are expected.展开更多
The long-term oil exploitation in oil fields has led to pollution of surrounding soil, creating a serious ecological problem. In order to promote and improve the application of microbial remediation in oil contaminate...The long-term oil exploitation in oil fields has led to pollution of surrounding soil, creating a serious ecological problem. In order to promote and improve the application of microbial remediation in oil contaminated soil, experiment is carried out in polluted area in Zhongyuan Oilfield. In the experiment, indigenous microorganisms and other physical and chemical methods are employed, ryegrass is grown, and environmental factors in soil are regulated to degrade the oil and treat the polluted soil. Results show that when the average oil content in the soil is about 523.08 mg/kg, 65 days' remediation through plants and microorganisms could help bring the oil content down to 74.61 mg/kg, achieving a degradation rate of 85.74%; through salinity treatment, salt content in soil is reduced by 62.93-82.03% to 399-823 mg/kg from previous 2.22 g/kg. Through this experiment, the bioremediation method is improved and its effectiveness and feasibility are testified. The result has been applied in Zhongyuan Oilfield and has brought fair ecological and economic benefits, providing technical support to the treatment of contaminated soil of the same kind, and offering some insights to the treatment of soil contaminated by other organic pollutants.展开更多
The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four yea...The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four years and sampled at various depths in a controlled manner. The chemical properties (e.g., degree of carbonation (DOC), pH, electrical conductivity (EC)) and physical properties (e.g., moisture content (MC), liquid limit CLL), plastic limit (PL), plasticity index (PI)) of the samples untreated and treated with the traditional and accelerated carbonated S/S processes were analyzed. Their variations on the depths of the soils were also studied. The result showed that the broad geotechnical properties of the soils, manifested in their PIs, were related to the concentration of the water soluble ions and in particular the free calcium ions. The samples treated with the accelerated carbonation technology (ACT), and the untreated samples contained limited number of free calcium ions in solutions and consequently interacted with waters in a similar way. Compared with the traditional cement-based S/S technology, e.g., treatment with ordinary portland cement (OPC) or EnvirOceM, ACT caused the increase of the PI of the treated soil and made it more stable during long-term weathering. The PI values for the four soils ascended according to the order: the EnvirOceM soil, the OPC soil, the ACT soil, and the untreated soil while their pH and EC values descended according to the same order.展开更多
Diesel contaminated soil(DCS) contained a large amount of the hydrocarbons and salt which was dominated by soluble sodium chloride. Aggregation process which made the desired aggregate size distribution could speed ...Diesel contaminated soil(DCS) contained a large amount of the hydrocarbons and salt which was dominated by soluble sodium chloride. Aggregation process which made the desired aggregate size distribution could speed up the degradation rate of the hydrocarbons since the aggregated DCS had better physical characteristics than the non-aggregated material. Artificial aggregation increased pores 〉30 μm by approximately 5% and reduced pores 〈1 μm by 5%, but did not change the percentage of the pores between 1 and 30 μm. The saturated hydraulic conductivity of non-aggregated DCS was 5×10-6 m · s-l, but it increased to 1×10-5 m · s-l after aggregation. The compression index of the non-aggregated DCS was 0.0186; however, the artificial aggregates with and without lime were 0.031 and 0.028, respectively. DCS could be piled 0.2 m deep without artificial aggregation; however, it could be applied 0.28 m deep when artificial aggregates were formed without limiting O2 transport.展开更多
A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection ...A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.展开更多
Plant uptake of contaminants provides vital information for the reclamation of large area of contaminated soils.A field experiment was conducted using four plant species growing in four kinds of oil contaminated soils...Plant uptake of contaminants provides vital information for the reclamation of large area of contaminated soils.A field experiment was conducted using four plant species growing in four kinds of oil contaminated soils to estimate the uptake of organic and inorganic contaminants by plants from the oil contaminated soils.The experiment showed that the concentrations of some selected elements,such as B,Co and Ni in plants growing in the oil contaminated soils were significantly higher than those in plants growing in the uncontaminated control soil.The accumulation of metals in plants increased with plant biomass;however,the removal of metals by plants from the oil contaminated soils was not practical.展开更多
Phytoremediation shows promise as an alternative low-cost to most remediation methods. This study evaluated the germination of six crops, including four mutant lines of barley (Hordium vulgate L.) (1-9-3, 150-2-3, ...Phytoremediation shows promise as an alternative low-cost to most remediation methods. This study evaluated the germination of six crops, including four mutant lines of barley (Hordium vulgate L.) (1-9-3, 150-2-3, 1-1-200 and 150-1-5), wheat (Triticum aestivum L.) and garden cress (Lipidium sativum L.). This experiment was conducted in laboratory at room temperature. Oil extracted from crude oil contaminated soil was added to sand used in different concentrations (0%, 2%, 4%, 6%, 8% and 10%). 10 seeds of each crop were sown in ptri-dishes with different treatments separately. For Each treatment four replicates were used in completely randomized design, germination percent was calculated, after one week, shoot and root length were measured. Data were statistically analyzed using MINTAB version 12. The results show that barley mutant line (150-2-3) was significantly different from other entries in germination percent, shoot and root length except mutant line 150-1-5 in germination percent. Results demonstrated that the mutant line 150-2-3 was promising to remediate crude oil contaminated soil.展开更多
This study was conducted in Mgbede, River State, Nigeria, hosting up to, or even more than 100 oil wells. It examined the relationship between the bearing capacity of crude oil contaminated soil and the percentage con...This study was conducted in Mgbede, River State, Nigeria, hosting up to, or even more than 100 oil wells. It examined the relationship between the bearing capacity of crude oil contaminated soil and the percentage contamination. Four uncontaminated soil samples were randomly collected at 1.5 m depth within the oil field with hand auger and analyzed for the load bearing properties limited to cohesion, angle of internal friction and bulk density. With these parameters, the bearing capacity was determined for each sample. Crude oil, collected from one of the oil wells with viscosity 0.02611 poises at 40~C and specific gravity 0.8227 g/cm3, was used as the contaminant. This was mixed with the soil sample at 5%, 10%, 15% and 20% concentrations. The mean values of the bearing capacity were 582.458 KN/m2, 495.35 KN/m2 for square and strip footings respectively at 0% contamination, 240.735 KN/m2 and 204.753 KN/m2 at 5%, 321.683 KN/m2 and 274.593 KN/m2 at 10%, 127.003 KN/m2 and 109.12 KN/m2 at 15%, 105.28 KN/m2 and 90.758 KN/m2 at 20% for square and strip footings, respectively. The results showed a consistent decrease in the load bearing values as the crude oil content increased. The result of the null hypothesis established a strong and significant relationship between the bearing capacity of crude oil contaminated soil and the percentage contamination.展开更多
文摘Heavy metals have been viewed as hazardous environmental pollutants, and anthropogenic activities due to their high toxicity and persistent nature in the environment. Anthropogenic activities such as artisanal mining, industrial activities, improper usage of fertilizers and pesticides, and indiscriminate open waste disposal bring about an increase in the presence of heavy metals in the environment. In the Keffi Metropolis, different elements lead to land contamination which debilitates soil quality, plant survival, human well-being, and the environment as a result of extensive dispersion or quantity of heavy metals in the soil and water. In recent years, biochar has emerged as a promising soil amendment for mitigating heavy metal pollution due to its unique physicochemical properties. This paper provides the effects of softwood pellet biochar on the retention of heavy metals in contaminated soils. A microcosm experiment was carried out to investigate the effects of biochar on the retention of heavy metals in contaminated soils. This research aimed to give an overview of the effects of softwood biochar at different temperatures (550˚C and 700˚C) on the retention of heavy metals and metalloids released from the soil during water inundation. The results show that the addition of organic matter (grass chippings) minimizes heavy metal mobilization. Also, biochar at high temperatures is more effective than those at low temperatures. The expected outcome of the research analysis includes providing insights into the role of biochar in retaining heavy metal contamination and further understanding the use of biochar as a sorbent for the management of contaminated soil.
基金This research was funded by the National Natural Science Foundation of China(NSFC)[Grant Nos.51661015 and 52061024]the University Innovation Fund Project of Gansu Provincial Department of Education[Grant No.2021B-553]the Natural Science Foundation of Zhejiang Province,China(4304030).
文摘Iron-based amorphous crystalline powder Fe_(78)Si_(9)B_(13)^(AP)is used as a permeability reaction barrier(PRB)combined with an electrokinetic method(EK-PRB)to study the removal rate of Cu in contaminated soil.After treating Cucontaminated soil for 5 days under different voltage gradients and soil water content,the soil pH is between 3.1 and 7.2.The increase of voltage gradient and soil water content can effectively promote the movement of Cu^(2+) to the cathode.The voltage gradient is 3 V/cm,and the water content of 40%is considered to be an optional experimental condition.Therefore,under this condition,the effects of Fe_(78)Si_(9)B_(13)^(AP)and zero-valent iron(ZVI)as PRB on the removal rate of total Cu in soil and the transformation of chemical forms of Cu are studied.Compared with ZVI,Fe_(78)Si_(9)B_(13)^(AP)as PRB has a better remediation effect.EK-Fe_(78)Si_(9)B_(13)^(AP)can remove 80.3%of total Cu in soil,and the biologically available Cu is reduced to 3.6%,which effectively reduces the environmental risk of contaminated soil.
基金Supported by National Programs for High Technology Research and Development of China(2007AA061001)Talent Introduction Project Supported by Hunan Agricultural University Project(07YT03)~~
文摘[Objective] The aim was to study on in-situ elimination effect on heavy metals in soil of the mining area by ramie (Boehmeria nivea (L.) Gaud.). [Methods] Based on Xiangzhu No.3 and Zhongzhu No.1, we conducted research on heavy metals contents of plants growing in soil of Qibao Mountain orefield in Liuyang, Hunan Province, and on characteristics of enrichment and transfer of heavy metals (Cu, Pb, Cd, Zn) under influence of the two ramie species. [Result] It was concluded that trend of Cu content in different parts of ramie was as follows: rootskinleafbone; trend of Pb was rootleafskinbone; trend of Cd was rootskinboneleaf; the trend of Zn was rootskinboneleaf. In farmland A (with low content of heavy metal), for per square meter of plough horizon, effect of Zhong 1 on heavy metals transferring volume and the period for restoration of the soil into national standard one (Category Ⅲ of Environmental Quality Standard for Soil) have been concluded. Specifically, for Cu, the corresponding values were 3 404.44 mg and 8.59 y, respectively; for Pb, the values were 3 638.5 mg and 13.52 y; for Cd, the values were 720.48 mg and 1.49 y; for Zn, the values were 37 324.8 mg and 0.67 y. [Conclusion] Soil contaminated by Cu, Pb, Cd, and Zn in orefield can be rapidly restored by growing ramie.
基金Projects(41472278,41202220)supported by the National Natural Science Foundation of ChinaProject(20120022120003)supported by the Research Fund for the Doctoral Program of Higher Education,China+1 种基金Project(51900265647)supported by the Beijing Higher Education Young Elite Teacher Project,ChinaProject(2652012065)supported by the Fundamental Research Funds for the Central Universities,China
文摘Cement-based composite grouting materials were used to construct grouting cutoff wall for heavy metal contaminated soil in non-ferrous metal mining areas. Cement, fly ash, and slag as principal ingredients were mixed with water glass in different ways to produce three composite grouting materials. In order to investigate the effect of water glass mixing ratio, Baume degree, fly ash and slag contents on the mechanical properties of the composite grouting materials, particularly their gel time and compressive strength, the beaker-to-beaker method of gel time test and unconfined compressive strength test were conducted. In addition, the phase composition and microstructure of the composite grouting materials were analyzed by the X-ray diffraction(XRD) and scanning electron microscope(SEM) techniques. The test results show that their gel time increases when water glass mixing ratio and Baume degree increase. The gel time increases dramatically when fly ash is added, but decreases slightly if fly ash is partly replaced by slag. When the mixing ratio of water glass is below 20%, their compressive strength increases with the increases of the ratio; when the ratio is above 20%, it significantly decreases. The compressive strength also tends to increase as Baume degree increases, and improves if fly ash and slag are added.
基金Supported by the Prospective Research Project of Industry-University-Research Cooperation in Jiangsu Province(BY2014037-21)~~
文摘[Objective] The remediation effect of the plant to Cd-contaminated soil was studied. [Method] By taking simulation test and field test, the ryegrass (Lolium perenne L.) was planted, and the remediation effect of the plant to contaminated sites was studied. [Result] The ryegrass was planted in the eluotropic soil for 0-60 d, Cd content in the soil showed a rapid decreasing trend; after 60 d, the enrich- ment ability of the plant to Cd gradually weakened over time; after 75 d of phytore- mediation, the Cd content in the soil decreased greatly, and the remediation effi- ciency was 90.66%. [Conclusion] Ryegrass remediation technology had good reme- diation effect to Cd-contaminated soil.
基金Project supported by the National Key Basic Research Support Foundation of China (No. 2002CB410804) and the National Natural Science Foundation (No. 40201026).
文摘There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions.
基金Projects(51778386,51708377,51608059)supported by the National Natural Science Foundation of ChinaProject(BK20170339)supported by Natural Science Foundation of Jiangsu Province,China+2 种基金Project(17KJB560008)supported by Natural Science Fund for Colleges and Universities in Jiangsu Province,ChinaProjects(KFJ170106,KFJ180105)supported by Open Fund of National Engineering Laboratory of Highway Maintenance Technology(Changsha University of Science&Technology),ChinaProjects(2016ZD18,2017ZD002)supported by Jiangsu Provincial Department of Housing,Urban-Rural Development,China。
文摘The treatment of contaminated soil is a crucial issue in geotechnical and environmental engineering.This study proposes to incorporate appropriate polypropylene fibers and cements as an effective method to treat heavy metal contaminated soil(HMCS).The objective of this paper is to investigate the effects of fiber content,fiber length,cement content,curing time,heavy metal types and concentration on the mechanical properties of soils.To this end,a series of direct shear test,unconfined compression strength(UCS)test,dry-wet cycle and freeze-thaw cycle test are performed.The results confirm that the appropriate reinforcement of polypropylene fibers and cement is an effective way to recycle HMCS as substitutable fillers in roadbed,which exhibits benefits in environment and economy development.
基金Supported by National Natural Science Foundation of China(Grant No.21067003,5136-4015)Natural Science Foundation of Jiangxi Province(Grant No.20114BAB203024)National High-Tech Research and Development Program of China(Grant No.2012BAC11B07)~~
文摘This study aimed to remediate in-situ leach mining contaminated soil by amendment-plant synergism. The results showed that plant species exhibited ex-tremely significant effects on the concentration of nitrate nitrogen; to be specific, the concentration of nitrate nitrogen in soil planted with wheat was reduced from 692.19 mg/kg to lower than 100 mg/kg; when the mass ratio of amendment to soil reached 3:50 and the amendment particle size was 1-2 mm, the concentration of nitrate ni-trogen in soil planted with wheat was reduced to 43 mg/kg. The amendment type exhibited extremely significant effects on the concentration of ammonium nitrogen; to be specific, when the mass ratio of amendment to soil reached 10:50, the concen-tration of ammonium nitrogen in soil added with 2-3 mm zeolite was reduced from 23 593.75 to 3 300 mg/kg on day 15. Amendments and plants mainly exhibited desorption performance for sulfate radical in soil, and the amendment type extreme-ly significantly affected the concentration of sulfate radical; to be specific, the con-centration of sulfate radical in soil added with limestone increased from 370 mg/kg to 900 mg/kg on day 7.
基金supported by the Hi-Tech Research and Development Program (863) of China (No.2008AA10Z404)the special fund for the institute of commonweal scientific research in China (No. 628-16)
文摘The effects of different phosphate-amendments on lead (Pb) uptake, the activities of superoxide dismutase (SOD) and the level of malondialdehyde (MDA) in cauliflower (Brassica oleracea L.) in contaminated soils with 2500, or 5000 mg P2O5/kg soil of hydroxyapatite (HA), phosphate rock (PR), single-superphosphate (SSP) and the mix of HA/SSP (HASSP) were evaluated in pot experiments. Results showed that the Pb concentrations in shoots and roots decreased by 18.3%-51.6% and 16.8%-57.3% among the treatments respectively compared to the control samples. The efficiency order of these phosphate-amendments in reducing Pb uptake was as follows: HASSP= HA 〉 SSP ,= PR. With the addition of SSP, HA and the mix of HA/SSP, the SOD activity in shoot was reduced markedly (P 〈 0.05) compared with that in the control group. For example, the SOD activities in shoot by the treatments of HASSP, SSP, and HA in 5000 mg P2O5/kg were found to be only 51.3%, 56.2%, and 56.7%, respectively. Similar effects were also observed on the level of MDA in the shoots with a decrease in 24.5%-56.3%. The results verified the inference that phosphate compounds could be used to reduce the plant uptake of Pb and resist the Pb stress in the plant vegetated in Pb-contaminated soils.
基金Foundation item: Projects(41172273, 40802079, 51108288) supported by the National Natural Science Foundation of China Project(KLE-TJGE-B1106) supported by the Opening Fund of Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education (Tongji University), China
文摘Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.
文摘Objective To determine the DNA damaging potential and the genotoxicity of individual compounds in pesticide contaminated soil. Methods In the present study, DNA damaging potential of pesticide-contaminated soil and the genotoxicity of individual compounds present in the soil were assessed using fluofimetdc analysis of DNA unwinding assay. Results The contaminated soil sample showed 79% (P〈0.001) of DNA strand break, whereas technical grade of major catbaryl and α-naphthol constituents of the contaminated soil showed 64% (P〈0.01) and 60% (P〈0.02) damage respectively. Conclusion Our results indicate that the toxicity caused by contaminated soil is mainly due to carbatyl and α -napthol, which are the major constituents of the soil sample analyzed by CrC-MS.
基金financially supported by the National Key R&D Plan of China (2017YFC1404605)the Natural Science Foundation of China (Grant No. 51579049 and 51509044)+4 种基金the High-Tech Ship Programthe Excellent Subject Leaders Foundation of Harbin Science and Technology Bureauthe Key Laboratory of Superlight Materials and Surface Technology of the Ministry of Educationthe Harbin Engineering University for their supportsupported by the Open Research Fund Program of Shandong Provincial Key Laboratory of Oilfield Produced Water Treatment and Environmental Pollution Control (SINOPEC Petroleum Eaguieering Corporation) (No.201801)
文摘This study aims to optimize the treatment of phenol-contaminated soil by potassium ferrate. Variations in pH value can accurately reflect the state and reaction status of the entire treatment process. Therefore, the pH value could be an important variable for optimizing the reaction conditions and achieving the automatic control of the process. About 99.89% of phenol was removed after 10 min of the pH-contxolled reaction at a rotational speed of 40-70 r/min, with the initial phenol concentration equating to 10.0 g/kg and the total water consumption reaching 2.72 L (at a soil/water ratio of 1:0.68). The test results could provide a basis for practical application of automatic reaction control by pH value.
文摘Restoration of contaminated soil and groundwater could be divided into two phases. The first phase takes aim at reducing human being's health risks by active remediation, while the second phase aims at eliminating ecological risks by natural attenuation (NA). Because of cost-effective and sustainable cleanup, monitored natural attenuation (MNA) and enhanced natural attenuation (ENA) have been gaining more attention recently, especially in the respects of ecological risk-oriented contaminated land management and a follow-up measure after active remediation. The uses and procedures of MNA for contaminated site cleanup and remediation in USA and EU were introduced firstly, and then possible applications of MNA in China were suggested. More developments and practices of MNA and ENA for managing contaminated sites in China are expected.
基金funded by The basic scientific research project fund of Chinese Academy of Geological Sciences (Code: YYWF201519)China Geology Survey Work Program (Code: 121201106000150006)+1 种基金The international cooperation project of Ministry of Science and Technology (Code: 2005DFA90200)Mine environment management project of Henan Provincial Department of Land and Resources
文摘The long-term oil exploitation in oil fields has led to pollution of surrounding soil, creating a serious ecological problem. In order to promote and improve the application of microbial remediation in oil contaminated soil, experiment is carried out in polluted area in Zhongyuan Oilfield. In the experiment, indigenous microorganisms and other physical and chemical methods are employed, ryegrass is grown, and environmental factors in soil are regulated to degrade the oil and treat the polluted soil. Results show that when the average oil content in the soil is about 523.08 mg/kg, 65 days' remediation through plants and microorganisms could help bring the oil content down to 74.61 mg/kg, achieving a degradation rate of 85.74%; through salinity treatment, salt content in soil is reduced by 62.93-82.03% to 399-823 mg/kg from previous 2.22 g/kg. Through this experiment, the bioremediation method is improved and its effectiveness and feasibility are testified. The result has been applied in Zhongyuan Oilfield and has brought fair ecological and economic benefits, providing technical support to the treatment of contaminated soil of the same kind, and offering some insights to the treatment of soil contaminated by other organic pollutants.
文摘The investigation of the long-term performance of solidified/stabilized (S/S) contaminated soils was carried out in a trial site in southeast UK. The soils were exposed to the maximum natural weathering for four years and sampled at various depths in a controlled manner. The chemical properties (e.g., degree of carbonation (DOC), pH, electrical conductivity (EC)) and physical properties (e.g., moisture content (MC), liquid limit CLL), plastic limit (PL), plasticity index (PI)) of the samples untreated and treated with the traditional and accelerated carbonated S/S processes were analyzed. Their variations on the depths of the soils were also studied. The result showed that the broad geotechnical properties of the soils, manifested in their PIs, were related to the concentration of the water soluble ions and in particular the free calcium ions. The samples treated with the accelerated carbonation technology (ACT), and the untreated samples contained limited number of free calcium ions in solutions and consequently interacted with waters in a similar way. Compared with the traditional cement-based S/S technology, e.g., treatment with ordinary portland cement (OPC) or EnvirOceM, ACT caused the increase of the PI of the treated soil and made it more stable during long-term weathering. The PI values for the four soils ascended according to the order: the EnvirOceM soil, the OPC soil, the ACT soil, and the untreated soil while their pH and EC values descended according to the same order.
文摘Diesel contaminated soil(DCS) contained a large amount of the hydrocarbons and salt which was dominated by soluble sodium chloride. Aggregation process which made the desired aggregate size distribution could speed up the degradation rate of the hydrocarbons since the aggregated DCS had better physical characteristics than the non-aggregated material. Artificial aggregation increased pores 〉30 μm by approximately 5% and reduced pores 〈1 μm by 5%, but did not change the percentage of the pores between 1 and 30 μm. The saturated hydraulic conductivity of non-aggregated DCS was 5×10-6 m · s-l, but it increased to 1×10-5 m · s-l after aggregation. The compression index of the non-aggregated DCS was 0.0186; however, the artificial aggregates with and without lime were 0.031 and 0.028, respectively. DCS could be piled 0.2 m deep without artificial aggregation; however, it could be applied 0.28 m deep when artificial aggregates were formed without limiting O2 transport.
基金The National Natural Science Foundation of China(No.41967043,52160003)the Natural Science Foundation of Gansu Province(No.20JR5RA461)+1 种基金the Key Project of China Railway Southwest Research Institute Co.,Ltd.(No.2018-KJ003-Z003-XB)the Industrial Support Program of the Higher Education of Gansu Province(No.2020C-40).
文摘A computational fluid dynamics(CFD)numerical simulation and field experiment were used to investigate optimal operating parameters of high-pressure jet grouting equipment and clarify the boundary law of the injection area in the remediation process.The response surface optimization design results show that the optimal injection pressure is 30 MPa,rotation speed is 23 r/min,commission speed is 30 cm/min,and the optimal injection diameter is 147.3 cm.Based on the CFD numerical simulation,the ratio of the injection core,turbulent zone,and seepage zone is approximately 1∶4∶2.The distribution law of jet core,turbulence zone and seepage zone at different cross-sections under 30 MPa operating conditions is as follows:The jet core radius is approximately 100 mm,the turbulence zone is mainly distributed at 100 to 500 mm,the seepage zone is mainly distributed at 500 to 700 mm,the seepage zone could be completed within 2 h,and the proportion of the three boundary zones in the injection zone is similar to that of the numerical simulation.This study provides theoretical parameters and practical reference for the remediation of deep pollution via in-situ chemical oxidation in the Loess Plateau soil environment.
文摘Plant uptake of contaminants provides vital information for the reclamation of large area of contaminated soils.A field experiment was conducted using four plant species growing in four kinds of oil contaminated soils to estimate the uptake of organic and inorganic contaminants by plants from the oil contaminated soils.The experiment showed that the concentrations of some selected elements,such as B,Co and Ni in plants growing in the oil contaminated soils were significantly higher than those in plants growing in the uncontaminated control soil.The accumulation of metals in plants increased with plant biomass;however,the removal of metals by plants from the oil contaminated soils was not practical.
文摘Phytoremediation shows promise as an alternative low-cost to most remediation methods. This study evaluated the germination of six crops, including four mutant lines of barley (Hordium vulgate L.) (1-9-3, 150-2-3, 1-1-200 and 150-1-5), wheat (Triticum aestivum L.) and garden cress (Lipidium sativum L.). This experiment was conducted in laboratory at room temperature. Oil extracted from crude oil contaminated soil was added to sand used in different concentrations (0%, 2%, 4%, 6%, 8% and 10%). 10 seeds of each crop were sown in ptri-dishes with different treatments separately. For Each treatment four replicates were used in completely randomized design, germination percent was calculated, after one week, shoot and root length were measured. Data were statistically analyzed using MINTAB version 12. The results show that barley mutant line (150-2-3) was significantly different from other entries in germination percent, shoot and root length except mutant line 150-1-5 in germination percent. Results demonstrated that the mutant line 150-2-3 was promising to remediate crude oil contaminated soil.
文摘This study was conducted in Mgbede, River State, Nigeria, hosting up to, or even more than 100 oil wells. It examined the relationship between the bearing capacity of crude oil contaminated soil and the percentage contamination. Four uncontaminated soil samples were randomly collected at 1.5 m depth within the oil field with hand auger and analyzed for the load bearing properties limited to cohesion, angle of internal friction and bulk density. With these parameters, the bearing capacity was determined for each sample. Crude oil, collected from one of the oil wells with viscosity 0.02611 poises at 40~C and specific gravity 0.8227 g/cm3, was used as the contaminant. This was mixed with the soil sample at 5%, 10%, 15% and 20% concentrations. The mean values of the bearing capacity were 582.458 KN/m2, 495.35 KN/m2 for square and strip footings respectively at 0% contamination, 240.735 KN/m2 and 204.753 KN/m2 at 5%, 321.683 KN/m2 and 274.593 KN/m2 at 10%, 127.003 KN/m2 and 109.12 KN/m2 at 15%, 105.28 KN/m2 and 90.758 KN/m2 at 20% for square and strip footings, respectively. The results showed a consistent decrease in the load bearing values as the crude oil content increased. The result of the null hypothesis established a strong and significant relationship between the bearing capacity of crude oil contaminated soil and the percentage contamination.