With the development of wireless networks and mobile computing, more advanced applications with context-awareness and adaptability to their changing context are needed. However, building context-aware applications is ...With the development of wireless networks and mobile computing, more advanced applications with context-awareness and adaptability to their changing context are needed. However, building context-aware applications is difficult due to the lack of adequate infrastructure support. In this paper, a web middleware architecture for the development of context-awareness applications using near field communication (NFC) is proposed. Based on it, the efficient support for acquiring, interpreting, and accessing context is provided, and the user's quality of experience is improved. Moreover, a mobile web middleware for the testing and full realization of NFC context-awareness applications has been developed together with two application examples.展开更多
In many wireless sensor networks(WSNs)applications,the preservation of source-location privacy plays a critical role in concealing context information,otherwise the monitored entities or subjects may be put in danger....In many wireless sensor networks(WSNs)applications,the preservation of source-location privacy plays a critical role in concealing context information,otherwise the monitored entities or subjects may be put in danger.Many traditional solutions have been proposed based on the creation of random routes,such as random walk and fake sources approach,which will lead to serious packet delay and high energy consumption.Instead of applying the routing in a blind way,this article proposes a novel solution for source location privacy in WSNs by utilizing sensor ability of perceiving the presence a mobile attacker nearby,for patient attackers in particular to increase the safety period and decrease the data delivery delay.The proposed strategy forms an intelligent silent zone(ISZ)by sacrificing only a minority of sensor nodes to entice patient attackers away from real packet routing path.The analysis and simulation results show that the proposed scheme,besides providing source location privacy energy efficiently,can significantly reduce real event reporting latency compared with the existing approaches.展开更多
Analysis of the particularity of the civil aviation passenger auxiliary service recommendation scenario.As application of the traditional recommendation algorithm has certain limitation in civil aviation auxiliary ser...Analysis of the particularity of the civil aviation passenger auxiliary service recommendation scenario.As application of the traditional recommendation algorithm has certain limitation in civil aviation auxiliary services recommendation,a SVR recommendation algorithm of auxiliary service of civil aviation based on context-awareness was proposed.Analysis of the civil aviation passenger travel data,construct the civil aviation passenger preference model,then recommend auxiliary service for passengers.Based on the traditional two-dimensional user-item recommendation,considering the user characteristics,item attributes and user contextual information in the process of recommendation,which can effectively reduce the data sparseness in some degree.In addition,when there is a new user or a new item,whose similar users or items can be found according to the user or item attributes,to some extent,which can solve the problem of cold start.The experimental results show that the algorithm can recommend auxiliary service for passengers more accurately,which can provide convenience for passengers as well as increase the quality of airlines’services.展开更多
The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in ...The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in personalizing the needs of individual users.Therefore,it is essential to improve the user experience.The recommender system focuses on recommending a set of items to a user to help the decision-making process and is prevalent across e-commerce and media websites.In Context-Aware Recommender Systems(CARS),several influential and contextual variables are identified to provide an effective recommendation.A substantial trade-off is applied in context to achieve the proper accuracy and coverage required for a collaborative recommendation.The CARS will generate more recommendations utilizing adapting them to a certain contextual situation of users.However,the key issue is how contextual information is used to create good and intelligent recommender systems.This paper proposes an Artificial Neural Network(ANN)to achieve contextual recommendations based on usergenerated reviews.The ability of ANNs to learn events and make decisions based on similar events makes it effective for personalized recommendations in CARS.Thus,the most appropriate contexts in which a user should choose an item or service are achieved.This work converts every label set into a Multi-Label Classification(MLC)problem to enhance recommendations.Experimental results show that the proposed ANN performs better in the Binary Relevance(BR)Instance-Based Classifier,the BR Decision Tree,and the Multi-label SVM for Trip Advisor and LDOS-CoMoDa Dataset.Furthermore,the accuracy of the proposed ANN achieves better results by 1.1%to 6.1%compared to other existing methods.展开更多
The existing dataset for visual dialog comprises multiple rounds of questions and a diverse range of image contents.However,it faces challenges in overcoming visual semantic limitations,particularly in obtaining suffi...The existing dataset for visual dialog comprises multiple rounds of questions and a diverse range of image contents.However,it faces challenges in overcoming visual semantic limitations,particularly in obtaining sufficient context from visual and textual aspects of images.This paper proposes a new visual dialog dataset called Diverse History-Dialog(DS-Dialog)to address the visual semantic limitations faced by the existing dataset.DS-Dialog groups relevant histories based on their respective Microsoft Common Objects in Context(MSCOCO)image categories and consolidates them for each image.Specifically,each MSCOCO image category consists of top relevant histories extracted based on their semantic relationships between the original image caption and historical context.These relevant histories are consolidated for each image,and DS-Dialog enhances the current dataset by adding new context-aware relevant history to provide more visual semantic context for each image.The new dataset is generated through several stages,including image semantic feature extraction,keyphrase extraction,relevant question extraction,and relevant history dialog generation.The DS-Dialog dataset contains about 2.6 million question-answer pairs,where 1.3 million pairs correspond to existing VisDial’s question-answer pairs,and the remaining 1.3 million pairs include a maximum of 5 image features for each VisDial image,with each image comprising 10-round relevant question-answer pairs.Moreover,a novel adaptive relevant history selection is proposed to resolve missing visual semantic information for each image.DS-Dialog is used to benchmark the performance of previous visual dialog models and achieves better performance than previous models.Specifically,the proposed DSDialog model achieves an 8% higher mean reciprocal rank(MRR),11% higher R@1%,6% higher R@5%,5% higher R@10%,and 8% higher normalized discounted cumulative gain(NDCG)compared to LF.DS-Dialog also achieves approximately 1 point improvement on R@k,mean,MRR,and NDCG compared to the original RVA,and 2 points improvement compared to LF andDualVD.These results demonstrates the importance of the relevant semantic historical context in enhancing the visual semantic relationship between textual and visual representations of the images and questions.展开更多
Recommender systems are similar to an informationfiltering system that helps identify items that best satisfy the users’demands based on their pre-ference profiles.Context-aware recommender systems(CARSs)and multi-cr...Recommender systems are similar to an informationfiltering system that helps identify items that best satisfy the users’demands based on their pre-ference profiles.Context-aware recommender systems(CARSs)and multi-criteria recommender systems(MCRSs)are extensions of traditional recommender sys-tems.CARSs have integrated additional contextual information such as time,place,and so on for providing better recommendations.However,the majority of CARSs use ratings as a unique criterion for building communities.Meanwhile,MCRSs utilize user preferences in multiple criteria to better generate recommen-dations.Up to now,how to exploit context in MCRSs is still an open issue.This paper proposes a novel approach,which relies on deep learning for context-aware multi-criteria recommender systems.We apply deep neural network(DNN)mod-els to predict the context-aware multi-criteria ratings and learn the aggregation function.We conduct experiments to evaluate the effect of this approach on the real-world dataset.A significant result is that our method outperforms other state-of-the-art methods for recommendation effectiveness.展开更多
The rapid development of information and communication technologies(ICTs)and cyber-physical systems(CPSs)has paved the way for the increasing popularity of smart products.Context-awareness is an important facet of pro...The rapid development of information and communication technologies(ICTs)and cyber-physical systems(CPSs)has paved the way for the increasing popularity of smart products.Context-awareness is an important facet of product smartness.Unlike artifacts,various bio-systems are naturally characterized by their extraordinary context-awareness.Biologically inspired design(BID)is one of the most commonly employed design strategies.However,few studies have examined the BID of context-aware smart products to date.This paper presents a structured design framework to support the BID of context-aware smart products.The meaning of context-awareness is defined from the perspective of product design.The framework is developed based on the theoretical foundations of the situated function-behavior-structure ontology.A structured design process is prescribed to leverage various biological inspirations in order to support different conceptual design activities,such as problem formulation,structure reformulation,behavior reformulation,and function reformulation.Some existing design methods and emerging design tools are incorporated into the framework.A case study is presented to showcase how this framework can be followed to redesign a robot vacuum cleaner and make it more context-aware.展开更多
Recent years have witnessed the expeditious evolution of intelligentsmart devices and autonomous software technologies with the expandeddomains of computing from workplaces to smart computing in everydayroutine life a...Recent years have witnessed the expeditious evolution of intelligentsmart devices and autonomous software technologies with the expandeddomains of computing from workplaces to smart computing in everydayroutine life activities. This trend has been rapidly advancing towards the newgeneration of systems where smart devices play vital roles in acting intelligently on behalf of the users. Context-awareness has emerged from the pervasive computing paradigm. Context-aware systems have the ability to acquirecontextual information from the surrounding environment autonomously,perform reasoning on it, and then adapt their behaviors accordingly. With theproliferation of context-aware systems and smart sensors, real-time monitoring of environmental situations (context) has become quite trivial. However,it is often challenging because the imperfect nature of context can cause theinconsistent behavior of the system. In this paper, we propose a contextaware intelligent decision support formalism to assist cognitively impairedpeople in managing their routine life activities. For this, we present a semanticknowledge-based framework to contextualize the information from the environment using the protégé ontology editor and Semantic Web Rule Language(SWRL) rules. The set of contextualized information and the set of rulesacquired from the ontology can be used to model Context-aware Multi-AgentSystems (CMAS) in order to autonomously plan all activities of the users andnotify users to act accordingly. To illustrate the use of the proposed formalism,we model a case study of Mild Cognitive Impaired (MCI) patients usingColored Petri Nets (CPN) to show the reasoning process on how the contextaware agents collaboratively plan activities on the user’s behalf and validatethe correctness properties of the system.展开更多
With the requirements for high performance results in the today’s mobile, global, highly competitive, and technology-based business world, business professionals have to get supported by convenient mobile decision su...With the requirements for high performance results in the today’s mobile, global, highly competitive, and technology-based business world, business professionals have to get supported by convenient mobile decision support systems (DSS). To give an improved support to mobile business professionals, it is necessary to go further than just allowing a simple remote access to a Business Intelligence platform. In this paper, the need for actual context-aware mobile Geospatial Business Intelligence (GeoBI) systems that can help capture, filter, organize and structure the user mobile context is exposed and justified. Furthermore, since capturing, structuring, and modeling mobile contextual information is still a research issue, a wide inventory of existing research work on context and mobile context is provided. Then, step by step, we methodologically identify relevant contextual information to capture for mobility purposes as well as for BI needs, organize them into context-dimensions, and build a hierarchical mobile GeoBI context model which (1) is geo-spatial-extended, (2) fits with human perception of mobility, (3) takes into account the local context interactions and information-sharing with remote contexts, and (4) matches with the usual hierarchical aggregated structure of BI data.展开更多
Previous approaches to Chinese zero pronoun resolution mainly use syntactic information and probabilistic methods, but the context information is ignored. To make full use of the context and semantic information, we b...Previous approaches to Chinese zero pronoun resolution mainly use syntactic information and probabilistic methods, but the context information is ignored. To make full use of the context and semantic information, we build a context-aware model. We propose a key words extraction strategy and design a classification model by using distributed representations as context feature. To our best knowledge, this is the first work using distributed representations in Chinese zero pronoun resolution. Experimental results show that our approach achieves a better performance than previous supervised methods.展开更多
With the development of Internet of things and Web of things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) s...With the development of Internet of things and Web of things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) services which meet the needs of the users. However, the mobility of these devices as the users has important repercussions that challenge software design of these applications because the variability of the environment cannot be anticipated at the design time. Thus, it will be interesting to dynamically discover the environment and adapt the application during its execution to the new contextual conditions. We therefore, propose a model of a context-aware middleware that can address this issue through a monitoring service which is capable of reasoning and observation channels capable of calculating the context during the runtime. The monitoring service evaluates the pre-defined X-Query predicates in the context manager and uses Prolog to deduce the services needed to respond back. An independent observation channel for each different predicate is then dynamically generated by the monitoring service depending on the current state of the environment. Each channel sends its result directly to the context manager which consequently calculates the context based on all the predicates’ results while preserving the reactivity of the self-adaptive system.展开更多
This paper discussed the differences of context-aware service between the cloud computing environment and the traditional service system.Given the above differences,the paper subsequently analyzed the changes of conte...This paper discussed the differences of context-aware service between the cloud computing environment and the traditional service system.Given the above differences,the paper subsequently analyzed the changes of context-aware service during preparation,organization and delivery,as well as the resulting changes in service acceptance of consumers.Because of these changes,the context-aware service modes in the cloud computing environment change are intelligent,immersive,highly interactive,and real-time.According to active and responded service,and authorization and non-authorized service,the paper drew a case diagram of context-aware service in Unified Modeling Language(UML) and established four categories of context-aware service modes.展开更多
Autonomic networking is one of the hot research topics in the research area of future network architectures.In this paper, we introduce context-aware and autonomic attributes into DiffServ QoS framework, and propose a...Autonomic networking is one of the hot research topics in the research area of future network architectures.In this paper, we introduce context-aware and autonomic attributes into DiffServ QoS framework, and propose a novel autonomic packet marking(APM) algorithm.In the proposed autonomic QoS framework, APM is capable of collecting various QoS related contexts, and adaptively adjusting its behavior to provide better QoS guarantee according to users' requirements and network conditions.Simulation results show that APM provides better performance than traditional packet marker, and significantly improves user's quality of experience.展开更多
With the development of communication and ubiquitous computing technologies, context-aware services, which acquire contextual information of users and environment, have become critical applications providing customiza...With the development of communication and ubiquitous computing technologies, context-aware services, which acquire contextual information of users and environment, have become critical applications providing customization in mobile commerce. Meanwhile, tourism has attracted increasing attention as a high value-added service and a hot academic topic. However, the research on how to provide tour services based on context-aware services is in fact still at an early stage, limited to concept elaboration, service framework discussion, prototype system development etc. In this paper, we summarized the previous researches on context-aware services to establish the research foundation, put forward a way of analyzing a tour planning problem with a modified model of Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP), and we applied an innovated Resource Constrain Project Scheduling Problem (RCPSP) mathematical model to solve the tour planning problem based on context information. The simulation under branch and bound algoritban evaluated the validity of our solution.展开更多
Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the c...Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.展开更多
In recent years, several researchers have applied workflow technologies for service automation on ubiquitous compating environments. However, most context-aware workflows do not offer a method to compose several workf...In recent years, several researchers have applied workflow technologies for service automation on ubiquitous compating environments. However, most context-aware workflows do not offer a method to compose several workflows in order to get mare large-scale or complicated workflow. They only provide a simple workflow model, not a composite workflow model. In this paper, the autorhs propose a context-aware workflow model to support composite workflows by expanding the patterns of the existing context-aware wrY:flows, which support the basic woddlow patterns. The suggested workflow model of. fers composite workflow patterns for a context-aware workflow, which consists of various flow patterns, such as simple, split, parallel flows, and subflow. With the suggested model, the model can easily reuse few of existing workflows to make a new workflow. As a result, it can save the development efforts and time of context-aware workflows and increase the workflow reusability. Therefore, the suggested model is expected to make it easy to develop applications related to context-aware workflow services on ubiquitous computing environments.展开更多
In this paper,an interactive method is proposed to describe computer animation data and accelerate the process of animation generation.First,a semantic model and a resource description framework(RDF)are utilized to an...In this paper,an interactive method is proposed to describe computer animation data and accelerate the process of animation generation.First,a semantic model and a resource description framework(RDF)are utilized to analyze and describe the relationships between animation data.Second,a novel context model which is able to keep the context-awareness was proposed to facilitate data organization and storage.In our context model,all the main animation elements in a scene are operated as a whole.Then sketch is utilized as the main interactive method to describe the relationships between animation data,edit the context model and make some other user operations.Finally,a context-aware computer animation data description system based on sketch is generated and it also works well in animation generation process.展开更多
APT attacks are prolonged and have multiple stages, and they usually utilize zero-day or one-day exploits to be penetrating and stealthy. Among all kinds of security tech- niques, provenance tracing is regarded as an ...APT attacks are prolonged and have multiple stages, and they usually utilize zero-day or one-day exploits to be penetrating and stealthy. Among all kinds of security tech- niques, provenance tracing is regarded as an important approach to attack investigation, as it discloses the root cause, the attacking path, and the results of attacks. However, existing techniques either suffer from the limitation of only focusing on the log type, or are high- ly susceptible to attacks, which hinder their applications in investigating APT attacks. We present CAPT, a context-aware provenance tracing system that leverages the advantages of virtualization technologies to transparently collect system events and network events out of the target machine, and processes them in the specific host which introduces no space cost to the target. CAPT utilizes the contexts of collected events to bridge the gap between them, and provides a panoramic view to the attack investigation. Our evaluation results show that CAPT achieves the efi'ective prov- enance tracing to the attack cases, and it only produces 0.21 MB overhead in 8 hours. With our newly-developed technology, we keep the run-time overhead averages less than 4%.展开更多
Service-Oriented Communication(SOC)is a key research issue to enable media communications using the Service-Oriented Architecture(SOA).Motivated by the necessity to guarantee the service quality of our webbased multim...Service-Oriented Communication(SOC)is a key research issue to enable media communications using the Service-Oriented Architecture(SOA).Motivated by the necessity to guarantee the service quality of our webbased multimedia conferencing system,we present a Comprehensively Context-Aware(CoCA)approach in this paper.One major problem in the existing end-to-end Quality of Service(QoS)management solutions is that they analyse and exploit the relationships between the QoS metrics and corresponding contexts in an isolated manner.In this paper,we propose a novel approach to leveraging such relationships in a comprehensive manner based on Bayesian networks and the fuzzy set theory.This approach includes three phases:1)information feedback and training,2)QoS-to-context mapping,and3)optimal context adaption.We implement the proposed CoCA in the real multimedia conferencing system and compare its performance with the existing bandwidth aware and playback buffer aware schemes.Experimental results show that the proposed CoCA outperforms the competing approaches in improving the average video Peak Signal-to-Noise Ratio(PSNR).It also exhibits good performance in preventing the playback buffer starvation.展开更多
基金supported by the Internet of Things Project 2011 of the Ministry of IndustryInformation Technology of China under Grant No.2011-046
文摘With the development of wireless networks and mobile computing, more advanced applications with context-awareness and adaptability to their changing context are needed. However, building context-aware applications is difficult due to the lack of adequate infrastructure support. In this paper, a web middleware architecture for the development of context-awareness applications using near field communication (NFC) is proposed. Based on it, the efficient support for acquiring, interpreting, and accessing context is provided, and the user's quality of experience is improved. Moreover, a mobile web middleware for the testing and full realization of NFC context-awareness applications has been developed together with two application examples.
基金supported by the National Natural Science Foundation of China (Nos.61373015,61300052, 41301047)the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Important National Science and Technology Specific Project(No. BA2013049)
文摘In many wireless sensor networks(WSNs)applications,the preservation of source-location privacy plays a critical role in concealing context information,otherwise the monitored entities or subjects may be put in danger.Many traditional solutions have been proposed based on the creation of random routes,such as random walk and fake sources approach,which will lead to serious packet delay and high energy consumption.Instead of applying the routing in a blind way,this article proposes a novel solution for source location privacy in WSNs by utilizing sensor ability of perceiving the presence a mobile attacker nearby,for patient attackers in particular to increase the safety period and decrease the data delivery delay.The proposed strategy forms an intelligent silent zone(ISZ)by sacrificing only a minority of sensor nodes to entice patient attackers away from real packet routing path.The analysis and simulation results show that the proposed scheme,besides providing source location privacy energy efficiently,can significantly reduce real event reporting latency compared with the existing approaches.
文摘Analysis of the particularity of the civil aviation passenger auxiliary service recommendation scenario.As application of the traditional recommendation algorithm has certain limitation in civil aviation auxiliary services recommendation,a SVR recommendation algorithm of auxiliary service of civil aviation based on context-awareness was proposed.Analysis of the civil aviation passenger travel data,construct the civil aviation passenger preference model,then recommend auxiliary service for passengers.Based on the traditional two-dimensional user-item recommendation,considering the user characteristics,item attributes and user contextual information in the process of recommendation,which can effectively reduce the data sparseness in some degree.In addition,when there is a new user or a new item,whose similar users or items can be found according to the user or item attributes,to some extent,which can solve the problem of cold start.The experimental results show that the algorithm can recommend auxiliary service for passengers more accurately,which can provide convenience for passengers as well as increase the quality of airlines’services.
文摘The digital technologies that run based on users’content provide a platform for users to help air their opinions on various aspects of a particular subject or product.The recommendation agents play a crucial role in personalizing the needs of individual users.Therefore,it is essential to improve the user experience.The recommender system focuses on recommending a set of items to a user to help the decision-making process and is prevalent across e-commerce and media websites.In Context-Aware Recommender Systems(CARS),several influential and contextual variables are identified to provide an effective recommendation.A substantial trade-off is applied in context to achieve the proper accuracy and coverage required for a collaborative recommendation.The CARS will generate more recommendations utilizing adapting them to a certain contextual situation of users.However,the key issue is how contextual information is used to create good and intelligent recommender systems.This paper proposes an Artificial Neural Network(ANN)to achieve contextual recommendations based on usergenerated reviews.The ability of ANNs to learn events and make decisions based on similar events makes it effective for personalized recommendations in CARS.Thus,the most appropriate contexts in which a user should choose an item or service are achieved.This work converts every label set into a Multi-Label Classification(MLC)problem to enhance recommendations.Experimental results show that the proposed ANN performs better in the Binary Relevance(BR)Instance-Based Classifier,the BR Decision Tree,and the Multi-label SVM for Trip Advisor and LDOS-CoMoDa Dataset.Furthermore,the accuracy of the proposed ANN achieves better results by 1.1%to 6.1%compared to other existing methods.
文摘The existing dataset for visual dialog comprises multiple rounds of questions and a diverse range of image contents.However,it faces challenges in overcoming visual semantic limitations,particularly in obtaining sufficient context from visual and textual aspects of images.This paper proposes a new visual dialog dataset called Diverse History-Dialog(DS-Dialog)to address the visual semantic limitations faced by the existing dataset.DS-Dialog groups relevant histories based on their respective Microsoft Common Objects in Context(MSCOCO)image categories and consolidates them for each image.Specifically,each MSCOCO image category consists of top relevant histories extracted based on their semantic relationships between the original image caption and historical context.These relevant histories are consolidated for each image,and DS-Dialog enhances the current dataset by adding new context-aware relevant history to provide more visual semantic context for each image.The new dataset is generated through several stages,including image semantic feature extraction,keyphrase extraction,relevant question extraction,and relevant history dialog generation.The DS-Dialog dataset contains about 2.6 million question-answer pairs,where 1.3 million pairs correspond to existing VisDial’s question-answer pairs,and the remaining 1.3 million pairs include a maximum of 5 image features for each VisDial image,with each image comprising 10-round relevant question-answer pairs.Moreover,a novel adaptive relevant history selection is proposed to resolve missing visual semantic information for each image.DS-Dialog is used to benchmark the performance of previous visual dialog models and achieves better performance than previous models.Specifically,the proposed DSDialog model achieves an 8% higher mean reciprocal rank(MRR),11% higher R@1%,6% higher R@5%,5% higher R@10%,and 8% higher normalized discounted cumulative gain(NDCG)compared to LF.DS-Dialog also achieves approximately 1 point improvement on R@k,mean,MRR,and NDCG compared to the original RVA,and 2 points improvement compared to LF andDualVD.These results demonstrates the importance of the relevant semantic historical context in enhancing the visual semantic relationship between textual and visual representations of the images and questions.
基金This work is supported by project No.B2020-DQN-08 from the Ministry of Education and Training of Vietnam.
文摘Recommender systems are similar to an informationfiltering system that helps identify items that best satisfy the users’demands based on their pre-ference profiles.Context-aware recommender systems(CARSs)and multi-criteria recommender systems(MCRSs)are extensions of traditional recommender sys-tems.CARSs have integrated additional contextual information such as time,place,and so on for providing better recommendations.However,the majority of CARSs use ratings as a unique criterion for building communities.Meanwhile,MCRSs utilize user preferences in multiple criteria to better generate recommen-dations.Up to now,how to exploit context in MCRSs is still an open issue.This paper proposes a novel approach,which relies on deep learning for context-aware multi-criteria recommender systems.We apply deep neural network(DNN)mod-els to predict the context-aware multi-criteria ratings and learn the aggregation function.We conduct experiments to evaluate the effect of this approach on the real-world dataset.A significant result is that our method outperforms other state-of-the-art methods for recommendation effectiveness.
基金This work was supported in part by the project of the National Natural Science Foundation of China(51875030).
文摘The rapid development of information and communication technologies(ICTs)and cyber-physical systems(CPSs)has paved the way for the increasing popularity of smart products.Context-awareness is an important facet of product smartness.Unlike artifacts,various bio-systems are naturally characterized by their extraordinary context-awareness.Biologically inspired design(BID)is one of the most commonly employed design strategies.However,few studies have examined the BID of context-aware smart products to date.This paper presents a structured design framework to support the BID of context-aware smart products.The meaning of context-awareness is defined from the perspective of product design.The framework is developed based on the theoretical foundations of the situated function-behavior-structure ontology.A structured design process is prescribed to leverage various biological inspirations in order to support different conceptual design activities,such as problem formulation,structure reformulation,behavior reformulation,and function reformulation.Some existing design methods and emerging design tools are incorporated into the framework.A case study is presented to showcase how this framework can be followed to redesign a robot vacuum cleaner and make it more context-aware.
文摘Recent years have witnessed the expeditious evolution of intelligentsmart devices and autonomous software technologies with the expandeddomains of computing from workplaces to smart computing in everydayroutine life activities. This trend has been rapidly advancing towards the newgeneration of systems where smart devices play vital roles in acting intelligently on behalf of the users. Context-awareness has emerged from the pervasive computing paradigm. Context-aware systems have the ability to acquirecontextual information from the surrounding environment autonomously,perform reasoning on it, and then adapt their behaviors accordingly. With theproliferation of context-aware systems and smart sensors, real-time monitoring of environmental situations (context) has become quite trivial. However,it is often challenging because the imperfect nature of context can cause theinconsistent behavior of the system. In this paper, we propose a contextaware intelligent decision support formalism to assist cognitively impairedpeople in managing their routine life activities. For this, we present a semanticknowledge-based framework to contextualize the information from the environment using the protégé ontology editor and Semantic Web Rule Language(SWRL) rules. The set of contextualized information and the set of rulesacquired from the ontology can be used to model Context-aware Multi-AgentSystems (CMAS) in order to autonomously plan all activities of the users andnotify users to act accordingly. To illustrate the use of the proposed formalism,we model a case study of Mild Cognitive Impaired (MCI) patients usingColored Petri Nets (CPN) to show the reasoning process on how the contextaware agents collaboratively plan activities on the user’s behalf and validatethe correctness properties of the system.
文摘With the requirements for high performance results in the today’s mobile, global, highly competitive, and technology-based business world, business professionals have to get supported by convenient mobile decision support systems (DSS). To give an improved support to mobile business professionals, it is necessary to go further than just allowing a simple remote access to a Business Intelligence platform. In this paper, the need for actual context-aware mobile Geospatial Business Intelligence (GeoBI) systems that can help capture, filter, organize and structure the user mobile context is exposed and justified. Furthermore, since capturing, structuring, and modeling mobile contextual information is still a research issue, a wide inventory of existing research work on context and mobile context is provided. Then, step by step, we methodologically identify relevant contextual information to capture for mobility purposes as well as for BI needs, organize them into context-dimensions, and build a hierarchical mobile GeoBI context model which (1) is geo-spatial-extended, (2) fits with human perception of mobility, (3) takes into account the local context interactions and information-sharing with remote contexts, and (4) matches with the usual hierarchical aggregated structure of BI data.
文摘Previous approaches to Chinese zero pronoun resolution mainly use syntactic information and probabilistic methods, but the context information is ignored. To make full use of the context and semantic information, we build a context-aware model. We propose a key words extraction strategy and design a classification model by using distributed representations as context feature. To our best knowledge, this is the first work using distributed representations in Chinese zero pronoun resolution. Experimental results show that our approach achieves a better performance than previous supervised methods.
文摘With the development of Internet of things and Web of things, computing becomes more pervasive, invisible and present everywhere. In fact, in our environment, we are surrounded by multiple devices that deliver (web) services which meet the needs of the users. However, the mobility of these devices as the users has important repercussions that challenge software design of these applications because the variability of the environment cannot be anticipated at the design time. Thus, it will be interesting to dynamically discover the environment and adapt the application during its execution to the new contextual conditions. We therefore, propose a model of a context-aware middleware that can address this issue through a monitoring service which is capable of reasoning and observation channels capable of calculating the context during the runtime. The monitoring service evaluates the pre-defined X-Query predicates in the context manager and uses Prolog to deduce the services needed to respond back. An independent observation channel for each different predicate is then dynamically generated by the monitoring service depending on the current state of the environment. Each channel sends its result directly to the context manager which consequently calculates the context based on all the predicates’ results while preserving the reactivity of the self-adaptive system.
基金the National Key Basic Research Program of China,the National Natural Science Foundation of China,the Ministry of Education of the People's Republic of China,the Fundamental Research Funds for the Central Universities of China
文摘This paper discussed the differences of context-aware service between the cloud computing environment and the traditional service system.Given the above differences,the paper subsequently analyzed the changes of context-aware service during preparation,organization and delivery,as well as the resulting changes in service acceptance of consumers.Because of these changes,the context-aware service modes in the cloud computing environment change are intelligent,immersive,highly interactive,and real-time.According to active and responded service,and authorization and non-authorized service,the paper drew a case diagram of context-aware service in Unified Modeling Language(UML) and established four categories of context-aware service modes.
基金Supported by the National Grand Fundamental Research 973 Program of China under Grant No. 2009CB320504the National High Technology Development 863 Program of China under Grant No.2007AA01Z206 and No.2009AA01Z210the EU FP7 Project EFIPSANS (INFSO-ICT-215549)
文摘Autonomic networking is one of the hot research topics in the research area of future network architectures.In this paper, we introduce context-aware and autonomic attributes into DiffServ QoS framework, and propose a novel autonomic packet marking(APM) algorithm.In the proposed autonomic QoS framework, APM is capable of collecting various QoS related contexts, and adaptively adjusting its behavior to provide better QoS guarantee according to users' requirements and network conditions.Simulation results show that APM provides better performance than traditional packet marker, and significantly improves user's quality of experience.
基金supported in partby the National Natural Science Foundation of China under Grants No. 70972048,No. 71071140,No. 71272076,No. 71201011,No. 51108209,No. 60903014Shanghai Philosophy,Social Science Funds for Youth under Grant No. 2008EZH002
文摘With the development of communication and ubiquitous computing technologies, context-aware services, which acquire contextual information of users and environment, have become critical applications providing customization in mobile commerce. Meanwhile, tourism has attracted increasing attention as a high value-added service and a hot academic topic. However, the research on how to provide tour services based on context-aware services is in fact still at an early stage, limited to concept elaboration, service framework discussion, prototype system development etc. In this paper, we summarized the previous researches on context-aware services to establish the research foundation, put forward a way of analyzing a tour planning problem with a modified model of Traveling Salesman Problem (TSP) and Vehicle Routing Problem (VRP), and we applied an innovated Resource Constrain Project Scheduling Problem (RCPSP) mathematical model to solve the tour planning problem based on context information. The simulation under branch and bound algoritban evaluated the validity of our solution.
文摘Vehicular safety applications, such as cooperative collision warning systems, rely on beaconing to provide situational awareness that is needed to predict and therefore to avoid possible collisions. Beaconing is the continual exchange of vehicle motion-state information, such as position, speed, and heading, which enables each vehicle to track its neighboring vehicles in real time. This work presents a context-aware adaptive beaconing scheme that dynamically adapts the beaconing repetition rate based on an estimated channel load and the danger severity of the interactions among vehicles. The safety, efficiency, and scalability of the new scheme is evaluated by simulating vehicle collisions caused by inattentive drivers under various road traffic densities. Simulation results show that the new scheme is more efficient and scalable, and is able to improve safety better than the existing non-adaptive and adaptive rate schemes.
基金supported by the The Ministry of Knowledge Economy,Korea,the ITRC(Information Technology Research Center)support program(ⅡTA-2009-(C1090-0902-0007))
文摘In recent years, several researchers have applied workflow technologies for service automation on ubiquitous compating environments. However, most context-aware workflows do not offer a method to compose several workflows in order to get mare large-scale or complicated workflow. They only provide a simple workflow model, not a composite workflow model. In this paper, the autorhs propose a context-aware workflow model to support composite workflows by expanding the patterns of the existing context-aware wrY:flows, which support the basic woddlow patterns. The suggested workflow model of. fers composite workflow patterns for a context-aware workflow, which consists of various flow patterns, such as simple, split, parallel flows, and subflow. With the suggested model, the model can easily reuse few of existing workflows to make a new workflow. As a result, it can save the development efforts and time of context-aware workflows and increase the workflow reusability. Therefore, the suggested model is expected to make it easy to develop applications related to context-aware workflow services on ubiquitous computing environments.
基金Supported by the National Key Research and Development Plan(2016YFB1001200)the National Natural Science Foundation of China(U1435220,61232013)
文摘In this paper,an interactive method is proposed to describe computer animation data and accelerate the process of animation generation.First,a semantic model and a resource description framework(RDF)are utilized to analyze and describe the relationships between animation data.Second,a novel context model which is able to keep the context-awareness was proposed to facilitate data organization and storage.In our context model,all the main animation elements in a scene are operated as a whole.Then sketch is utilized as the main interactive method to describe the relationships between animation data,edit the context model and make some other user operations.Finally,a context-aware computer animation data description system based on sketch is generated and it also works well in animation generation process.
基金partially supported by the NSFC-General Technology Basic Research Joint Fund (U1536204)the National Key Technologies R&D Program (2014BAH41B00)+3 种基金the National Nature Science Foundation of China (61672394 61373168 61373169)the National High-tech R&D Program of China (863 Program) (2015AA016004)
文摘APT attacks are prolonged and have multiple stages, and they usually utilize zero-day or one-day exploits to be penetrating and stealthy. Among all kinds of security tech- niques, provenance tracing is regarded as an important approach to attack investigation, as it discloses the root cause, the attacking path, and the results of attacks. However, existing techniques either suffer from the limitation of only focusing on the log type, or are high- ly susceptible to attacks, which hinder their applications in investigating APT attacks. We present CAPT, a context-aware provenance tracing system that leverages the advantages of virtualization technologies to transparently collect system events and network events out of the target machine, and processes them in the specific host which introduces no space cost to the target. CAPT utilizes the contexts of collected events to bridge the gap between them, and provides a panoramic view to the attack investigation. Our evaluation results show that CAPT achieves the efi'ective prov- enance tracing to the attack cases, and it only produces 0.21 MB overhead in 8 hours. With our newly-developed technology, we keep the run-time overhead averages less than 4%.
基金supported by the NationalBasic Research Program of China(973 Program)under Grants No.2011CB302506,No.2011CB302704,No.2012CB315802the National Key Technologies Research and Development Program of China"Research on theMobile Community Cultural Service Aggregation Supporting Technology"under Grant No.2012BAH94F02+5 种基金the Novel Mobile ServiceControl Network Architecture and Key Technologies under Grant No.2010ZX03004001-01the National High Technical Researchand Development Program of China(863 Program)under Grant No.2013AA102301the National Natural Science Foundation of Chinaunder Grants No.61003067,No.61171102,No.61001118,No.61132001Program for NewCentury Excellent Talents in University underGrant No.NCET-11-0592the Project of NewGeneration Broadband Wireless Network under Grant No.2011ZX03002-002-01the Beijing Nova Program under Grant No.2008B50
文摘Service-Oriented Communication(SOC)is a key research issue to enable media communications using the Service-Oriented Architecture(SOA).Motivated by the necessity to guarantee the service quality of our webbased multimedia conferencing system,we present a Comprehensively Context-Aware(CoCA)approach in this paper.One major problem in the existing end-to-end Quality of Service(QoS)management solutions is that they analyse and exploit the relationships between the QoS metrics and corresponding contexts in an isolated manner.In this paper,we propose a novel approach to leveraging such relationships in a comprehensive manner based on Bayesian networks and the fuzzy set theory.This approach includes three phases:1)information feedback and training,2)QoS-to-context mapping,and3)optimal context adaption.We implement the proposed CoCA in the real multimedia conferencing system and compare its performance with the existing bandwidth aware and playback buffer aware schemes.Experimental results show that the proposed CoCA outperforms the competing approaches in improving the average video Peak Signal-to-Noise Ratio(PSNR).It also exhibits good performance in preventing the playback buffer starvation.