In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of im...In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2.展开更多
In this paper, we propose a well-designed network model with a parameter and study full and partial synchronization of the network model based on the stability analysis. The network model is composed of a star-coupled...In this paper, we propose a well-designed network model with a parameter and study full and partial synchronization of the network model based on the stability analysis. The network model is composed of a star-coupled subnetwork and a globally coupled subnetwork. By analyzing the special coupling configuration, three control schemes are obtained for synchronizing the network model. Further analysis indicates that even if the inner couplings in each subnetwork are very weak, two of the control schemes are still valid. In particular, if the outer coupling weight parameter 0 is larger than (n2 - 2n)/4, or the subnetwork size n is larger than 02, the two subnetworks with weak inner couplings can achieve synchronization. In addition, the synchronizability is independent of the network size in case of 0 〈 0 〈 n/(n + 1 ). Finally, we carry out some numerical simulations to confirm the validity of the obtained control schemes. It is worth noting that the main idea of this paper also applies to any network consisting of a dense subnetwork and a sparse network.展开更多
In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the neces...In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the necessity of energy saving in tunnel lighting was analyzed.Finally,the application of PLC in tunnel lighting energy-saving control around the three dimensions of system overall architecture design,control scheme,and program control process was investigated.The results showed that the system meets the requirements of control effect,robustness,and visual effect after trial operation,and is suitable for practical applications.展开更多
The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separati...The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separation, while the reactors operate at temperatures/pressures favorable for reaction kinetics. According to the smooth operation and automatic control problem of the distillation column with side reactors (SRC), the design, simulation calculation and dynamic control of the SCR process for chlorobenzene production are discussed in the paper. Firstly, the mechanism models, the integrated structure optimal design and process simulation systems are established, respectively. And then multivariable control schemes are designed, the controllability of SRC process based on the optimal steady-state integrated structure is explored. The dynamic response performances of closed-loop system against several disturbances are discussed to verify the effectiveness of control schemes for the SRC process. The simulating results show that the control structure using conventional control strategies can effectively overcome feeding disturbances in a specific range.展开更多
Static “self-optimising” control is an important concept, which provides a link between static optimisation and control. According to the concept, a dynamic control system could be configured in such a way that when...Static “self-optimising” control is an important concept, which provides a link between static optimisation and control. According to the concept, a dynamic control system could be configured in such a way that when a set of certain variables are maintained at their setpoints, the overall process operation is automatically optimal or near optimal at steady-state in the presence of disturbances. A novel approach using constrained gradient control to achieve “self-optimisation” has been proposed by Cao. However, for most process plants, the information required to get the gradient measure may not be available in real-time. In such cases, controlled variable selection has to be carried out based on measurable candidates. In this work, the idea of direct gradient control has been extended to controlled variable selection based on gradient sensitivity analysis (indirect gradient control). New criteria, which indicate the sensitivity of the gradient function to disturbances and implementation errors, have been derived for selection. The particular case study shows that the controlled variables selected by gradient sensitivity measures are able to achieve near optimal performance.展开更多
Cyclohexanol is a commonly used organic compound.Currently,the most promising industrial process for synthesizing cyclohexanol,by cyclohexene hydration,suffers from a low conversion rate and difficult separation.In th...Cyclohexanol is a commonly used organic compound.Currently,the most promising industrial process for synthesizing cyclohexanol,by cyclohexene hydration,suffers from a low conversion rate and difficult separation.In this paper,a three-column process for catalytic distillation applicable in the hydration of cyclohexene to cyclohexanol was established to solve these.Simulation with Aspen Plus shows that the process has good advantages,the conversion of cyclohexene reached 99.3%,and the product purity was>99.2%.The stable operation of the distillation system requires a good control scheme.The design of the control scheme is very important.However,at present,the reactive distillation process for cyclohexene hydration is under investigation experimentally and by steady-state simulation.Therefore,three different plant-wide control schemes were established(CS1,CS2,CS3) and the position of temperature sensitive stage was selected by using sensitivity analysis method and singular value decomposition method.The Tyreus-Luyben empirical tuning method was used to tune the controller parameters.Finally,Aspen Dynamics simulation software was used to evaluate the performance of the three control schemes.By introducing ΔF±20% and χ_(ENE)±5%,comparison the changes in product purity and yield of the three different control schemes.By comparison,we can see that the control scheme CS3 has the best performance.展开更多
Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary ...Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary condition. The effect of the safe headway on the traffic system is considered. According to the control theory, the condition under which traffic jams can be suppressed is analyzed. The results are compared with the previous results concerning congestion control. The simulations show that the suppression performance of our scheme on traffic jams is better than those of the previous schemes, although all the schemes can suppress traffic jams. The simulation results are consistent with theoretical analyses.展开更多
An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both v...An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.展开更多
In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be proces...In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.展开更多
A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.T...A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art.The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches,as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control.And the corresponding rotation angles are dealt with in the outer closed loop control.It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator(PD based LQR) approach under optimum coefficients,while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances.In order to complete the inner closed loop control,there is a pulse-width pulse-frequency(PWPF) modulator to be able to handle on-off thrusters.Furthermore,the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system,where the control allocation scheme is realized in the proposed strategy.It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results.At the end,the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.展开更多
Chaos synchronization of systems with perturbations was investigated.A generic nonlinear control scheme to realize chaos synchronization of systems was proposed.This control scheme is flexible and practicable,and give...Chaos synchronization of systems with perturbations was investigated.A generic nonlinear control scheme to realize chaos synchronization of systems was proposed.This control scheme is flexible and practicable,and gives more freedom in designing controllers in order to achieve some desired performance.With the aid of Lyapunov stability theorem and partial stability theory,two cases were presented:1) Chaos synchronization of the system without perturbation or with vanishing perturbations;2) The boundness of the error state for the system with nonvanishing perturbations satisfying some conditions.Finally,several simulations for Lorenz system were provided to verify the effectiveness and feasibility of our method.Compared numerically with the existing results of linear feedback control scheme,the results are sharper than the existing ones.展开更多
A new transportation technology known as personal rapid transit (PRT) is being developed by multiple different companies around the world, and one system is under commercial operations in the United Kingdom. Each de...A new transportation technology known as personal rapid transit (PRT) is being developed by multiple different companies around the world, and one system is under commercial operations in the United Kingdom. Each design is different, but they all share a need to operate many automated transit vehicles at very close headways. Safe operation will require a level of control an order of magnitude above any current transit system. As a result, new techniques will be needed for the development and testing of the mechanical and control systems. In this paper an apparatus for developing and testing a PRT vehicle control scheme is demonstrated. This system is composed of independent modules that represent virtual vehicles, a central control system, a man-machine interface and a monitoring device. It can be used to implement and to evaluate the designed vehicle control algorithm. The vehicle control algorithm is designed and simulated in a combined simulation platform that consists of Matlab/Simulink and Labview Simulation Interface Toolkit. Simple operational scenarios are proposed for the testing of the proposed vehicle control apparatus.展开更多
The air quantity of variable air volume system for the rooms and the total air quantity of the system changes with the change of room load. Combined with the system composition in the laboratory, the paper determines ...The air quantity of variable air volume system for the rooms and the total air quantity of the system changes with the change of room load. Combined with the system composition in the laboratory, the paper determines the control scheme of the variable air volume system, that is, indoor temperature-control, indoor positive pressure control, air distribution static pressure control, air-supply temperature control and new air volume control. The dotted lines with arrows mean the output signals from the control unit to actuator, and the solid lines with arrows represent the input signals from the actuator to the control unit.展开更多
A prototype of the master slave telerehabilitation robotic system with force feedback is developed. This system contains a pair of robots with the master being operated by the therapist and the slave following the mas...A prototype of the master slave telerehabilitation robotic system with force feedback is developed. This system contains a pair of robots with the master being operated by the therapist and the slave following the master to guide the patients to exercise. A slave device with a slave controller is designed to stretch and mobilize the impaired elbow joints accurately and safely. A master device with a master controller is designed to control/monitor the procedure of treatment and assess the outcome of treatment remotely and accurately. By using the twoport network theory and the circuit equivalent impedance models, the position-force control scheme is designed to generate force feedback for the therapist who is to be informed of the interaction force between the subject and the robot arm during exercise. Experiments were conducted with a healthy male. Results show that the therapist can guide the patient to exercise by the master arm and can feel the interaction forces between the impaired arm and the robot. Compared with the traditional therapy, this system is more cost-efficient, more convenient and safer for both the stroke patients and the clinicians.展开更多
In this paper, we make a comparison of haptic control schemes (position-position and position-force control schemes) for two haptic teleoperation systems by QoE (quality of experience) assessment. One is a remote ...In this paper, we make a comparison of haptic control schemes (position-position and position-force control schemes) for two haptic teleoperation systems by QoE (quality of experience) assessment. One is a remote control system with haptic media and video. In the system, we can write characters by controlling a haptic interface device at a remote place with another haptic interface device while watching video. The other is a remote instruction system with haptic media, video and voice. By using the system, a teacher can actively write characters and teach a student how to write the characters. The student can also write characters actively, and the teacher can confirm how the student writes the characters. We investigate the influences of network delay on QoE for the two systems with the two haptic control schemes.展开更多
In[14],Maire developed a class of cell-centered Lagrangian schemes for solving Euler equations of compressible gas dynamics in cylindrical coordinates.These schemes use a node-based discretization of the numerical flu...In[14],Maire developed a class of cell-centered Lagrangian schemes for solving Euler equations of compressible gas dynamics in cylindrical coordinates.These schemes use a node-based discretization of the numerical fluxes.The control volume version has several distinguished properties,including the conservation of mass,momentum and total energy and compatibility with the geometric conservation law(GCL).However it also has a limitation in that it cannot preserve spherical symmetry for one-dimensional spherical flow.An alternative is also given to use the first order area-weighted approach which can ensure spherical symmetry,at the price of sacrificing conservation of momentum.In this paper,we apply the methodology proposed in our recent work[8]to the first order control volume scheme of Maire in[14]to obtain the spherical symmetry property.The modified scheme can preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid,andmeanwhile itmaintains its original good properties such as conservation and GCL.Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the good performance of the scheme in terms of symmetry,non-oscillation and robustness properties.展开更多
Wind power converter(WPC)is a key part of a wind power unit which delivers electric energy to power grid.Because of a large number of semiconductors,WPC has a high failure rate.This paper proposes a method to accurate...Wind power converter(WPC)is a key part of a wind power unit which delivers electric energy to power grid.Because of a large number of semiconductors,WPC has a high failure rate.This paper proposes a method to accurately evaluate the reliability of WPC,which is crucial for the design and maintenance of wind turbines.Firstly,the index of effective temperature(ET)is presented to quantify the effects of temperature and humidity on the semiconductor operation.A novel method is proposed to evaluate the lifetime and calculate the aging failure rates of the semiconductors considering the fluctuations of ET.Secondly,the failure mode and effect analysis(FMEA)of WPC is investigated based on the topology and control scheme.The conventional two-state reliability model of the WPC is extended to the multi-state reliability model where the partial working state under the fault-tolerant control scheme is allowed.Finally,a reliability evaluation framework is established to calculate the parameters of the WPC reliability model considering the variable failure rates and repair activities of semiconductors.Case studies are designed to verfify the proposed method using a practical wind turbine.展开更多
Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric ...Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric grid interfacing custom power device (CPD) is controlled to perform the smart exchanging of electric power as per the Indian grid code. WE is connected to DC link of CPD for the grid integration purpose. The CPD based distributed static compensator, i.e. the distributed static synchronous compensator (DSTATCOM), is utilized for injecting the wind power to the point of common coupling (PCC) and also acts against the reactive power demand. The novel indirect current control scheme of DSTATCOM regulates the power import and export between the WE and the electric grid system. It also acts as a compensator and performs both the key features simultaneously. Hence, the penetration of additional generated WE power to the grid is increased by 20% to 25%. The burden of reactive power compensation from grid is reduced by DSTATCOM. The modeling and simulation are done in MATLAB. The results are validated and verified.展开更多
We investigate the synchronization of complex networks,which are impulsively coupled only at discrete instants.Based on the comparison theory of impulsive differential systems,a distributed impulsive control scheme is...We investigate the synchronization of complex networks,which are impulsively coupled only at discrete instants.Based on the comparison theory of impulsive differential systems,a distributed impulsive control scheme is proposed for complex dynamical networks to achieve synchronization.The proposed scheme not only takes into account the influence of all nodes to network synchronization,which depends on the weight of each node in the network,but also provides us with a flexible method to select the synchronized state of the network.In addition,it is unnecessary for the impulsive coupling matrix to be symmetrical.Finally,the proposed control scheme is applied to a chaotic Lorenz network and Chua's circuit network.Numerical simulations are used to illustrate the validity of this control scheme.展开更多
基金This project is supported by National Natural Science Foundation of China (No.59990470).
文摘In IBVS (image based visual servoing), the error signal in image space should be transformed into the control signal in the input space quickly. To avoid the iterative adjustment and complicated inverse solution of image Jacobian, CMAC (cerebellar model articulation controller) neural network is inserted into visual servo control loop to implement the nonlinear mapping. Two control schemes are used. Simulation results on two schemes are provided, which show a better tracking precision and stability can be achieved using scheme 2.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11162004,10972011,and 11001069)the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LQ12A01003 and LQ12A01002)the Science Foundation of Guangxi Province,China(Grant No.2013GXNS-FAA019006)
文摘In this paper, we propose a well-designed network model with a parameter and study full and partial synchronization of the network model based on the stability analysis. The network model is composed of a star-coupled subnetwork and a globally coupled subnetwork. By analyzing the special coupling configuration, three control schemes are obtained for synchronizing the network model. Further analysis indicates that even if the inner couplings in each subnetwork are very weak, two of the control schemes are still valid. In particular, if the outer coupling weight parameter 0 is larger than (n2 - 2n)/4, or the subnetwork size n is larger than 02, the two subnetworks with weak inner couplings can achieve synchronization. In addition, the synchronizability is independent of the network size in case of 0 〈 0 〈 n/(n + 1 ). Finally, we carry out some numerical simulations to confirm the validity of the obtained control schemes. It is worth noting that the main idea of this paper also applies to any network consisting of a dense subnetwork and a sparse network.
文摘In this study,we investigated on the application of planar lightwave circuit(PLC)technology in energy-saving control of tunnel lighting.The application status of PLC in the field of energy saving followed by the necessity of energy saving in tunnel lighting was analyzed.Finally,the application of PLC in tunnel lighting energy-saving control around the three dimensions of system overall architecture design,control scheme,and program control process was investigated.The results showed that the system meets the requirements of control effect,robustness,and visual effect after trial operation,and is suitable for practical applications.
基金Supported by the National Natural Science Foundation of China (61203020, 21276126)the Natural Science Foundation of Jiangsu Province (BK2011795)+1 种基金Jiangsu Province Higher Education Natural Science Foundation (09KJA530004)China Postdoctoral Science Foundation (20100471325)
文摘The distillation column with side reactors (SRC) can overcome the temperature/pressure mismatch in the traditional reactive distillation, the column operates at temperature/pressure favorable for vapor-liquid separation, while the reactors operate at temperatures/pressures favorable for reaction kinetics. According to the smooth operation and automatic control problem of the distillation column with side reactors (SRC), the design, simulation calculation and dynamic control of the SCR process for chlorobenzene production are discussed in the paper. Firstly, the mechanism models, the integrated structure optimal design and process simulation systems are established, respectively. And then multivariable control schemes are designed, the controllability of SRC process based on the optimal steady-state integrated structure is explored. The dynamic response performances of closed-loop system against several disturbances are discussed to verify the effectiveness of control schemes for the SRC process. The simulating results show that the control structure using conventional control strategies can effectively overcome feeding disturbances in a specific range.
基金supported by the EPSRC UK under grant GR/R57324.
文摘Static “self-optimising” control is an important concept, which provides a link between static optimisation and control. According to the concept, a dynamic control system could be configured in such a way that when a set of certain variables are maintained at their setpoints, the overall process operation is automatically optimal or near optimal at steady-state in the presence of disturbances. A novel approach using constrained gradient control to achieve “self-optimisation” has been proposed by Cao. However, for most process plants, the information required to get the gradient measure may not be available in real-time. In such cases, controlled variable selection has to be carried out based on measurable candidates. In this work, the idea of direct gradient control has been extended to controlled variable selection based on gradient sensitivity analysis (indirect gradient control). New criteria, which indicate the sensitivity of the gradient function to disturbances and implementation errors, have been derived for selection. The particular case study shows that the controlled variables selected by gradient sensitivity measures are able to achieve near optimal performance.
基金the Natural Science Foundation of Shandong Province China (ZR2017QB006)Focus on Research and Development Plan in Yantai city (2018XSCC038)the Qingchuang Science and Technology Plan Innovation Team of Shandong Province (2019KJC012)。
文摘Cyclohexanol is a commonly used organic compound.Currently,the most promising industrial process for synthesizing cyclohexanol,by cyclohexene hydration,suffers from a low conversion rate and difficult separation.In this paper,a three-column process for catalytic distillation applicable in the hydration of cyclohexene to cyclohexanol was established to solve these.Simulation with Aspen Plus shows that the process has good advantages,the conversion of cyclohexene reached 99.3%,and the product purity was>99.2%.The stable operation of the distillation system requires a good control scheme.The design of the control scheme is very important.However,at present,the reactive distillation process for cyclohexene hydration is under investigation experimentally and by steady-state simulation.Therefore,three different plant-wide control schemes were established(CS1,CS2,CS3) and the position of temperature sensitive stage was selected by using sensitivity analysis method and singular value decomposition method.The Tyreus-Luyben empirical tuning method was used to tune the controller parameters.Finally,Aspen Dynamics simulation software was used to evaluate the performance of the three control schemes.By introducing ΔF±20% and χ_(ENE)±5%,comparison the changes in product purity and yield of the three different control schemes.By comparison,we can see that the control scheme CS3 has the best performance.
基金supported by the Major Consulting Project of Chinese Academy of Engineering (Grant No. 2012-ZX-22)the Natural Science Foundation of Chongqing Science & Technology Commission of China (Grant No. 2012jjB40002)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120191110047)the Engineering Center Research Program of Chongqing Science & Technology Commission of China (Grant No. 2011pt-gc30005)the Key Technology R&D Project of Chongqing Science & Technology Commission of China (Grant Nos. 2011AB2052 and 2012gg-yyjsB30001)
文摘Based on the pioneering work of Konishi et al. [Phys. Rev. E (1999) 60 4000], a new feedback control scheme is presented to suppress traffic jams based on the coupled map car-following model under the open boundary condition. The effect of the safe headway on the traffic system is considered. According to the control theory, the condition under which traffic jams can be suppressed is analyzed. The results are compared with the previous results concerning congestion control. The simulations show that the suppression performance of our scheme on traffic jams is better than those of the previous schemes, although all the schemes can suppress traffic jams. The simulation results are consistent with theoretical analyses.
基金supported by the National Key R&D Program of China(No.2017YFB1300400)the National Natural Science Foundation of China(No. 51805107)
文摘An adaptive control scheme is presented,which can simultaneously realize vibration suppression and compliance control for flexible joint robot(FJR).The proposed control scheme provides a unified formulation for both vibration suppression mode,where FJR tracks the desired position with little vibration,and compliance mode,in which FJR presents passive.Instead of designing multiple controllers and switching between them,both modes are integrated into a single controller,and the transition between two modes is smooth and stable.The stability of the closed-loop system is theoretically proven via the Lyapunov method,with the considering the dynamics uncertainties in both link side and motor side.Simulation results are presented to illustrate good performances of the proposed control scheme.
基金Sponsored by the National Nature Science Foundation of China(Grant No.51009091)the Special Research Fund for the Doctoral Program of Higher Education(Grant No.20100073120016)
文摘In order to solve oscillation of head of the underwater snake-like robot,the Central Pattern Generator( CPG)-based control scheme with head-controller was presented. The Kane dynamic model was constructed to be processed with a commercial package MotionGenesis Kane 5. 3,to which the proposed control scheme was applied. The relation between CPG parameters and orientation offset of head was investigated. The target orientation of head-controller was calculated through a convenient method. The advantage of this control scheme is that the head of the underwater snake-like robot remains in the forward direction during swimming. To prove the feasibility of the proposed methodology,two basic motion patterns,swimming along the straight line and swimming along the curved path,had been implemented in our simulation platform. The results showed that the simulation platform can imitate the swimming of the underwater snake-like robot and the head of the underwater snake-like robot remains in a fixed orientation directed towards the target. The oscillation of head's orientation is inhibited effectively.
基金the Islamic Azad University (IAU),South Tehran Branch,Tehran,Iran in support of the present research
文摘A novel Lyapunov-based three-axis attitude intelligent control approach via allocation scheme is considered in the proposed research to deal with kinematics and dynamics regarding the unmanned aerial vehicle systems.There is a consensus among experts of this field that the new outcomes in the present complicated systems modeling and control are highly appreciated with respect to state-of-the-art.The control scheme presented here is organized in line with a new integration of the linear-nonlinear control approaches,as long as the angular velocities in the three axes of the system are accurately dealt with in the inner closed loop control.And the corresponding rotation angles are dealt with in the outer closed loop control.It should be noted that the linear control in the present outer loop is first designed through proportional based linear quadratic regulator(PD based LQR) approach under optimum coefficients,while the nonlinear control in the corresponding inner loop is then realized through Lyapunov-based approach in the presence of uncertainties and disturbances.In order to complete the inner closed loop control,there is a pulse-width pulse-frequency(PWPF) modulator to be able to handle on-off thrusters.Furthermore,the number of these on-off thrusters may be increased with respect to the investigated control efforts to provide the overall accurate performance of the system,where the control allocation scheme is realized in the proposed strategy.It may be shown that the dynamics and kinematics of the unmanned aerial vehicle systems have to be investigated through the quaternion matrix and its corresponding vector to avoid presenting singularity of the results.At the end,the investigated outcomes are presented in comparison with a number of potential benchmarks to verify the approach performance.
基金Projects(61075065,60774045,U1134108) supported by the National Natural Science Foundation of ChinaProject(20110162110041) supported by the Ph.D Programs Foundation of Ministry of Education of ChinaProject(CX2011B086) supported by Hunan Provincial Innovation Foundation For Postgraduate,China
文摘Chaos synchronization of systems with perturbations was investigated.A generic nonlinear control scheme to realize chaos synchronization of systems was proposed.This control scheme is flexible and practicable,and gives more freedom in designing controllers in order to achieve some desired performance.With the aid of Lyapunov stability theorem and partial stability theory,two cases were presented:1) Chaos synchronization of the system without perturbation or with vanishing perturbations;2) The boundness of the error state for the system with nonvanishing perturbations satisfying some conditions.Finally,several simulations for Lorenz system were provided to verify the effectiveness and feasibility of our method.Compared numerically with the existing results of linear feedback control scheme,the results are sharper than the existing ones.
文摘A new transportation technology known as personal rapid transit (PRT) is being developed by multiple different companies around the world, and one system is under commercial operations in the United Kingdom. Each design is different, but they all share a need to operate many automated transit vehicles at very close headways. Safe operation will require a level of control an order of magnitude above any current transit system. As a result, new techniques will be needed for the development and testing of the mechanical and control systems. In this paper an apparatus for developing and testing a PRT vehicle control scheme is demonstrated. This system is composed of independent modules that represent virtual vehicles, a central control system, a man-machine interface and a monitoring device. It can be used to implement and to evaluate the designed vehicle control algorithm. The vehicle control algorithm is designed and simulated in a combined simulation platform that consists of Matlab/Simulink and Labview Simulation Interface Toolkit. Simple operational scenarios are proposed for the testing of the proposed vehicle control apparatus.
文摘The air quantity of variable air volume system for the rooms and the total air quantity of the system changes with the change of room load. Combined with the system composition in the laboratory, the paper determines the control scheme of the variable air volume system, that is, indoor temperature-control, indoor positive pressure control, air distribution static pressure control, air-supply temperature control and new air volume control. The dotted lines with arrows mean the output signals from the control unit to actuator, and the solid lines with arrows represent the input signals from the actuator to the control unit.
基金The National Natural Science Foundation of China(No.60475034).
文摘A prototype of the master slave telerehabilitation robotic system with force feedback is developed. This system contains a pair of robots with the master being operated by the therapist and the slave following the master to guide the patients to exercise. A slave device with a slave controller is designed to stretch and mobilize the impaired elbow joints accurately and safely. A master device with a master controller is designed to control/monitor the procedure of treatment and assess the outcome of treatment remotely and accurately. By using the twoport network theory and the circuit equivalent impedance models, the position-force control scheme is designed to generate force feedback for the therapist who is to be informed of the interaction force between the subject and the robot arm during exercise. Experiments were conducted with a healthy male. Results show that the therapist can guide the patient to exercise by the master arm and can feel the interaction forces between the impaired arm and the robot. Compared with the traditional therapy, this system is more cost-efficient, more convenient and safer for both the stroke patients and the clinicians.
文摘In this paper, we make a comparison of haptic control schemes (position-position and position-force control schemes) for two haptic teleoperation systems by QoE (quality of experience) assessment. One is a remote control system with haptic media and video. In the system, we can write characters by controlling a haptic interface device at a remote place with another haptic interface device while watching video. The other is a remote instruction system with haptic media, video and voice. By using the system, a teacher can actively write characters and teach a student how to write the characters. The student can also write characters actively, and the teacher can confirm how the student writes the characters. We investigate the influences of network delay on QoE for the two systems with the two haptic control schemes.
基金J.Cheng is supported in part byNSFC grants 10972043 and 10931004Additional support is provided by theNational Basic Research Programof China under grant 2011CB309702C.-W.Shu is supported in part by ARO grant W911NF-08-1-0520 and NSF grant DMS-0809086.
文摘In[14],Maire developed a class of cell-centered Lagrangian schemes for solving Euler equations of compressible gas dynamics in cylindrical coordinates.These schemes use a node-based discretization of the numerical fluxes.The control volume version has several distinguished properties,including the conservation of mass,momentum and total energy and compatibility with the geometric conservation law(GCL).However it also has a limitation in that it cannot preserve spherical symmetry for one-dimensional spherical flow.An alternative is also given to use the first order area-weighted approach which can ensure spherical symmetry,at the price of sacrificing conservation of momentum.In this paper,we apply the methodology proposed in our recent work[8]to the first order control volume scheme of Maire in[14]to obtain the spherical symmetry property.The modified scheme can preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid,andmeanwhile itmaintains its original good properties such as conservation and GCL.Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the good performance of the scheme in terms of symmetry,non-oscillation and robustness properties.
基金supported by the National Natural Science Foundation of China(No.52022016)China Postdoctoral Science Foundation(No.2021M693711)Fundamental Research Funds for the Central Universities(No.2021CDJQY-037)。
文摘Wind power converter(WPC)is a key part of a wind power unit which delivers electric energy to power grid.Because of a large number of semiconductors,WPC has a high failure rate.This paper proposes a method to accurately evaluate the reliability of WPC,which is crucial for the design and maintenance of wind turbines.Firstly,the index of effective temperature(ET)is presented to quantify the effects of temperature and humidity on the semiconductor operation.A novel method is proposed to evaluate the lifetime and calculate the aging failure rates of the semiconductors considering the fluctuations of ET.Secondly,the failure mode and effect analysis(FMEA)of WPC is investigated based on the topology and control scheme.The conventional two-state reliability model of the WPC is extended to the multi-state reliability model where the partial working state under the fault-tolerant control scheme is allowed.Finally,a reliability evaluation framework is established to calculate the parameters of the WPC reliability model considering the variable failure rates and repair activities of semiconductors.Case studies are designed to verfify the proposed method using a practical wind turbine.
文摘Wind energy (WE) has become immensely popular for distributed generation (DG). This case presents the monitoring, modeling, control, and analysis of the two-level three-phase WE based DG system where the electric grid interfacing custom power device (CPD) is controlled to perform the smart exchanging of electric power as per the Indian grid code. WE is connected to DC link of CPD for the grid integration purpose. The CPD based distributed static compensator, i.e. the distributed static synchronous compensator (DSTATCOM), is utilized for injecting the wind power to the point of common coupling (PCC) and also acts against the reactive power demand. The novel indirect current control scheme of DSTATCOM regulates the power import and export between the WE and the electric grid system. It also acts as a compensator and performs both the key features simultaneously. Hence, the penetration of additional generated WE power to the grid is increased by 20% to 25%. The burden of reactive power compensation from grid is reduced by DSTATCOM. The modeling and simulation are done in MATLAB. The results are validated and verified.
基金Project supported by the Young Scientists Fund of the National Natural Sciene Foundation of China (Grant No. Q20111309)the Key Program of Education Department of Hubei Province,China (Grant No. D20101304)
文摘We investigate the synchronization of complex networks,which are impulsively coupled only at discrete instants.Based on the comparison theory of impulsive differential systems,a distributed impulsive control scheme is proposed for complex dynamical networks to achieve synchronization.The proposed scheme not only takes into account the influence of all nodes to network synchronization,which depends on the weight of each node in the network,but also provides us with a flexible method to select the synchronized state of the network.In addition,it is unnecessary for the impulsive coupling matrix to be symmetrical.Finally,the proposed control scheme is applied to a chaotic Lorenz network and Chua's circuit network.Numerical simulations are used to illustrate the validity of this control scheme.