The joining of different light metals through friction stir welding(FSW)is gaining interest as a method to decrease weight and improve fuel efficiency.However,to ensure durability,these welded metals may require surfa...The joining of different light metals through friction stir welding(FSW)is gaining interest as a method to decrease weight and improve fuel efficiency.However,to ensure durability,these welded metals may require surface treatments to protect against corrosion or wear.This study presents a novel approach for the simultaneous delivery of two distinct corrosion inhibitors to Ti-Mg dissimilar PEO treated joints on demand.The research focuses on the synthesis,characterization,and application of cerium@polystyrene(Ce@PS)nanocontainers,which are loaded with 8-hydroxyquinoline(8-HQ)to enhance corrosion protection.The synthesis involves several key steps,including the formation of a cerium-based outer layer around polystyrene nanospheres,the selective removal of the polystyrene core to create a porous structure,and the subsequent loading of the 8-HQ inhibitor.Structural and compositional analyses,conducted using scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDS),confirmed the successful incorporation of 8-HQ within the nanocontainers.Additionally,Fourier-transform infrared spectroscopy(FTIR)provided detailed information about the chemical composition of the organic materials throughout the synthesis process.Thermal decomposition analysis verified the successful fabrication and stability of the dual-shell nanocontainers.Corrosion tests on Ti-Mg joints treated with plasma electrolytic oxidation(PEO)coatings and loaded nanocontainers demonstrated sig-nificantly improved corrosion resistance compared to untreated joints.This research highlights the potential of dual-shell nanocontainers,containing both organic and inorganic inhibitors,to offer prolonged corrosion protection,particularly against galvanic corrosion in dissimilar joints.The findings suggest that these synthesized nanocontainers hold promise for various industrial applications,particularly in the context of friction stir welded(FSW)Ti-Mg dissimilar joints,providing valuable insights for the development of advanced materials designed to mitigate corrosion.展开更多
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ...The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.展开更多
Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical applica...Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments.展开更多
Metal corrosion causes billions of dollars of economic losses yearly.As a smart and new energy-harvesting device,triboelectric nanogenerators(TENGs)can convert almost all mechanical energy into electricity,which leads...Metal corrosion causes billions of dollars of economic losses yearly.As a smart and new energy-harvesting device,triboelectric nanogenerators(TENGs)can convert almost all mechanical energy into electricity,which leads to great prospects in metal corrosion prevention and cathodic protection.In this work,flexible TENGs were designed to use the energy harvested by flexible polydimethylsiloxane(PDMS)films with ZrB_(2)nanoparticles and effectively improve the dielectric constant by incorporating ZrB_(2).The open-circuit voltage and short-circuit current were 264 V and 22.9μA,respectively,and the power density of the TENGs reached 6 W·m^(-2).Furthermore,a selfpowered anti-corrosion system was designed by the rectifier circuit integrated with TENGs,and the open-circuit potential(OCP)and Tafel curves showed that the system had an excellent anti-corrosion effect on carbon steel.Thus,the system has broad application prospects in fields such as metal cultural relics,ocean engineering,and industry.展开更多
Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterial...Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterials,which have been considered for corrosion protection applications in recent years due to their corrosion inhibition effect,fluorescence,low toxicity,facile chemical modification,and cost-effectiveness.This study provides a comprehensive overview of the synthesis,physical and chemical properties,and anticorrosion mechanisms of functionalized CDs.First,the corrosion inhibition performance of different types of CDs is introduced,followed by discussion on their application in the development of smart protective coatings with self-healing and/or self-reporting properties.The effective barrier formed by CDs in the coatings can inhibit the spread of local damage and achieve self-healing behavior.In addition,diverse functional groups on CDs can interact with Fe^(3+)and H^(+)ions generated during the corrosion process;this interaction changes their fluorescence,thereby demonstrating self-reporting behavior.Moreover,challenges and prospects for the development of CD-based corrosion protection systems are also presented.展开更多
Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properti...Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions.展开更多
Vanadium films were prepared on zinc surfaces by using a solution containing vanadate. Corrosion protection properties of vanadium-treated (V-treated), chromium-treated (Cr-treated), and untreated zinc surfaces in...Vanadium films were prepared on zinc surfaces by using a solution containing vanadate. Corrosion protection properties of vanadium-treated (V-treated), chromium-treated (Cr-treated), and untreated zinc surfaces in contact with a 3.5 wt.% NaC1 solution were studied using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. According to these results, the V-treated layer significantly improved the corrosion resistance of zinc surfaces. In comparison with the Cr-treated layer, the V-treated layer exhibited a better corrosion resistance. The composition of the V-treated layer was studied using X-ray photoelectron spectroscopy (XPS). XPS measurements indicated that the vanadium layer formed on zinc surfaces and the vanadium-rich coating was a hydrated oxide with a composition of V2O5, VO2, and its hydrates such as V2O5.nH2O and VO(OH)2.展开更多
This work produced a Mg Al-layered double hydroxide by hydrothermal treatment of a plasma electrolytic oxidation(PEO) coating on magnesium alloy AZ31 in an phosphate electrolyte, followed by an ion-exchange reaction i...This work produced a Mg Al-layered double hydroxide by hydrothermal treatment of a plasma electrolytic oxidation(PEO) coating on magnesium alloy AZ31 in an phosphate electrolyte, followed by an ion-exchange reaction in 0.1 M phosphate solution. The coated specimens were scratched. Characterization, including utilization of the localized technique SIET, measured the pH and p Mg distributions and optical morphologies around the artificial defects during immersion in 0.05 M NaCl solution. In contrast with phosphate loaded PEO/LDHs, a stronger alkalinization area(with pH 11.4~12.3) appeared in the passive PEO specimens. Due to formation of insoluble Mg(OH)_(2) products, the p Mg map showed depletion of Mg^(2+) in this high p H area. Combined with optical morphologies and SEM images, the better self-healing ability toward defects for phosphate loaded PEO/LDHs was confirmed.展开更多
Superhydrophobic coating has been widely studied for its great applicational potential, such as for corrosion protection of magnesium alloys while it has been restrained by expensive materials, sophisticated preparati...Superhydrophobic coating has been widely studied for its great applicational potential, such as for corrosion protection of magnesium alloys while it has been restrained by expensive materials, sophisticated preparation process and infirm rough structures. In this study, the electrochemical method was adopted by using a two-electrode system for rapid hydrophobic modification to obtain superhydrophobic kaolin.By mixing the modified superhydrophobic kaolin with commercial epoxy resin and polydimethylsiloxane glue, a paint can be formed and easily used on various substrates for preparation of superhydrophobic coating via spraying method. The influence factors on wettability of the modified kaolin and the mixing ratio of each component of the coating were explored. Also, the wettability, durability and anticorrosion of the prepared coating were evaluated comprehensively. The coating was able to maintain superhydrophobic after immersed in HCl solution at pH 1, the NaOH solution at pH 14, and 3.5 wt.% NaCl solution for 16, 21, 30 days, respectively. In addition, the coating exhibited 4A grade adhesion, high hydrophobicity after abraded for 200 cycles on a 600-mesh sandpaper with 100 g weight, and 99.86% anticorrosion efficiency after soaked in 3.5 wt.% NaCl solution for 20 days, demonstrating a good robustness and anti-corrosion property. Furthermore, the coating showed good transparency, flexibility and was easy to make in a large scale by the spraying method, which is of great significance to promote the practical application of superhydrophobic coatings and the anticorrosion Mg alloys.展开更多
The effectiveness of the corrosion protection of Nafion/Dimethysulfoxid (DMSO) organic coatings for AM50 magnesium alloy prepared by simple immersion and heat treatment was investigated. Its corrosion resistance and...The effectiveness of the corrosion protection of Nafion/Dimethysulfoxid (DMSO) organic coatings for AM50 magnesium alloy prepared by simple immersion and heat treatment was investigated. Its corrosion resistance and morphologies of the Nafion/DMSO organic coatings were studied by electrochemical corrosion testing and optical microscopy. The results show that Nafion/DMSO organic coatings can improve the corrosion resistance of AM50 magnesium alloy effectively. Also, the corrosion resistance increases with the surface density of the organic coatings.展开更多
To increase corrosion resistance of the sample,its electrical impedance must be increased.Due to the fact that electrical impedance depends on elements such as electrical resistance,capacitance,and inductance,by incre...To increase corrosion resistance of the sample,its electrical impedance must be increased.Due to the fact that electrical impedance depends on elements such as electrical resistance,capacitance,and inductance,by increasing the electrical resistance,reducing the capacitance and inductance,electrical impedance and corrosion resistance can be increased.Based on the fact that these elements depend on the type of material and the geometry of the material,multilayer structures with different geometries are proposed.For this purpose,conventional multilayer thin films,multilayer thin film including zigzag structure(zigzag 1)and multilayer thin film including double zigzag structure(zigzag 2)of manganese nitride are considered to protect AISI 304 stainless steel against corrosion in salt solution.These multilayer coatings including zigzag structures are prepared by alternately using the conventional deposition of thin film and glancing angle deposition method.After deposition,the samples are placed in a furnace under nitrogen flux for nitriding.The cross sections of the structures are observed by field emission scanning electron microscopy(FESEM).Atomic force microscope(AFM)is used to make surface analyses of the samples.The results show that the multilayer thin films including zigzag structures have smaller grains than conventional multilayer thin films,and the zigzag 2 structure has the smaller grain than the other two samples,which is attributed to the effect of shadowing and porosity on the oblique angle deposition method.Crystallography structures of the samples are studied by using x-ray diffraction(XRD)pattern and the results show that nitride phase formation in zigzag 2 structure is better than that in zigzag 1 structure and conventional multilayer thin film.To investigate the corrosion resistances of the structures,electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests are performed.The results reveal that the multilayer thin films with zigzag structures have better corrosion protection than the conventional multilayer thin films,and the zigzag structure 2 has the smallest corrosion current and the highest corrosion resistance.The electrical impedances of the samples are investigated by simulating equivalent circuits.The high corrosion resistance of zigzag 2 structure as compared with conventional multilayer structure and zigzag 1 structure,is attributed to the high electrical impedance of the structure due to its small capacitance and high electrical resistance.Finally,the surfaces of corroded samples are observed by scanning electron microscope(SEM).展开更多
A novel composite coating was fabricated on AZ91 magnesium alloy by applying a composite surface treatment which combined the methods of plasma electrolytic oxidation(PEO)pre-treatment,electroless copper and benzotria...A novel composite coating was fabricated on AZ91 magnesium alloy by applying a composite surface treatment which combined the methods of plasma electrolytic oxidation(PEO)pre-treatment,electroless copper and benzotriazole(BTA)passivation. The cross-section microstructures and chemical compositions of coating were examined using scanning electron microscopy(SEM) equipped with energy dispersive analysis of X-rays(EDX).Potentiodynamic polarization curves and salt spray tests were employed to evaluate corrosion protection of the coating to substrate in 5%NaCl solution.It is indicated that electroless copper produces a rough interface between the electroless copper layer and the ceramic layer.The corrosion potential shifts to the positive direction significantly and the current density decreases by more than one order of magnitude.There is no visible galvanic corrosion pits on the surface of the composite coating combination of PEO and electroless copper after 168 h neutral salt spray testing.The color of copper after BTA immersion could be held more than 60 d.展开更多
Polymeric nanofibers are a promising technology to protect the metal surfaces from corrosion.Through the literature search,the use of polyacrylonitrile nanofibres(PANNFs)as a corrosion inhibitor coating for aluminum a...Polymeric nanofibers are a promising technology to protect the metal surfaces from corrosion.Through the literature search,the use of polyacrylonitrile nanofibres(PANNFs)as a corrosion inhibitor coating for aluminum alloys has not been evaluated.This work includes the development of a new,lightweight,high surface area and efficient coating of PANNFs that produced using electrospinning process to resist the corrosion of aluminum alloys(AA5083)which immersed in 0.6 M NaCl at alkaline medium(pH=12)and acidic medium(pH=1)at a range of temperatures(293–323)K.The PANNFs coating was successfully deposited on AA 5083 specimens,where these samples were considered as a collector electrode in the electrospinning process.The corrosion experiments of the aluminum alloys coated with PANNFs before and after immersion in both corrosive mediums were investigated using cyclic potential polarization(CPP).The results confirmed that the PANNFs coating was able to protect the surface of the aluminum specimens from corrosion,by reducing the corrosion current and increasing the surface polarization resistance,thus reducing the corrosion rate.The protection efficiency was found in the alkaline medium 98.8%while in the acidic medium 83.3%.So,it was in both mediums decreased with the increase in temperature.The shape,distribution and size of the polymeric nanofibers that formed the coating were also examined using field emission scanning electron microscopy(FE-SEM)and the percentages of the structural components of these fibers were detected using the X-ray dispersion spectroscopy(EDS).The surface of aluminum specimens was completely covered by PANNFs.These electrospun nanofibers have worn out and lined up spacing after immersion in the corrosive mediums.The diameters average of PANNFs was found to be about 200 and 150 nm before and after immersion,respectively.展开更多
Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively ...Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively poor, which limits their industrial applications. The joints shall be protected against corrosion. In this review, therefore, the current status and development of corrosion protection for FSW high-strength Al alloy joints are presented. Particular emphasis has been given to different protection methods : lowering heat input, post-weld heat treatment, surface modification and spray coatings. Finally, opportunities are identified for further research and development in corrosion protection of FSW high-strength Al alloy joints.展开更多
Carbonyl iron(CI)particles as magnetic microwave absorption material often suffer from serious corrosion under corrosive environment which leads to performance deterioration.In this study,fluorin-containing acrylate t...Carbonyl iron(CI)particles as magnetic microwave absorption material often suffer from serious corrosion under corrosive environment which leads to performance deterioration.In this study,fluorin-containing acrylate type polymer network layers with thickness ranging from tens of nanometers to around one hundred nanometers were formed continuously around CI.The crosslinked coating layer(named FT)effectively increases CI’s thermal decomposition temperature by at least 34%.The FT-coated CI(named CI-FT)was able to resist both inorganic and organic corrosive media attacking efficiently compared with bare CI.The surface polymer network could also help CI withstand organic medium dissolution which proved the firmness of coating.Cyclic voltammetry(CV)test revealed that the coating layer could significantly reduce maximum oxidation current density of CI by more than 45 times.Tafel polarization study during CV tests also confirmed that thicker FT coating layer could help CI sample stabilize corrosion current density.Meanwhile,the surface coating also enhanced the impedance matching properties of CI as microwave absorber and the CI-FT samples demonstrated improved microwave absorption properties which degenerated little after corrosive medium soaking compared with that of CI.展开更多
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con...Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.展开更多
The relatively poor corrosion resistance remarkably limits the wide applications of Mg alloys in practice,although they possess many attractive properties,like low density,high specific strength,and good biocompatibil...The relatively poor corrosion resistance remarkably limits the wide applications of Mg alloys in practice,although they possess many attractive properties,like low density,high specific strength,and good biocompatibility.The formation of a protective coating can effectively suppress the corrosion.In this work,a slippery liquid-infused porous surface(SLIPS),with good surface hydrophobicity,stability,and self-healing property,was formed on AZ31 Mg alloys.The development of SLIPS requires suitable porous micro/nanostructures.Layered double hydroxide(LDH),with effective corrosion resistance for Mg alloys,was a good candidate to accommodate the liquid lubricant.Especially,different temperatures were applied to in situ form MgAl-LDH on AZ31 Mg alloys.The results showed that the temperature of 120℃was the best condition for the SLIPS to provide good corrosion protection for Mg alloys,with the lowest corrosion current density of 3.19×10^(-9)A cm^(−2).In addition,the SLIPS performed well in the long-term immersion test and abrasion test.The AZ31 Mg alloys with superior corrosion resistance and good mechanical and chemical stability can be extensively applied in areas of automotive,electronics,and aerospace.展开更多
Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is...Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is dedicated to exploring the corrosion-fatigue mechanisms of these materials,with an emphasis on microscale processes,and the possibility of expanding current knowledge on this topic using scanning electrochemical techniques.The interaction between fatigue and corrosion of Mg alloys is analyzed by considering the microstructural aspects(grain size,precipitates,deformation twins),as well as the formation of pits.Furthermore,in the case of coated alloys,the role of coating defects in these phenomena is also described.In this context,the feasibility of using scanning electrochemical microscopy(SECM),scanning vibrating electrode technique(SVET),scanning ion-selective electrode technique(SIET),localized electrochemical impedance spectroscopy(LEIS)and scanning Kelvin probe(SKP)methods to study the corrosion-fatigue interaction of Mg alloys is examined.A comprehensive review of the current literature in this field is presented,and the opportunities and limitations of consolidating the use of these techniques to study the microscale processes involved in Mg corrosion-fatigue are discussed.展开更多
Magnesium(Mg)alloys show great potential to be extensively applied in practice owing to their superior properties,while the poor corrosion resistance does undoubtedly restrict their applications.Superhydrophobic coati...Magnesium(Mg)alloys show great potential to be extensively applied in practice owing to their superior properties,while the poor corrosion resistance does undoubtedly restrict their applications.Superhydrophobic coatings with good repellency to corrosive solutions can significantly decrease the interaction between the corrosive species and the substrate,so that they are receiving a lot of attention to improve the corrosion resistance of Mg alloys.Various strategies have been introduced to develop a superhydrophobic coating on Mg alloys,which were reviewed to elucidate the current research status to provide a clue or thinking for beginning researchers.Further,the existing issues of superhydrophobic coating were discussed,especially for their real applications in practice,mainly owing to their poor mechanical stability.Based on the existing issues,the future study was discussed to improve the stability of hierarchical structures and entrapped air pockets,impart the superhydrophobic coating self-healing property to repair the damaged area during service,provide double protection by incorporation of corrosion inhibitors,or even introduce slippery liquid-infused porous surfaces with lubricant layer to provide better corrosion protection for Mg alloys.展开更多
Layered double hydroxide(LDH) has been widely developed in the field of corrosion and protection in recent years based on its unique characteristics including anion capacity, anion exchange ability, structure memory e...Layered double hydroxide(LDH) has been widely developed in the field of corrosion and protection in recent years based on its unique characteristics including anion capacity, anion exchange ability, structure memory effect, and barrier resistance. This paper comprehensively reviews recent work on the preparations, properties of LDH in the forms of powder and film and their applications in different environments in corrosion and protection. Some novel perspectives are also proposed at the end of the review for future research in corrosion and protection field.展开更多
文摘The joining of different light metals through friction stir welding(FSW)is gaining interest as a method to decrease weight and improve fuel efficiency.However,to ensure durability,these welded metals may require surface treatments to protect against corrosion or wear.This study presents a novel approach for the simultaneous delivery of two distinct corrosion inhibitors to Ti-Mg dissimilar PEO treated joints on demand.The research focuses on the synthesis,characterization,and application of cerium@polystyrene(Ce@PS)nanocontainers,which are loaded with 8-hydroxyquinoline(8-HQ)to enhance corrosion protection.The synthesis involves several key steps,including the formation of a cerium-based outer layer around polystyrene nanospheres,the selective removal of the polystyrene core to create a porous structure,and the subsequent loading of the 8-HQ inhibitor.Structural and compositional analyses,conducted using scanning transmission electron microscopy(STEM)and energy-dispersive X-ray spectroscopy(EDS),confirmed the successful incorporation of 8-HQ within the nanocontainers.Additionally,Fourier-transform infrared spectroscopy(FTIR)provided detailed information about the chemical composition of the organic materials throughout the synthesis process.Thermal decomposition analysis verified the successful fabrication and stability of the dual-shell nanocontainers.Corrosion tests on Ti-Mg joints treated with plasma electrolytic oxidation(PEO)coatings and loaded nanocontainers demonstrated sig-nificantly improved corrosion resistance compared to untreated joints.This research highlights the potential of dual-shell nanocontainers,containing both organic and inorganic inhibitors,to offer prolonged corrosion protection,particularly against galvanic corrosion in dissimilar joints.The findings suggest that these synthesized nanocontainers hold promise for various industrial applications,particularly in the context of friction stir welded(FSW)Ti-Mg dissimilar joints,providing valuable insights for the development of advanced materials designed to mitigate corrosion.
基金financially supported by the National Natural Science Foundation of China(No.52371049)the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(Nos.2021FY100603 and 2019FY101404)。
文摘The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating.
文摘Magnesium(Mg)alloys are lightweight materials with excellent mechanical properties,making them attractive for various applications,including aerospace,automotive,and biomedical industries.However,the practical application of Mg alloys is limited due to their high susceptibility to corrosion.Plasma electrolytic oxidation(PEO),or micro-arc oxidation(MAO),is a coating method that boosts Mg alloys'corrosion resistance.However,despite the benefits of PEO coatings,they can still exhibit certain limitations,such as failing to maintain long-term protection as a result of their inherent porosity.To address these challenges,researchers have suggested the use of inhibitors in combination with PEO coatings on Mg alloys.Inhibitors are chemical compounds that can be incorporated into the coating or applied as a post-treatment to further boost the corrosion resistance of the PEO-coated Mg alloys.Corrosion inhibitors,whether organic or inorganic,can act by forming a protective barrier,hindering the corrosion process,or modifying the surface properties to reduce susceptibility to corrosion.Containers can be made of various materials,including polyelectrolyte shells,layered double hydroxides,polymer shells,and mesoporous inorganic materials.Encapsulating corrosion inhibitors in containers fully compatible with the coating matrix and substrate is a promising approach for their incorporation.Laboratory studies of the combination of inhibitors with PEO coatings on Mg alloys have shown promising results,demonstrating significant corrosion mitigation,extending the service life of Mg alloy components in aggressive environments,and providing self-healing properties.In general,this review presents available information on the incorporation of inhibitors with PEO coatings,which can lead to improved performance of Mg alloy components in demanding environments.
基金supported by the Scientific Research Project of Guangdong Provincial Education Department (Nos.2022KTSCX123 and 2022KTSCX118)the Key Plat Form Programs and Technology Innovation Team Project of Guangdong Provincial Department of Education (Nos.2019GCZX002 and 2020KCXTD011)+1 种基金Guang dong Basic and Applied Basic Research Foundation (Nos.2019A1515110444,2020B1515120097,and 2020 A1515111107)funded by the Open Project Program of Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices,Huizhou University (No.EFMD2021005Z)。
文摘Metal corrosion causes billions of dollars of economic losses yearly.As a smart and new energy-harvesting device,triboelectric nanogenerators(TENGs)can convert almost all mechanical energy into electricity,which leads to great prospects in metal corrosion prevention and cathodic protection.In this work,flexible TENGs were designed to use the energy harvested by flexible polydimethylsiloxane(PDMS)films with ZrB_(2)nanoparticles and effectively improve the dielectric constant by incorporating ZrB_(2).The open-circuit voltage and short-circuit current were 264 V and 22.9μA,respectively,and the power density of the TENGs reached 6 W·m^(-2).Furthermore,a selfpowered anti-corrosion system was designed by the rectifier circuit integrated with TENGs,and the open-circuit potential(OCP)and Tafel curves showed that the system had an excellent anti-corrosion effect on carbon steel.Thus,the system has broad application prospects in fields such as metal cultural relics,ocean engineering,and industry.
基金financially supported by the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(YESS,No.2020QNRC001)the National Science and Technology Resources Investigation Program of China(No.2021FY100603)the Fundamental Research Funds for the Central Universities(No.FRF-BD-20-28A2)。
文摘Metal corrosion causes significant economic losses,safety issues,and environmental pollution.Hence,its prevention is of immense research interest.Carbon dots(CDs)are a new class of zero-dimensional carbon nanomaterials,which have been considered for corrosion protection applications in recent years due to their corrosion inhibition effect,fluorescence,low toxicity,facile chemical modification,and cost-effectiveness.This study provides a comprehensive overview of the synthesis,physical and chemical properties,and anticorrosion mechanisms of functionalized CDs.First,the corrosion inhibition performance of different types of CDs is introduced,followed by discussion on their application in the development of smart protective coatings with self-healing and/or self-reporting properties.The effective barrier formed by CDs in the coatings can inhibit the spread of local damage and achieve self-healing behavior.In addition,diverse functional groups on CDs can interact with Fe^(3+)and H^(+)ions generated during the corrosion process;this interaction changes their fluorescence,thereby demonstrating self-reporting behavior.Moreover,challenges and prospects for the development of CD-based corrosion protection systems are also presented.
基金the financial support from the National Natural Science Foundation of China (Nos.52204389,U19A2084 and 52234009)the National Key Research and Development Program (No.2022YFE0122000)Program for the Central University Youth Innovation Team。
文摘Featuring low density and high specific strength, magnesium(Mg) alloys have attracted wide interests in the fields of portable devices and automotive industry. However, the active chemical and electrochemical properties make them susceptible to corrosion in humid, seawater, soil,and chemical medium. Various strategies have revealed certain merits of protecting Mg alloys. Therein, engineering self-repairing coatings is considered as an effective strategy, because they can enable the timely repair for damaged areas, which brings about long-term protection for Mg alloys. In this review, self-repairing coatings on Mg alloys are summarized from two aspects, namely shape restoring coatings and function restoring coatings. Shape restoring coatings benefit for swelling, shrinking, or reassociating reversible chemical bonds to return to the original state and morphology when coatings broken;function self-repairing coatings depend on the release of inhibitors to generate new passive layers on the damaged areas. With the advancement of coating research and to fulfill the demanding requirements of applications, it is an inevitable trend to develop coatings that can integrate multiple functions(such as stimulus response, self-repairing, corrosion warning,and so on). As a novel carrier and barrier, porous solids, especially covalent organic frameworks(COFs), have been respected as the future development of self-repairing coatings on Mg alloys, due to their unique, diverse structures and adjustable functions.
文摘Vanadium films were prepared on zinc surfaces by using a solution containing vanadate. Corrosion protection properties of vanadium-treated (V-treated), chromium-treated (Cr-treated), and untreated zinc surfaces in contact with a 3.5 wt.% NaC1 solution were studied using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and neutral salt spray (NSS) tests. According to these results, the V-treated layer significantly improved the corrosion resistance of zinc surfaces. In comparison with the Cr-treated layer, the V-treated layer exhibited a better corrosion resistance. The composition of the V-treated layer was studied using X-ray photoelectron spectroscopy (XPS). XPS measurements indicated that the vanadium layer formed on zinc surfaces and the vanadium-rich coating was a hydrated oxide with a composition of V2O5, VO2, and its hydrates such as V2O5.nH2O and VO(OH)2.
基金the International Cooperation in Science and Technology Innovation between Governments,National Key Research and Development Program of China(No.2018YFE0116200)the National Natural Science Foundation of China(51971040)the Fundamental Research Funds for the Central Universities(2020CDJQY-A007)。
文摘This work produced a Mg Al-layered double hydroxide by hydrothermal treatment of a plasma electrolytic oxidation(PEO) coating on magnesium alloy AZ31 in an phosphate electrolyte, followed by an ion-exchange reaction in 0.1 M phosphate solution. The coated specimens were scratched. Characterization, including utilization of the localized technique SIET, measured the pH and p Mg distributions and optical morphologies around the artificial defects during immersion in 0.05 M NaCl solution. In contrast with phosphate loaded PEO/LDHs, a stronger alkalinization area(with pH 11.4~12.3) appeared in the passive PEO specimens. Due to formation of insoluble Mg(OH)_(2) products, the p Mg map showed depletion of Mg^(2+) in this high p H area. Combined with optical morphologies and SEM images, the better self-healing ability toward defects for phosphate loaded PEO/LDHs was confirmed.
基金the financial support of the National Natural Science Foundation of China (Grant No. 21978182)。
文摘Superhydrophobic coating has been widely studied for its great applicational potential, such as for corrosion protection of magnesium alloys while it has been restrained by expensive materials, sophisticated preparation process and infirm rough structures. In this study, the electrochemical method was adopted by using a two-electrode system for rapid hydrophobic modification to obtain superhydrophobic kaolin.By mixing the modified superhydrophobic kaolin with commercial epoxy resin and polydimethylsiloxane glue, a paint can be formed and easily used on various substrates for preparation of superhydrophobic coating via spraying method. The influence factors on wettability of the modified kaolin and the mixing ratio of each component of the coating were explored. Also, the wettability, durability and anticorrosion of the prepared coating were evaluated comprehensively. The coating was able to maintain superhydrophobic after immersed in HCl solution at pH 1, the NaOH solution at pH 14, and 3.5 wt.% NaCl solution for 16, 21, 30 days, respectively. In addition, the coating exhibited 4A grade adhesion, high hydrophobicity after abraded for 200 cycles on a 600-mesh sandpaper with 100 g weight, and 99.86% anticorrosion efficiency after soaked in 3.5 wt.% NaCl solution for 20 days, demonstrating a good robustness and anti-corrosion property. Furthermore, the coating showed good transparency, flexibility and was easy to make in a large scale by the spraying method, which is of great significance to promote the practical application of superhydrophobic coatings and the anticorrosion Mg alloys.
文摘The effectiveness of the corrosion protection of Nafion/Dimethysulfoxid (DMSO) organic coatings for AM50 magnesium alloy prepared by simple immersion and heat treatment was investigated. Its corrosion resistance and morphologies of the Nafion/DMSO organic coatings were studied by electrochemical corrosion testing and optical microscopy. The results show that Nafion/DMSO organic coatings can improve the corrosion resistance of AM50 magnesium alloy effectively. Also, the corrosion resistance increases with the surface density of the organic coatings.
基金Project supported by the Funds from the University of Mohaghegh Ardabili and University of Tehran and the Iran National Science Foundation(INSF)the Centre of Excellence for Physics of Structure and Microscopic Properties of Matter,Department of Physics,University of Tehran.
文摘To increase corrosion resistance of the sample,its electrical impedance must be increased.Due to the fact that electrical impedance depends on elements such as electrical resistance,capacitance,and inductance,by increasing the electrical resistance,reducing the capacitance and inductance,electrical impedance and corrosion resistance can be increased.Based on the fact that these elements depend on the type of material and the geometry of the material,multilayer structures with different geometries are proposed.For this purpose,conventional multilayer thin films,multilayer thin film including zigzag structure(zigzag 1)and multilayer thin film including double zigzag structure(zigzag 2)of manganese nitride are considered to protect AISI 304 stainless steel against corrosion in salt solution.These multilayer coatings including zigzag structures are prepared by alternately using the conventional deposition of thin film and glancing angle deposition method.After deposition,the samples are placed in a furnace under nitrogen flux for nitriding.The cross sections of the structures are observed by field emission scanning electron microscopy(FESEM).Atomic force microscope(AFM)is used to make surface analyses of the samples.The results show that the multilayer thin films including zigzag structures have smaller grains than conventional multilayer thin films,and the zigzag 2 structure has the smaller grain than the other two samples,which is attributed to the effect of shadowing and porosity on the oblique angle deposition method.Crystallography structures of the samples are studied by using x-ray diffraction(XRD)pattern and the results show that nitride phase formation in zigzag 2 structure is better than that in zigzag 1 structure and conventional multilayer thin film.To investigate the corrosion resistances of the structures,electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests are performed.The results reveal that the multilayer thin films with zigzag structures have better corrosion protection than the conventional multilayer thin films,and the zigzag structure 2 has the smallest corrosion current and the highest corrosion resistance.The electrical impedances of the samples are investigated by simulating equivalent circuits.The high corrosion resistance of zigzag 2 structure as compared with conventional multilayer structure and zigzag 1 structure,is attributed to the high electrical impedance of the structure due to its small capacitance and high electrical resistance.Finally,the surfaces of corroded samples are observed by scanning electron microscope(SEM).
基金Project(20070420821)supported by the China Postdoctoral Science FoundationProject(CQ200801)supported by Young Talents Foundation of Changzhou,Jiangsu Province,China
文摘A novel composite coating was fabricated on AZ91 magnesium alloy by applying a composite surface treatment which combined the methods of plasma electrolytic oxidation(PEO)pre-treatment,electroless copper and benzotriazole(BTA)passivation. The cross-section microstructures and chemical compositions of coating were examined using scanning electron microscopy(SEM) equipped with energy dispersive analysis of X-rays(EDX).Potentiodynamic polarization curves and salt spray tests were employed to evaluate corrosion protection of the coating to substrate in 5%NaCl solution.It is indicated that electroless copper produces a rough interface between the electroless copper layer and the ceramic layer.The corrosion potential shifts to the positive direction significantly and the current density decreases by more than one order of magnitude.There is no visible galvanic corrosion pits on the surface of the composite coating combination of PEO and electroless copper after 168 h neutral salt spray testing.The color of copper after BTA immersion could be held more than 60 d.
文摘Polymeric nanofibers are a promising technology to protect the metal surfaces from corrosion.Through the literature search,the use of polyacrylonitrile nanofibres(PANNFs)as a corrosion inhibitor coating for aluminum alloys has not been evaluated.This work includes the development of a new,lightweight,high surface area and efficient coating of PANNFs that produced using electrospinning process to resist the corrosion of aluminum alloys(AA5083)which immersed in 0.6 M NaCl at alkaline medium(pH=12)and acidic medium(pH=1)at a range of temperatures(293–323)K.The PANNFs coating was successfully deposited on AA 5083 specimens,where these samples were considered as a collector electrode in the electrospinning process.The corrosion experiments of the aluminum alloys coated with PANNFs before and after immersion in both corrosive mediums were investigated using cyclic potential polarization(CPP).The results confirmed that the PANNFs coating was able to protect the surface of the aluminum specimens from corrosion,by reducing the corrosion current and increasing the surface polarization resistance,thus reducing the corrosion rate.The protection efficiency was found in the alkaline medium 98.8%while in the acidic medium 83.3%.So,it was in both mediums decreased with the increase in temperature.The shape,distribution and size of the polymeric nanofibers that formed the coating were also examined using field emission scanning electron microscopy(FE-SEM)and the percentages of the structural components of these fibers were detected using the X-ray dispersion spectroscopy(EDS).The surface of aluminum specimens was completely covered by PANNFs.These electrospun nanofibers have worn out and lined up spacing after immersion in the corrosive mediums.The diameters average of PANNFs was found to be about 200 and 150 nm before and after immersion,respectively.
文摘Friction stir welding (FSW) has been widely used in many industries, with which high-strength aluminum alloys can be well joined. However, the corrosion resistance of FSW high-strength Al alloy joints is relatively poor, which limits their industrial applications. The joints shall be protected against corrosion. In this review, therefore, the current status and development of corrosion protection for FSW high-strength Al alloy joints are presented. Particular emphasis has been given to different protection methods : lowering heat input, post-weld heat treatment, surface modification and spray coatings. Finally, opportunities are identified for further research and development in corrosion protection of FSW high-strength Al alloy joints.
基金financially supported by the National Natural Science Foundation of China(Nos.U19A2096,51903030,52021001)。
文摘Carbonyl iron(CI)particles as magnetic microwave absorption material often suffer from serious corrosion under corrosive environment which leads to performance deterioration.In this study,fluorin-containing acrylate type polymer network layers with thickness ranging from tens of nanometers to around one hundred nanometers were formed continuously around CI.The crosslinked coating layer(named FT)effectively increases CI’s thermal decomposition temperature by at least 34%.The FT-coated CI(named CI-FT)was able to resist both inorganic and organic corrosive media attacking efficiently compared with bare CI.The surface polymer network could also help CI withstand organic medium dissolution which proved the firmness of coating.Cyclic voltammetry(CV)test revealed that the coating layer could significantly reduce maximum oxidation current density of CI by more than 45 times.Tafel polarization study during CV tests also confirmed that thicker FT coating layer could help CI sample stabilize corrosion current density.Meanwhile,the surface coating also enhanced the impedance matching properties of CI as microwave absorber and the CI-FT samples demonstrated improved microwave absorption properties which degenerated little after corrosive medium soaking compared with that of CI.
基金financially supported by the National Natural Science Foundation of China(No.52377026 and No.52301192)Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)+4 种基金Postdoctoral Fellowship Program of CPSF under Grant Number(No.GZB20240327)Shandong Postdoctoral Science Foundation(No.SDCXZG-202400275)Qingdao Postdoctoral Application Research Project(No.QDBSH20240102023)China Postdoctoral Science Foundation(No.2024M751563)the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites).
文摘Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments.
基金supported by the National Natural Science Foundation of China(No.52001036)the China Postdoctoral Science Foundation(Nos.2022T150767 and 2021M693708).
文摘The relatively poor corrosion resistance remarkably limits the wide applications of Mg alloys in practice,although they possess many attractive properties,like low density,high specific strength,and good biocompatibility.The formation of a protective coating can effectively suppress the corrosion.In this work,a slippery liquid-infused porous surface(SLIPS),with good surface hydrophobicity,stability,and self-healing property,was formed on AZ31 Mg alloys.The development of SLIPS requires suitable porous micro/nanostructures.Layered double hydroxide(LDH),with effective corrosion resistance for Mg alloys,was a good candidate to accommodate the liquid lubricant.Especially,different temperatures were applied to in situ form MgAl-LDH on AZ31 Mg alloys.The results showed that the temperature of 120℃was the best condition for the SLIPS to provide good corrosion protection for Mg alloys,with the lowest corrosion current density of 3.19×10^(-9)A cm^(−2).In addition,the SLIPS performed well in the long-term immersion test and abrasion test.The AZ31 Mg alloys with superior corrosion resistance and good mechanical and chemical stability can be extensively applied in areas of automotive,electronics,and aerospace.
基金support provided by the Spanish Ministry of Science and Innovation(MICINN,Madrid,Spain)the European Regional Development Fund(Brussels,Belgium)MCIN/AEI/10.13039/501100011033/FEDER,UE under grant PID2021-127445NB-I00.
文摘Understanding the interaction between cyclic stresses and corrosion of magnesium(Mg)and its alloys is increasingly in demand due to the continuous expansion of structural applications of these materials.This review is dedicated to exploring the corrosion-fatigue mechanisms of these materials,with an emphasis on microscale processes,and the possibility of expanding current knowledge on this topic using scanning electrochemical techniques.The interaction between fatigue and corrosion of Mg alloys is analyzed by considering the microstructural aspects(grain size,precipitates,deformation twins),as well as the formation of pits.Furthermore,in the case of coated alloys,the role of coating defects in these phenomena is also described.In this context,the feasibility of using scanning electrochemical microscopy(SECM),scanning vibrating electrode technique(SVET),scanning ion-selective electrode technique(SIET),localized electrochemical impedance spectroscopy(LEIS)and scanning Kelvin probe(SKP)methods to study the corrosion-fatigue interaction of Mg alloys is examined.A comprehensive review of the current literature in this field is presented,and the opportunities and limitations of consolidating the use of these techniques to study the microscale processes involved in Mg corrosion-fatigue are discussed.
基金financially supported by the National Natural Science Foundation of China(Nos.51971040,51701029,51531002)the National Key Research and Development Program of China(No.2016YFB0301100)。
文摘Magnesium(Mg)alloys show great potential to be extensively applied in practice owing to their superior properties,while the poor corrosion resistance does undoubtedly restrict their applications.Superhydrophobic coatings with good repellency to corrosive solutions can significantly decrease the interaction between the corrosive species and the substrate,so that they are receiving a lot of attention to improve the corrosion resistance of Mg alloys.Various strategies have been introduced to develop a superhydrophobic coating on Mg alloys,which were reviewed to elucidate the current research status to provide a clue or thinking for beginning researchers.Further,the existing issues of superhydrophobic coating were discussed,especially for their real applications in practice,mainly owing to their poor mechanical stability.Based on the existing issues,the future study was discussed to improve the stability of hierarchical structures and entrapped air pockets,impart the superhydrophobic coating self-healing property to repair the damaged area during service,provide double protection by incorporation of corrosion inhibitors,or even introduce slippery liquid-infused porous surfaces with lubricant layer to provide better corrosion protection for Mg alloys.
基金financially supported by the State Key Project of Research and Development (No. 2016YFC1100300)the National Natural Science Foundation of China (No. 21203158, 21773199, and 21621091)。
文摘Layered double hydroxide(LDH) has been widely developed in the field of corrosion and protection in recent years based on its unique characteristics including anion capacity, anion exchange ability, structure memory effect, and barrier resistance. This paper comprehensively reviews recent work on the preparations, properties of LDH in the forms of powder and film and their applications in different environments in corrosion and protection. Some novel perspectives are also proposed at the end of the review for future research in corrosion and protection field.