Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ...Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ocean energy source. Unique tandem propellers that can counter-rotate have been designed to generate electric power effectively from a tidal stream. This type of power unit has several advantages compare to the conventional unit with a single propeller. At the design of the tidal stream power unit, it is important to investigate the structure of the tip vortex tubes shedding to predict the load of the propeller. In this research, we investigated the tip vortex shedding using the CFD method for the conventional single propeller and counter-rotating type tandem propellers and estimated the performance efficiency using RANS (Reynolds Averaged Navier-Stokes) model and we confirmed the limitation of RANS model on the calculation of the tip vortex stretching.展开更多
We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved e...We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved exactly,yielding a set of Bessel vortices.Additionally,based on linear solution and using variational approximation,the solutions for the full nonlinear system and their ground state phase diagrams are derived,including the vortex states with quantum numbers m=0,1,as well as mixed states.In this work,mixed states in spin-1 spin-orbit coupling(SOC)BEC are interpreted for the first time as weighted superpositions of three vortex states.Furthermore,the results also indicate that under strong Zeeman splitting,the system cannot form localized states.The variational solutions align well with numerical simulations,showing stable evolution and meeting the criteria for long-term observation in experiments.展开更多
Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the a...Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.展开更多
Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving s...Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.展开更多
The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented ...The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.展开更多
Eight sets of numerical experiments are performed in 48 hours of integtation by using a barotropic primitive equation model with a topographic term so as to investigate the effect of topography on the merging of vorti...Eight sets of numerical experiments are performed in 48 hours of integtation by using a barotropic primitive equation model with a topographic term so as to investigate the effect of topography on the merging of vortices. It is pointed out that the introduction of topography may change the track of vortices, and it causes the low vortices and vorticity lumps to be detained on the southeast side of the topography, thus creating a favorable condition for the merging of the low vortex and vorticity lumps. It is also shown that the effect of topography may cause double mergers of vortices in a horizontally shearing basic flow, and it can strengthen the low vortex remarkably.展开更多
Five numerical experiments have been performed in this paper by using a quasigtostrophic barotropical model to investigate the interaction of different scale vortiCes on the structure and motion of typhoons.Results sh...Five numerical experiments have been performed in this paper by using a quasigtostrophic barotropical model to investigate the interaction of different scale vortiCes on the structure and motion of typhoons.Results show that this interaction may arouse the irregular changes of the asymmetric structure of typhoons,thus leading to anomalous Phenomena such as meandering tracks and sudden changes in the motion speed of typhoons;the  ̄t Of this interaction on the strucure and motion may be quite different when the smaller vortex is situated in different Posihons of the typhoon circulation.展开更多
Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the...Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the TP to the east. TPVs are known to be one of the main precipitation-bearing systems on the TP and moving-off TPVs have been associated with heavy precipitation and flooding downstream of the TP (e.g., in Sichuan province or over the Yangtze River Valley). Identifying and tracking TPVs is difficult because of their comparatively small horizontal extent (400-800 kin) and the limited availability of soundings over the TP, which in turn constitutes a challenge for short-term predictions of TPV-related impacts and for the climatological study of TPVs. In this study, (i) manual tracking (MT) results using radiosonde data from a network over and downstream of the TP are compared with (ii) results obtained by an automated tracking (AT) algorithm applied to ERA-Interim data. Ten MT-TPV cases are selected based on method (i) and matched to and compared with the corresponding AT-TPVs identified with method (ii). Conversely, ten AT-TPVs are selected and compared with the corresponding MT-TPVs. In general, the comparison shows good results in cases where the underlying data are in good agreement, but considerable differences are also seen in some cases and explained in terms of differences in the tracking methods, data availability/coverage and disagreement between sounding and ERA-Interim data. Recommendations are given for future efforts in TPV detection and tracking, including in an operational weather forecasting context.展开更多
In this paper, we continue to construct stationary classical solutions for the incompressible planar flows approximating singular stationary solutions of this problem. This procedure is carried out by constructing sol...In this paper, we continue to construct stationary classical solutions for the incompressible planar flows approximating singular stationary solutions of this problem. This procedure is carried out by constructing solutions for the following elliptic equations{-△u=λ∑1Bδ(x0,j)(u-kj)p+,in Ω,u=0,onΩ is a bounded simply-connected smooth domain, ki (i = 1,… , k) is prescribed positive constant. The result we prove is that for any given non-degenerate critical pointX0=(x0,1,…,x0,k of the Kirchhoff-Routh function defined on Ωk corresponding to ( k1,……kk )there exists a stationary classical solution approximating stationary k points vortex solution. Moreover, as λ→+∞ shrinks to {x05}, and the local vorticity strength near each x0,j approaches kj, j = 1,… , k. This result makes the study of the above problem with p _〉 0 complete since the cases p 〉 1, p = 1, p = 0 have already been studied in [11, 12] and [13] respectively.展开更多
The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated v...The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively.展开更多
The dynamics of eastward shifting cyclonic vortices are investigated in terms of a barotropic primitive equation model, and six experiments are performed. Both the interaction of a cyclonic vortex with vorticity lumps...The dynamics of eastward shifting cyclonic vortices are investigated in terms of a barotropic primitive equation model, and six experiments are performed. Both the interaction of a cyclonic vortex with vorticity lumps and the interaction of the vortex with the shearing basic flow may induce the strengthening of the vortex in a short period, however, the vortex intensity still shows a general decreasing tendency over the whole integration time period. The interaction among the shearing basic flow, cyclonic vortex, and multiple vorticity lumps can change the tendency. The merging of the cyclonic vortex with vorticity lumps in the shearing basic flow of positive vorticity is directly responsible for the maintenance and development of the cyclonic vortex.展开更多
The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations a...The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations affect significantly the wing rock motion of a wing-body. The natural tip perturbation would make the wing rock motion of a nondeterministic nature and an artificial mini-tip perturbation would make the wing rock motion deterministic. The artificial tip perturbation would, as its circumferential location is varied, generate three different types of motion patterns: (1) limit cycle oscillation, (2) irregular oscillation, (3) equilibrium state with tiny oscillation. The amplitude of rolling oscillation corresponding to the limit cycle oscillatory motion pattern is decreased with the wing location shifting downstream along the body axis.展开更多
Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is...Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 ram. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.展开更多
Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic...Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic vorticity equation model with initial fields where mesoscale vortices were generated stochastically. Results of these simulations indicate that the deflection of the TC track derived from the initial mesoscale vortices was clearly smaller than that from the beta effect in 60% of the cases. However, they may have a more significant impact on the TC track under the following circumstances. First, the interaction between an adjacent mesoscale vortex and the TC causes the emergence of a complicated structure with two centers in the TC inner region. This configuration may last for 8 h, and the two centers undergo a cyclonic rotation to make the change in direction of the TC motion. Second, two mesoscale vortices located in the EV circulation may merge, and the merged vortex shifts into the EV inner region, intensifying both the EV and steering flow for the TC, increasing speed of the TC.展开更多
The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different ...The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different phase angles were obtained. The relationships between the structural characteristics of the vortices and the force acting on the foil and between the widths of the caudal vortex street and of the caudal flow field were analyzed. A method to determine the shedding frequency of the vortices was proposed.展开更多
With the increasing demand for the clean sustainable power, the turbine design urgently turns to increase the capability significantly toward higher head for generating larger power. Currently, there are many studies ...With the increasing demand for the clean sustainable power, the turbine design urgently turns to increase the capability significantly toward higher head for generating larger power. Currently, there are many studies in the field of the bulb turbine with single-stage runner, though reports about counter-rotating tandem-runner are rare. However, the further high-head application with the single-stage runner is very difficult to achieve due to the limit of the specific speed. In this paper, a new bulb turbine with the tandem-runner is designed in order to substantially increase the applicable limit toward higher head with larger power. A half of the net head is absorbed by the frontal runner which can generate output power, while the remaining half is absorbed by the rear runner. To generate the Euler energy required for the rear runner, the frontal runner has the counter-rotation against the rear runner so that the counter-rotating tandem-runner can meet the purpose of double head and power under the same size as the conventional bulb turbine. Supply and demand of Euler energy between the two runners are thoroughly optimized through the detailed flow analysis, in order to secure the stable operation. As a result, the interference of Euler energies between the outflow from the frontal runner and the inflow to the rear runner is confirmed to be very small on the counter-rotating interface between the two runners. The prediction method of on-cam performance between the two adjustable runners is also developed numerically, which provides optimal flow between the two runners. This research provides a theoretical basis for the optimal design and operation of the counter-rotating tandem-runner bulb turbines.展开更多
Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines...Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines,in-cluding Rushton turbine,concaved blade disk turbine,half elliptical blade disk turbine,and parabolic blade disk turbine.Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail.The location,size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the trailing vortex characteristics.The larger curvature resulted in longer residence time of the vortex at the impeller tip,bigger distance between the upper and lower vortices and longer vortex life,also leads to smaller and stronger vortices.In addition,the turbulent ki-netic energy and turbulent energy dissipation in the discharge flow were determined and discussed.High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them.Although restricted to single phase flow,the presented results are essential for reliable de-sign and scale-up of stirred tank with disc turbines.展开更多
The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force bala...The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the down-wash flow induced by the tip vortices was weakened. However,vortex breakdown occurred as the wing lowered to the ground.From the experimental results of aerodynamics,the maximum lift-to-drag ratio was observed when the angle of attack was 2.5°and the ground clearance was 0.2.展开更多
The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the ...The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.展开更多
The evolution of the three-dimensional time-developing mixing layer was simulated numerically using the pseudo-spectral method. The initial perturbations consisted of the two-dimensional fundamental wave and the stre...The evolution of the three-dimensional time-developing mixing layer was simulated numerically using the pseudo-spectral method. The initial perturbations consisted of the two-dimensional fundamental wave and the streamwise-invariant three-dimensional disturbance. A comparison of the formations of the streamwise vortices with different amplitude functions for three-dimensional disturbances was made. In one case the results are similar to that of Rogers and Moser (1992), whereas a different way in which the quadrupole forms and sudden expansion of the rib were observed in another case. The simulation also confirms that stretching by the forming roller rather than Rayleigh centrifugal instability is responsible for the formation of the rib. Finally, numerical flow visualization results were presented. (Edited author abstract) 9 Refs.展开更多
文摘Ocean energy has a potential of providing a large amount of renewable energy around the world. One of the forms of ocean energy, tidal stream power is widely recognized as the continuous, predictable and eco-friendly ocean energy source. Unique tandem propellers that can counter-rotate have been designed to generate electric power effectively from a tidal stream. This type of power unit has several advantages compare to the conventional unit with a single propeller. At the design of the tidal stream power unit, it is important to investigate the structure of the tip vortex tubes shedding to predict the load of the propeller. In this research, we investigated the tip vortex shedding using the CFD method for the conventional single propeller and counter-rotating type tandem propellers and estimated the performance efficiency using RANS (Reynolds Averaged Navier-Stokes) model and we confirmed the limitation of RANS model on the calculation of the tip vortex stretching.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515110198)the Natural Science Foundation of Guangdong Province,China(Grant Nos.2024A1515030131 and 2021A1515010214)+2 种基金the National Natural Science Foundation of China(Grant Nos.12274077,11905032,and 12475014)the Research Fund of the Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology(Grant No.2020B1212030010)the Israel Science Foundation(Grant No.1695/22).
文摘We investigate the ground states of spin-orbit coupled spin-1 Bose-Einstein condensates in the presence of Zeeman splitting.By introducing the generalized momentum operator,the linear version of the system is solved exactly,yielding a set of Bessel vortices.Additionally,based on linear solution and using variational approximation,the solutions for the full nonlinear system and their ground state phase diagrams are derived,including the vortex states with quantum numbers m=0,1,as well as mixed states.In this work,mixed states in spin-1 spin-orbit coupling(SOC)BEC are interpreted for the first time as weighted superpositions of three vortex states.Furthermore,the results also indicate that under strong Zeeman splitting,the system cannot form localized states.The variational solutions align well with numerical simulations,showing stable evolution and meeting the criteria for long-term observation in experiments.
基金Project supported by the National Key R&D Program of China(Grant No.2023YFE0201900)。
文摘Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering.
文摘Two methods for vibration characteristic investigation of the counter-rotating dual-rotors in an aero-en- gine are put forward. The two methods use DAMP tool on the MSC. NASTRAN platform and develope the re- solving sequence. Vibration characteristics of a turbofan engine are analyzed by using the two methods. Com- pared with results calculated using transfer matrix method and test results, the two methods are valuable and have great potential in practical applications for vibration characteristic investigation of aero-engines with high thrust-weight ratio.
文摘The design of counter-rotating turbine is one of new techniques to improve the thrust-weight ratio of jet propulsion engines.Numerical analysis of a low pressure(LP)counter-rotating turbine rotor blade is presented by using ANSYS/CFX software.Interaction of aerodynamics and solid mechanics coupling in the computation is applied.In some rating of turbine,stress distribution and vibration characteristics of low pressure turbine(LPT)blade are computed.The wake aerodynamic forces and LPT blade vibration are transformed in frequency domain using fast Fourier transform(FFT)method.The results show that under wake aerodynamic force excitation,the first order modal vibration is more easily aroused and the higher order response cannot be ignored.Moreover,with different temperature fields,the vibration responses of blade are also different.
基金supported jointly by the“973”Project on heavy rain in China,the National Natural Science Foundation of China under Grant No.40333028the Science and Technology Department of China under special project 2001 DIA20026.
文摘Eight sets of numerical experiments are performed in 48 hours of integtation by using a barotropic primitive equation model with a topographic term so as to investigate the effect of topography on the merging of vortices. It is pointed out that the introduction of topography may change the track of vortices, and it causes the low vortices and vorticity lumps to be detained on the southeast side of the topography, thus creating a favorable condition for the merging of the low vortex and vorticity lumps. It is also shown that the effect of topography may cause double mergers of vortices in a horizontally shearing basic flow, and it can strengthen the low vortex remarkably.
文摘Five numerical experiments have been performed in this paper by using a quasigtostrophic barotropical model to investigate the interaction of different scale vortiCes on the structure and motion of typhoons.Results show that this interaction may arouse the irregular changes of the asymmetric structure of typhoons,thus leading to anomalous Phenomena such as meandering tracks and sudden changes in the motion speed of typhoons;the  ̄t Of this interaction on the strucure and motion may be quite different when the smaller vortex is situated in different Posihons of the typhoon circulation.
基金supported by the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP) China as part of the Newton Fund grant agreement P100195 between the Met Office and the National Centre for Atmospheric Science at the University of Reading for the MESETA(Modelling Physical and Dynamical Processes over the Tibetan Plateau and their Regional Effects over East Asia) project
文摘Tibetan Plateau vortices (TPVs) are mesoscale cyclones originating over the Tibetan Plateau (TP) dnring the extended summer season (April-September). Most TPVs stay on the TP, but a small number can move off the TP to the east. TPVs are known to be one of the main precipitation-bearing systems on the TP and moving-off TPVs have been associated with heavy precipitation and flooding downstream of the TP (e.g., in Sichuan province or over the Yangtze River Valley). Identifying and tracking TPVs is difficult because of their comparatively small horizontal extent (400-800 kin) and the limited availability of soundings over the TP, which in turn constitutes a challenge for short-term predictions of TPV-related impacts and for the climatological study of TPVs. In this study, (i) manual tracking (MT) results using radiosonde data from a network over and downstream of the TP are compared with (ii) results obtained by an automated tracking (AT) algorithm applied to ERA-Interim data. Ten MT-TPV cases are selected based on method (i) and matched to and compared with the corresponding AT-TPVs identified with method (ii). Conversely, ten AT-TPVs are selected and compared with the corresponding MT-TPVs. In general, the comparison shows good results in cases where the underlying data are in good agreement, but considerable differences are also seen in some cases and explained in terms of differences in the tracking methods, data availability/coverage and disagreement between sounding and ERA-Interim data. Recommendations are given for future efforts in TPV detection and tracking, including in an operational weather forecasting context.
文摘In this paper, we continue to construct stationary classical solutions for the incompressible planar flows approximating singular stationary solutions of this problem. This procedure is carried out by constructing solutions for the following elliptic equations{-△u=λ∑1Bδ(x0,j)(u-kj)p+,in Ω,u=0,onΩ is a bounded simply-connected smooth domain, ki (i = 1,… , k) is prescribed positive constant. The result we prove is that for any given non-degenerate critical pointX0=(x0,1,…,x0,k of the Kirchhoff-Routh function defined on Ωk corresponding to ( k1,……kk )there exists a stationary classical solution approximating stationary k points vortex solution. Moreover, as λ→+∞ shrinks to {x05}, and the local vorticity strength near each x0,j approaches kj, j = 1,… , k. This result makes the study of the above problem with p _〉 0 complete since the cases p 〉 1, p = 1, p = 0 have already been studied in [11, 12] and [13] respectively.
基金supported by the National Natural Science Foundation of China(Nos.11402088 and 51376062)the Fundamental Research Funds for the Central Universities(No.2014MS33)State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS15005)
文摘The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively.
基金the National Natural Science Foundation under Grant No.49775263the project of the Tibetan Plateau Experiment(TIPEX)of Atmospheric Science and the 973 Project onheavy rain in China.
文摘The dynamics of eastward shifting cyclonic vortices are investigated in terms of a barotropic primitive equation model, and six experiments are performed. Both the interaction of a cyclonic vortex with vorticity lumps and the interaction of the vortex with the shearing basic flow may induce the strengthening of the vortex in a short period, however, the vortex intensity still shows a general decreasing tendency over the whole integration time period. The interaction among the shearing basic flow, cyclonic vortex, and multiple vorticity lumps can change the tendency. The merging of the cyclonic vortex with vorticity lumps in the shearing basic flow of positive vorticity is directly responsible for the maintenance and development of the cyclonic vortex.
基金supported by the National Natural Science Foundation of China (10432020, 10872019 and 10702004)
文摘The wing rock motion is frequently suffered by a wing-body configuration with low swept wing at high angle of attack. It is found from our experimental study that the tip perturbation and wing longitudinal locations affect significantly the wing rock motion of a wing-body. The natural tip perturbation would make the wing rock motion of a nondeterministic nature and an artificial mini-tip perturbation would make the wing rock motion deterministic. The artificial tip perturbation would, as its circumferential location is varied, generate three different types of motion patterns: (1) limit cycle oscillation, (2) irregular oscillation, (3) equilibrium state with tiny oscillation. The amplitude of rolling oscillation corresponding to the limit cycle oscillatory motion pattern is decreased with the wing location shifting downstream along the body axis.
基金Supported by Program for New Century Excellent Talents in University,China(Grant No.10-0074)
文摘Electrochemical machining (ECM) has been widely used in the aerospace, automotive, defense and medical industries for its many advantages over traditional machining methods. However, the machining accuracy in ECM is to a great extent limited by the stray corrosion of the unwanted material removal. Many attempts have been made to improve the ECM accuracy, such as the use of a pulse power, passivating electrolytes and auxiliary electrodes. However, they are sometimes insufficient for the reduction of the stray removal and have their limitations in many cases. To solve the stray corrosion problem in CRECM, insulating and conductive coatings are respectively used. The different implement processes of the two kinds of coatings are introduced. The effects of the two kinds of shielding coatings on the anode shaping process are investigated. Numerical simulations and experiments are conducted for the comparison of the two coatings. The simulation and experimental results show that both the two kinds of coatings are valid for the reduction of stray corrosion on the top surface of the convex structure. However, for insulating coating, the convex sidewall becomes concave when the height of the convex structure is over 1.26 ram. In addition, it is easy to peel off by the high-speed electrolyte. In contrast, the conductive coating has a strong adhesion, and can be well reserved during the whole machining process. The convex structure fabricated by using a conductive iron coating layer presents a favorable sidewall profile. It is concluded that the conductive coating is more effective for the improvement of the machining quality in CRECM. The proposed shielding coatings can also be employed to reduce the stray corrosion in other schemes of ECM.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40775038,40875031 and 40975036)
文摘Initial mesoscale vortex effects on the tropical cyclone (TC) motion in a system where three components coexist (i.e., an environmental vortex (EV), a TC, and mesoscale vortices) were examined using a barotropic vorticity equation model with initial fields where mesoscale vortices were generated stochastically. Results of these simulations indicate that the deflection of the TC track derived from the initial mesoscale vortices was clearly smaller than that from the beta effect in 60% of the cases. However, they may have a more significant impact on the TC track under the following circumstances. First, the interaction between an adjacent mesoscale vortex and the TC causes the emergence of a complicated structure with two centers in the TC inner region. This configuration may last for 8 h, and the two centers undergo a cyclonic rotation to make the change in direction of the TC motion. Second, two mesoscale vortices located in the EV circulation may merge, and the merged vortex shifts into the EV inner region, intensifying both the EV and steering flow for the TC, increasing speed of the TC.
文摘The viscous flow field around two-dimensional flapping ( heaving and pitching) foils was numerically computed. The structural characteristics of caudal vortices were investigated and the contour curves at different phase angles were obtained. The relationships between the structural characteristics of the vortices and the force acting on the foil and between the widths of the caudal vortex street and of the caudal flow field were analyzed. A method to determine the shedding frequency of the vortices was proposed.
基金supported by National Natural Science Foundation of China (Grant Nos. 50879026, 50679027)
文摘With the increasing demand for the clean sustainable power, the turbine design urgently turns to increase the capability significantly toward higher head for generating larger power. Currently, there are many studies in the field of the bulb turbine with single-stage runner, though reports about counter-rotating tandem-runner are rare. However, the further high-head application with the single-stage runner is very difficult to achieve due to the limit of the specific speed. In this paper, a new bulb turbine with the tandem-runner is designed in order to substantially increase the applicable limit toward higher head with larger power. A half of the net head is absorbed by the frontal runner which can generate output power, while the remaining half is absorbed by the rear runner. To generate the Euler energy required for the rear runner, the frontal runner has the counter-rotation against the rear runner so that the counter-rotating tandem-runner can meet the purpose of double head and power under the same size as the conventional bulb turbine. Supply and demand of Euler energy between the two runners are thoroughly optimized through the detailed flow analysis, in order to secure the stable operation. As a result, the interference of Euler energies between the outflow from the frontal runner and the inflow to the rear runner is confirmed to be very small on the counter-rotating interface between the two runners. The prediction method of on-cam performance between the two adjustable runners is also developed numerically, which provides optimal flow between the two runners. This research provides a theoretical basis for the optimal design and operation of the counter-rotating tandem-runner bulb turbines.
基金Supported by the National Natural Science Foundation of China(20776008 20821004 20990224) the National Basic Research Program of China(2007CB714300)
文摘Particle image velocimetry technique was used to analyze the trailing vortices and elucidate their rela-tionship with turbulence properties in a stirred tank of 0.48 m diameter,agitated by four different disc turbines,in-cluding Rushton turbine,concaved blade disk turbine,half elliptical blade disk turbine,and parabolic blade disk turbine.Phase-averaged and phase-resolved flow fields near the impeller blades were measured and the structure of trailing vortices was studied in detail.The location,size and strength of vortices were determined by the simplified λ2-criterion and the results showed that the blade shape had great effect on the trailing vortex characteristics.The larger curvature resulted in longer residence time of the vortex at the impeller tip,bigger distance between the upper and lower vortices and longer vortex life,also leads to smaller and stronger vortices.In addition,the turbulent ki-netic energy and turbulent energy dissipation in the discharge flow were determined and discussed.High turbulent kinetic energy and turbulent energy dissipation regions were located between the upper and lower vortices and moved along with them.Although restricted to single phase flow,the presented results are essential for reliable de-sign and scale-up of stirred tank with disc turbines.
基金supported by the National Natural Science Foundation of China(11072142)Shanghai Program for Innovative Research Team in Universities
文摘The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the down-wash flow induced by the tip vortices was weakened. However,vortex breakdown occurred as the wing lowered to the ground.From the experimental results of aerodynamics,the maximum lift-to-drag ratio was observed when the angle of attack was 2.5°and the ground clearance was 0.2.
文摘The structure of a counter-rotating turbine of an underwater vehicle is designed by adding the counter-rotating second-stage turbine disk to the conventional single-stage turbine. The available kinetic energy and the absorption power of the auxiliary system are calculated at different working conditions, and the results show that the power of the main engine and auxiliary system at the counter-rotating turbine system matches well with each other. The technology scheme of the counter-rotating turbine system is proposed, then the experimental simulation of the lubricating oil loop, fuel loop, and seawater loop is completed. The simulation results indicate that the hydraulic transmission system can satisfy the requirements for an underwater vehicle running at a steady sailing or variable working conditions.
基金The project supported by the Zhejiang Province Natural Science Special Fund for Youth Scientists' Cultivation.
文摘The evolution of the three-dimensional time-developing mixing layer was simulated numerically using the pseudo-spectral method. The initial perturbations consisted of the two-dimensional fundamental wave and the streamwise-invariant three-dimensional disturbance. A comparison of the formations of the streamwise vortices with different amplitude functions for three-dimensional disturbances was made. In one case the results are similar to that of Rogers and Moser (1992), whereas a different way in which the quadrupole forms and sudden expansion of the rib were observed in another case. The simulation also confirms that stretching by the forming roller rather than Rayleigh centrifugal instability is responsible for the formation of the rib. Finally, numerical flow visualization results were presented. (Edited author abstract) 9 Refs.