The thermal and dimensional stability of epoxy resin(EP)in-situ modified by cyanate ester(CE)and polydimethylsiloxane(PDMS)are investigated by means of experiments and numerical simulation.Thermal gravimetric analysis...The thermal and dimensional stability of epoxy resin(EP)in-situ modified by cyanate ester(CE)and polydimethylsiloxane(PDMS)are investigated by means of experiments and numerical simulation.Thermal gravimetric analysis(TGA)and differential scanning calorimeter(DSC)are used to analyze the heat resistance of the modified EP.The dimensional stability is characterized by the volume shrinkage of the series PDMS/CE/EP obtained by the density method.The chemical structure of the PDMS/CE/EP is analyzed by Fourier transform infrared spectroscopy(FTIR).The results of TGA and DSC indicate that the thermal stability of PDMS/CE/EP decreases firstly and then increases with the increase in the amount of CE.The addition of PDMS shows a slight effect on the thermal stability.The 40%CE makes the blending system exhibit the lowest initial decomposition temperature,which reduces by 15.5%and 40.8%compared with pure EP and CE,respectively.The FTIR results suggested that the influence of CE on the thermal stability of the modified EP is mainly ascribed to the generation of oxazolidinone ring with low thermal stability and the increase in the triazine ring with high thermal stability.The volume shrinkage measurement results show that the introduction of CE and PDMS are both beneficial to the improvement of the dimensional stability of the blending systems.The in-situ addition of 80%CE shows the lowest volume shrinkage of6.11%.The thermal stress distribution of PDMS/CE/EP generated during the solidification process is simulated by the finite element analysis.The results suggested that the introduction of 80%CE into EP results in the lowest thermal stress in the blending system,which indicates that the system has the lowest volume shrinkage,which agrees well with the experimental results.展开更多
A novel benzoxazine(BOZ)monomer is synthesized by a pot method with solvent-free to blend with cyanate ester(CE).A soluble intermediate is obtained after being cured for 20 h at 80℃.The two model compound and the ble...A novel benzoxazine(BOZ)monomer is synthesized by a pot method with solvent-free to blend with cyanate ester(CE).A soluble intermediate is obtained after being cured for 20 h at 80℃.The two model compound and the blends are analyzed with the infrared radiation(IR),nuclear magnetic resonance(NMR)spectroscopy,and differential scanning calorimetry(DSC).The results show that an intermediate of the iminocarbonate and BOZ structures is formed by the ring-open BOZ reacting with the cyanate groups and ring-unopened BOZ.Moreover,rearrangement and ring-opening occur in the postcure of the intermediate to form the alkyl isocyanurate structure with polybenzoxazine.展开更多
A new type of the nanometer particles and epoxy/bismaleimide-triazine nanocomposites were prepared using a nanometer silica (nano-SiO2), a 4,5-epoxycyclohexane 1,2-dicarboxylic acid dilycidyl (TDE-85) epoxy resin,...A new type of the nanometer particles and epoxy/bismaleimide-triazine nanocomposites were prepared using a nanometer silica (nano-SiO2), a 4,5-epoxycyclohexane 1,2-dicarboxylic acid dilycidyl (TDE-85) epoxy resin, a 4,4'-bismaleimidodiphenymethane (BMI) and a bisphenol a dicyanate (BADCy). The properties of nano-SiOJTDE-85/BMI/BADCy composites, such as mechanical and thermal properties, were systemically investigated in detail by mechanical measurement, scanning electron microscope (SEM), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The experimental results showed that the addition of the appropriate amount of nano-SiO: could improve the impact strength and the flexural strength of the nano- SiO2/TDE-85/BMI/BADCy composites. Simultaneously, the thermal stability of the blends was found to be higher than that of the TDE-85/BMI/BADCy copolymers.展开更多
Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conv...Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.展开更多
Inkjet 3D printing has potential in the additive manufacturing of electronic circuits and devices.However,inks that can be used for printing layers with T5%>300℃ or hardness>200 MPa have been rarely reported.Cy...Inkjet 3D printing has potential in the additive manufacturing of electronic circuits and devices.However,inks that can be used for printing layers with T5%>300℃ or hardness>200 MPa have been rarely reported.Cyanate ester(CE)polymers have excellent thermal stability,high strength,and low shrinkage compared to other common dielectric inks for inkjet 3D printing,but cannot be quickly shaped by ultraviolet(UV)irradiation or thermal treatment.Combining CEs with UV-curable monomers may be a possible way to accelerate crosslinking,but there are challenges from the adverse effects of the dilution of both monomers.In this study,dielectric inks with acrylate and cyanate moieties were developed.The low viscosity and surface tension of the CE precursor(Bisphenol E cyanate ester)were combined with photocurable acrylate diluent monomers and cross-linker to realize an ink suitable for inkjet 3D printing.An internal dual three-dimensional cross-linked network structure resin was prepared by a combination of photocuring and thermal curing with T5%up to 326.69℃,hardness up to 431.84 MPa,dielectric constant of 2.70 at 8 GHz,and shrinkage of 1.64%.The developed dielectric inks can be applied to the 3D printing of printed circuit boards and other electronic devices that require dielectric properties.展开更多
Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound w...Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound which were well known as reaction products of cyanate esters and epoxy resins, compounds with hybrid ring structure of cyanurate/isocyanurate were determined. Gibbs free energies of the compound having hybrid ring structure of cyanurate/isocyanurate with two isocyanurate moiety were found to be lower than that of the compound with cyanurate ring structure through calculations. Calculation data supported the existence of hybrid ring structure of cy-anurate/isocyanurate. It was revealed that isomerization from cyanurate to isocyanurate occurs via hybrid ring structure of cyanurate/isocyanurate in the reaction of aryl cyanurate and epoxy.展开更多
Poly(p-phenylene-2,6-benzobisoxazole)(PBO) fibers possess excellent dielectric, mechanical properties and heat resistance. However, the surface of PBO fibers is smooth and highly chemical inert, resulting in poor inte...Poly(p-phenylene-2,6-benzobisoxazole)(PBO) fibers possess excellent dielectric, mechanical properties and heat resistance. However, the surface of PBO fibers is smooth and highly chemical inert, resulting in poor interfacial compatibility to polymer matrix, which severely limits its wider application in high-performance fiber-reinforced resin matrix composites. In this work, random copolymers(P(S-co-BCB-co-MMA)) containing benzocyclobutene in the side-chain were synthesized by reversible addition-fragmentation chain transfer(RAFT) polymerization, which were then utilized to form dense random copolymer membrane on the surface of PBO fibers by thermally cross-linking at 250 °C(PBO@P fibers). Four kinds of synthesized P(S-co-BCB-co-MMA) with different number-average molar mass(Mn) were well controlled and possessed narrow dispersity.When the Mnwas 32300, the surface roughness of PBO@P fibers was increased from 11 nm(PBO fibers) to 39 nm. In addition, PBO@P fibers presented the optimal interfacial compatibility with bisphenol A cyanate(BADCy) resins. And the single fiber pull-out strength of PBO@P fibers/BADCy micro-composites was 4.5 MPa, increasing by 45.2% in comparison with that of PBO fibers/BADCy micro-composites(3.1 MPa). Meantime, PBO@P fibers still retained excellent tensile strength(about 5.1 GPa). Overall, this work illustrates a simple and efficient surface functionalization method, which would provide a strong theoretical basis and technical support for controlling the surface structure & chemistry of inert substrates.展开更多
基金the Shanghai Aerospace Science and Technology Innovation Fund of China(No.SAST2019-122)。
文摘The thermal and dimensional stability of epoxy resin(EP)in-situ modified by cyanate ester(CE)and polydimethylsiloxane(PDMS)are investigated by means of experiments and numerical simulation.Thermal gravimetric analysis(TGA)and differential scanning calorimeter(DSC)are used to analyze the heat resistance of the modified EP.The dimensional stability is characterized by the volume shrinkage of the series PDMS/CE/EP obtained by the density method.The chemical structure of the PDMS/CE/EP is analyzed by Fourier transform infrared spectroscopy(FTIR).The results of TGA and DSC indicate that the thermal stability of PDMS/CE/EP decreases firstly and then increases with the increase in the amount of CE.The addition of PDMS shows a slight effect on the thermal stability.The 40%CE makes the blending system exhibit the lowest initial decomposition temperature,which reduces by 15.5%and 40.8%compared with pure EP and CE,respectively.The FTIR results suggested that the influence of CE on the thermal stability of the modified EP is mainly ascribed to the generation of oxazolidinone ring with low thermal stability and the increase in the triazine ring with high thermal stability.The volume shrinkage measurement results show that the introduction of CE and PDMS are both beneficial to the improvement of the dimensional stability of the blending systems.The in-situ addition of 80%CE shows the lowest volume shrinkage of6.11%.The thermal stress distribution of PDMS/CE/EP generated during the solidification process is simulated by the finite element analysis.The results suggested that the introduction of 80%CE into EP results in the lowest thermal stress in the blending system,which indicates that the system has the lowest volume shrinkage,which agrees well with the experimental results.
文摘A novel benzoxazine(BOZ)monomer is synthesized by a pot method with solvent-free to blend with cyanate ester(CE).A soluble intermediate is obtained after being cured for 20 h at 80℃.The two model compound and the blends are analyzed with the infrared radiation(IR),nuclear magnetic resonance(NMR)spectroscopy,and differential scanning calorimetry(DSC).The results show that an intermediate of the iminocarbonate and BOZ structures is formed by the ring-open BOZ reacting with the cyanate groups and ring-unopened BOZ.Moreover,rearrangement and ring-opening occur in the postcure of the intermediate to form the alkyl isocyanurate structure with polybenzoxazine.
文摘A new type of the nanometer particles and epoxy/bismaleimide-triazine nanocomposites were prepared using a nanometer silica (nano-SiO2), a 4,5-epoxycyclohexane 1,2-dicarboxylic acid dilycidyl (TDE-85) epoxy resin, a 4,4'-bismaleimidodiphenymethane (BMI) and a bisphenol a dicyanate (BADCy). The properties of nano-SiOJTDE-85/BMI/BADCy composites, such as mechanical and thermal properties, were systemically investigated in detail by mechanical measurement, scanning electron microscope (SEM), dynamic mechanical analysis (DMA) and thermogravimetric analysis (TGA). The experimental results showed that the addition of the appropriate amount of nano-SiO: could improve the impact strength and the flexural strength of the nano- SiO2/TDE-85/BMI/BADCy composites. Simultaneously, the thermal stability of the blends was found to be higher than that of the TDE-85/BMI/BADCy copolymers.
文摘Thermoset based composites are used increasingly in industry for light weight applications, mainly for aircraft, windmills and for automobiles. Fiber reinforced thermoset polymers show a number of advantages over conventional materials, like metals, especially their better performance regarding their strength-to-weight ratio. However, composite recycling is a big issue, as there are almost no established recycling methods. The authors investigate the recyclability of polycyanurate homo- and copolymers with different recycling agents under different conditions. Also the influence of the recycling process on the most important reinforcement fibers, i.e. carbon-, glass-, aramid-, and natural-fiber is investigated. The authors find that: the recycling speed is not only dependent on the temperature, but also is significantly influenced by the particular recycling agents and the polycyanurate formulation. Hence, the stability against the recycling media can be adjusted over a broad range by adjusting the polymer composition. Furthermore, the authors find that the inorganic reinforcement fibers (carbon and glass) are almost unaffected by neither recycling agent at either temperature. Aramid-fibers degrade, depending on the particular recycling agent, from slightly up to extremely strong. This leaves one with the possibility to find a combination of matrix resin and recycling agent, which does not affect the aramid-fiber significantly. In the case of natural fibers, the dependence on the particular recycling media is very strong: some media do not affect the fiber significantly;others reduce the mechanical properties (tensile strength and elongation at break) significantly, and still others even improve both mechanical properties strongly. From the Recyclate, the authors synthesize and subsequently characterize a number of new polyurethane thermosets (foamed and solid samples) with different contents of recyclate, exhibiting Tg in the range of 60°C to 128°C.
基金supported by the National Key Researchand Development Programof China(No.2022YFB4600101)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB 0470303)+2 种基金the National Natural Science Foundation of China(No.21974057)the Western Light Project of Chinese Academy of Sciences(No.xbzg-zdsy-202007)the Oasis Scholar of Shihezi University and the Central Government to Guide Local Technological Development(No.23ZYQA315).
文摘Inkjet 3D printing has potential in the additive manufacturing of electronic circuits and devices.However,inks that can be used for printing layers with T5%>300℃ or hardness>200 MPa have been rarely reported.Cyanate ester(CE)polymers have excellent thermal stability,high strength,and low shrinkage compared to other common dielectric inks for inkjet 3D printing,but cannot be quickly shaped by ultraviolet(UV)irradiation or thermal treatment.Combining CEs with UV-curable monomers may be a possible way to accelerate crosslinking,but there are challenges from the adverse effects of the dilution of both monomers.In this study,dielectric inks with acrylate and cyanate moieties were developed.The low viscosity and surface tension of the CE precursor(Bisphenol E cyanate ester)were combined with photocurable acrylate diluent monomers and cross-linker to realize an ink suitable for inkjet 3D printing.An internal dual three-dimensional cross-linked network structure resin was prepared by a combination of photocuring and thermal curing with T5%up to 326.69℃,hardness up to 431.84 MPa,dielectric constant of 2.70 at 8 GHz,and shrinkage of 1.64%.The developed dielectric inks can be applied to the 3D printing of printed circuit boards and other electronic devices that require dielectric properties.
文摘Reaction products of 2,4,6-tris(4-phenyl-phenoxy)-1,3,5-triazine derived from 4-phenylphenol cyanate ester and phenyl glycidyl ether were analyzed. In addition to an isocyanurate compound and an oxazolidone compound which were well known as reaction products of cyanate esters and epoxy resins, compounds with hybrid ring structure of cyanurate/isocyanurate were determined. Gibbs free energies of the compound having hybrid ring structure of cyanurate/isocyanurate with two isocyanurate moiety were found to be lower than that of the compound with cyanurate ring structure through calculations. Calculation data supported the existence of hybrid ring structure of cy-anurate/isocyanurate. It was revealed that isomerization from cyanurate to isocyanurate occurs via hybrid ring structure of cyanurate/isocyanurate in the reaction of aryl cyanurate and epoxy.
基金support and funding from National Scientific Research ProjectSpace Supporting Fund from China Aerospace Science and Industry Corporation (2019-HT-XG)+1 种基金Fundamental Research Funds for the Central Universities (310201911qd003)China Postdoctoral Science Foundation (2019M653735)。
文摘Poly(p-phenylene-2,6-benzobisoxazole)(PBO) fibers possess excellent dielectric, mechanical properties and heat resistance. However, the surface of PBO fibers is smooth and highly chemical inert, resulting in poor interfacial compatibility to polymer matrix, which severely limits its wider application in high-performance fiber-reinforced resin matrix composites. In this work, random copolymers(P(S-co-BCB-co-MMA)) containing benzocyclobutene in the side-chain were synthesized by reversible addition-fragmentation chain transfer(RAFT) polymerization, which were then utilized to form dense random copolymer membrane on the surface of PBO fibers by thermally cross-linking at 250 °C(PBO@P fibers). Four kinds of synthesized P(S-co-BCB-co-MMA) with different number-average molar mass(Mn) were well controlled and possessed narrow dispersity.When the Mnwas 32300, the surface roughness of PBO@P fibers was increased from 11 nm(PBO fibers) to 39 nm. In addition, PBO@P fibers presented the optimal interfacial compatibility with bisphenol A cyanate(BADCy) resins. And the single fiber pull-out strength of PBO@P fibers/BADCy micro-composites was 4.5 MPa, increasing by 45.2% in comparison with that of PBO fibers/BADCy micro-composites(3.1 MPa). Meantime, PBO@P fibers still retained excellent tensile strength(about 5.1 GPa). Overall, this work illustrates a simple and efficient surface functionalization method, which would provide a strong theoretical basis and technical support for controlling the surface structure & chemistry of inert substrates.