Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre...Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.展开更多
This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,t...This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method展开更多
Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N)...Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.展开更多
NC code or STL file can be generated directly from measuring data in a fastreverse-engineering mode. Compressing the massive data from laser scanner is the key of the newmode. An adaptive compression method based on t...NC code or STL file can be generated directly from measuring data in a fastreverse-engineering mode. Compressing the massive data from laser scanner is the key of the newmode. An adaptive compression method based on triangulated-surfaces model is put forward.Normal-vector angles between triangles are computed to find prime vertices for removal. Ring datastructure is adopted to save massive data effectively. It allows the efficient retrieval of allneighboring vertices and triangles of a given vertices. To avoid long and thin triangles, a newre-triangulation approach based on normalized minimum-vertex-distance is proposed, in which thevertex distance and interior angle of triangle are considered. Results indicate that the compressionmethod has high efficiency and can get reliable precision. The method can be applied in fastreverse engineering to acquire an optimal subset of the original massive data.展开更多
A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communica...A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communication.The system consists of a terminal node,a router,a coordinator,and an upper computer.The terminal node is responsible for storing and sending the collected data after the LZW compression algorithm is compressed;The router is responsible for the relay of data in the wireless network;The coordinator is responsible for sending the received data to the upper computer.In terms of network function realization,the development and configuration of CC2530 chips on terminal nodes,router nodes,and coordinator nodes are completed using the Z-stack protocol stack,and the network is successfully organized.Through the final simulation analysis and test verification,the system realizes the wireless acquisition and storage of remote data,and reduces the network occupancy rate through the data compression,which has a certain practical value and application prospects.展开更多
Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. B...Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. But it cannot handle outliers and adapt to the fluctuations of actual data. An Improved SDT (ISDT) algorithm is proposed in this paper. The effectiveness and applicability of the ISDT algorithm are demonstrated by computations on both synthetic and real process data. By applying an adaptive recording limit as well as outliers-detecting rules, a higher compression ratio is achieved and outliers are identified and eliminated. The fidelity of the algorithm is also improved. It can be used both in online and batch mode, and integrated into existing software packages without change.展开更多
Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sens...Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sensor data compression techniques are highly desired to facilitate efficient data storage and remote retrieval of sensor data. This paper presents a vibration sensor data compression algorithm based on the Differential Pulse Code Modulation (DPCM) method and the consideration of effects of signal distortion due to lossy data compression on structural system identification. The DPCM system concerned consists of two primary components: linear predictor and quantizer. For the DPCM system considered in this study, the Least Square method is used to derive the linear predictor coefficients and Jayant quantizer is used for scalar quantization. A 5-DOF model structure is used as the prototype structure in numerical study. Numerical simulation was carried out to study the performance of the proposed DPCM-based data compression algorithm as well as its effect on the accuracy of structural identification including modal parameters and second order structural parameters such as stiffness and damping coefficients. It is found that the DPCM-based sensor data compression method is capable of reducing the raw sensor data size to a significant extent while having a minor effect on the modal parameters as well as second order structural parameters identified from reconstructed sensor data.展开更多
The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based o...The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based on the historical data collected by the buoys with sensing capacities, a novel data compression algorithm called adaptive time piecewise constant vector quantization (ATPCVQ) is proposed to utilize the principal components. The proposed system is capable of lowering the budget of wireless communication and enhancing the lifetime of sensor nodes subject to the constrain of data precision. Furthermore, the proposed algorithm is verified by using the practical data in Qinhuangdao Port of China.展开更多
Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect c...Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect content of communication.The traditional methods are usually to use proxy technology such as tor anonymous tracking technology to achieve hiding from the communicator.However,because the establishment of proxy communication needs to consume traffic,the communication capacity will be reduced,and in recent years,the tor technology often has vulnerabilities that led to the leakage of secret information.In this paper,the covert channel model of the packet ordering is applied into the distributed system,and a distributed covert channel of the packet ordering enhancement model based on data compression(DCCPOEDC)is proposed.The data compression algorithms are used to reduce the amount of data and transmission time.The distributed system and data compression algorithms can weaken the hidden statistical probability of information.Furthermore,they can enhance the unknowability of the data and weaken the time distribution characteristics of the data packets.This paper selected a compression algorithm suitable for DCCPOEDC and analyzed DCCPOEDC from anonymity,transmission efficiency,and transmission performance.According to the analysis results,it can be seen that DCCPOEDC optimizes the covert channel of the packet ordering,which saves the transmission time and improves the concealment compared with the original covert channel.展开更多
Shannon gave the sampling theorem about the band limited functions in 1948, but the Shannon's theorem cannot adapt to the need of modern high technology. This paper gives a new high speed sampling theorem which ...Shannon gave the sampling theorem about the band limited functions in 1948, but the Shannon's theorem cannot adapt to the need of modern high technology. This paper gives a new high speed sampling theorem which has a fast convergence rate, a high precision, and a simple algorithm. A practical example has been used to verify its efficiency.展开更多
A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This al...A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This algorithm was tested by numerical simulation and data observed. Its results demonstrate that total errors in recovery data are less than 1% of original data in time domain,0.5% in frequency domain, when using these two methods together.Its compression ratio is greater than 3.The data compression softwares based on the algorithm have been used in the GDS-1000 portable broadband digital seismograph.展开更多
System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to opti...System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to optimize the test data volume, decrease the testing time, and conquer the ATE memory limitation for SOC designs. This paper presents a new compression method of testing for intellectual property core-based system-on-chip. The proposed method is based on new split- data variable length (SDV) codes that are designed using the split-options along with identification bits in a string of test data. This paper analyses the reduction of test data volume, testing time, run time, size of memory required in ATE and improvement of compression ratio. Experimental results for ISCAS 85 and ISCAS 89 Benchmark circuits show that SDV codes outperform other compression methods with the best compression ratio for test data compression. The decompression architecture for SDV codes is also presented for decoding the implementations of compressed bits. The proposed scheme shows that SDV codes are accessible to any of the variations in the input test data stream.展开更多
Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This l...Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This limitation significantly hinders the effective deployment of situational awareness technologies for systematic applications.In this work,an effective curvature quantified Douglas-Peucker(CQDP)-based PMU data compression method is proposed for situational awareness of power systems.First,a curvature integrated distance(CID)for measuring the local flection and fluc-tuation of PMU signals is developed.The Doug-las-Peucker(DP)algorithm integrated with a quan-tile-based parameter adaptation scheme is then proposed to extract feature points for profiling the trends within the PMU signals.This allows adaptive adjustment of the al-gorithm parameters,so as to maintain the desired com-pression ratio and reconstruction accuracy as much as possible,irrespective of the power system dynamics.Fi-nally,case studies on the Western Electricity Coordinat-ing Council(WECC)179-bus system and the actual Guangdong power system are performed to verify the effectiveness of the proposed method.The simulation results show that the proposed method achieves stably higher compression ratio and reconstruction accuracy in both steady state and in transients of the power system,and alleviates the compression performance degradation problem faced by existing compression methods.Index Terms—Curvature quantified Douglas-Peucker,data compression,phasor measurement unit,power sys-tem situational awareness.展开更多
Controller area networks (CANs) have been designed for multiplexing communication between electronic control units (ECUs) in vehicles and many high-level industrial control applications. When a CAN bus is overload...Controller area networks (CANs) have been designed for multiplexing communication between electronic control units (ECUs) in vehicles and many high-level industrial control applications. When a CAN bus is overloaded by a large number of ECUs connected to it, both the waiting time and the error probability of the data transmission are increased. Thus, it is desirable to reduce the CAN frame length, since the duration of data transmission is proportional to the frame length. In this paper, we present a CAN message compression method to reduce the CAN frame length. Experimental results indicate that CAN transmission data can be compressed by up to 81.06% with the proposed method. By using an embedded test board, we show that 64-bit engine management system (EMS) CAN data compression can be performed within 0.16 ms; consequently, the proposed algorithm can be successfully used in automobile applications.展开更多
The general concept of data compression consists in removing the redundancy existing in data to find a more compact representation. This paper is concerned with a new method of compression using the second generation ...The general concept of data compression consists in removing the redundancy existing in data to find a more compact representation. This paper is concerned with a new method of compression using the second generation wavelets based on the lifting scheme, which is a simple but powerful wavelet construction method. It has been proved by its successful application to a real-time monitoring system of large hydraulic machines that it is a promising compression method.展开更多
The Dark Matter Particle Explorer(DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic ray detection. The silicon tracker(STK) is a subdetector of the DAMPE payload.It ...The Dark Matter Particle Explorer(DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic ray detection. The silicon tracker(STK) is a subdetector of the DAMPE payload.It has excellent position resolution(readout pitch of 242 μm), and measures the incident direction of particles as well as charge. The STK consists of 12 layers of Silicon Micro-strip Detector(SMD), equivalent to a total silicon area of6.5 m2. The total number of readout channels of the STK is 73728, which leads to a huge amount of raw data to be processed. In this paper, we focus on the on-board data compression algorithm and procedure in the STK, and show the results of initial verification by cosmic-ray measurements.展开更多
High compression ratio,high decoding performance,and progressive data transmission are the most important require-ments of vector data compression algorithms for WebGIS.To meet these requirements,we present a new comp...High compression ratio,high decoding performance,and progressive data transmission are the most important require-ments of vector data compression algorithms for WebGIS.To meet these requirements,we present a new compression approach.This paper begins with the generation of multiscale data by converting float coordinates to integer coordinates.It is proved that the distance between the converted point and the original point on screen is within 2 pixels,and therefore,our approach is suitable for the visualization of vector data on the client side.Integer coordinates are passed to an Integer Wavelet Transformer,and the high-frequency coefficients produced by the transformer are encoded by Canonical Huffman codes.The experimental results on river data and road data demonstrate the effectiveness of the proposed approach:compression ratio can reach 10% for river data and 20% for road data,respectively.We conclude that more attention needs be paid to correlation between curves that contain a few points.展开更多
Modern vessels are designed to collect,store and communicate large quantities of ship performance and navigation information through complex onboard data handling processes.That data should be transferred to shore bas...Modern vessels are designed to collect,store and communicate large quantities of ship performance and navigation information through complex onboard data handling processes.That data should be transferred to shore based data centers for further analysis and storage.However,the associated transfer cost in large-scale data sets is a major challenge for the shipping industry,today.The same cost relates to the amount of data that are transferring through various communication networks(i.e.satellites and wireless networks),i.e.between vessels and shore based data centers.Hence,this study proposes to use an autoencoder system architecture(i.e.a deep learning approach)to compress ship performance and navigation parameters(i.e.reduce the number of parameters)and transfer through the respective communication networks as reduced data sets.The data compression is done under the linear version of an autoencoder that consists of principal component analysis(PCA),where the respective principal components(PCs)represent the structure of the data set.The compressed data set is expanded by the same data structure(i.e.an autoencoder system architecture)at the respective data center requiring further analyses and storage.A data set of ship performance and navigation parameters in a selected vessel is analyzed(i.e.data compression and expansion)through an autoencoder system architecture and the results are presented in this study.Furthermore,the respective input and output values of the autoencoder are also compared as statistical distributions and sample number series to evaluate its performance.展开更多
This paper defines second-order and third-order permutation global functions and presents the corresponding higher-order cellular automaton approach to the hyper-parallel undistorted data compression. The genetic algo...This paper defines second-order and third-order permutation global functions and presents the corresponding higher-order cellular automaton approach to the hyper-parallel undistorted data compression. The genetic algorithm is successfully devoted to finding out all the correct local compression rules for the higher-order cellular automaton. The correctness of the higher-order compression rules, the time complexity, and the systolic hardware implementation issue are discussed. In comparison with the first-order automaton method reported, the proposed higher-order approach has much faster compression speed with almost the same degree of cellular structure complexity for hardware implementation.展开更多
A compression algorithm is proposed in this paper for reducing the size of sensor data. By using a dictionary-based lossless compression algorithm, sensor data can be compressed efficiently and interpreted without dec...A compression algorithm is proposed in this paper for reducing the size of sensor data. By using a dictionary-based lossless compression algorithm, sensor data can be compressed efficiently and interpreted without decompressing. The correlation between redundancy of sensor data and compression ratio is explored. Further, a parallel compression algorithm based on MapReduce [1] is proposed. Meanwhile, data partitioner which plays an important role in performance of MapReduce application is discussed along with performance evaluation criteria proposed in this paper. Experiments demonstrate that random sampler is suitable for highly redundant sensor data and the proposed compression algorithms can compress those highly redundant sensor data efficiently.展开更多
基金Supported by the National Natural Science Foundation of China(61076019,61106018)the Aeronautical Science Foundation of China(20115552031)+3 种基金the China Postdoctoral Science Foundation(20100481134)the Jiangsu Province Key Technology R&D Program(BE2010003)the Nanjing University of Aeronautics and Astronautics Research Funding(NS2010115)the Nanjing University of Aeronatics and Astronautics Initial Funding for Talented Faculty(1004-YAH10027)~~
文摘Test data compression and test resource partitioning (TRP) are essential to reduce the amount of test data in system-on-chip testing. A novel variable-to-variable-length compression codes is designed as advanced fre- quency-directed run-length (AFDR) codes. Different [rom frequency-directed run-length (FDR) codes, AFDR encodes both 0- and 1-runs and uses the same codes to the equal length runs. It also modifies the codes for 00 and 11 to improve the compression performance. Experimental results for ISCAS 89 benchmark circuits show that AFDR codes achieve higher compression ratio than FDR and other compression codes.
文摘This paper presents a new test data compression/decompression method for SoC testing,called hybrid run length codes. The method makes a full analysis of the factors which influence test parameters:compression ratio,test application time, and area overhead. To improve the compression ratio, the new method is based on variable-to-variable run length codes,and a novel algorithm is proposed to reorder the test vectors and fill the unspecified bits in the pre-processing step. With a novel on-chip decoder, low test application time and low area overhead are obtained by hybrid run length codes. Finally, an experimental comparison on ISCAS 89 benchmark circuits validates the proposed method
文摘Vector quantization (VQ) is an important data compression method. The key of the encoding of VQ is to find the closest vector among N vectors for a feature vector. Many classical linear search algorithms take O(N) steps of distance computing between two vectors. The quantum VQ iteration and corresponding quantum VQ encoding algorithm that takes O(√N) steps are presented in this paper. The unitary operation of distance computing can be performed on a number of vectors simultaneously because the quantum state exists in a superposition of states. The quantum VQ iteration comprises three oracles, by contrast many quantum algorithms have only one oracle, such as Shor's factorization algorithm and Grover's algorithm. Entanglement state is generated and used, by contrast the state in Grover's algorithm is not an entanglement state. The quantum VQ iteration is a rotation over subspace, by contrast the Grover iteration is a rotation over global space. The quantum VQ iteration extends the Grover iteration to the more complex search that requires more oracles. The method of the quantum VQ iteration is universal.
基金This project is supported by Provincial Key Project of Science and Technology of Zhejiang(No.2003C21031).
文摘NC code or STL file can be generated directly from measuring data in a fastreverse-engineering mode. Compressing the massive data from laser scanner is the key of the newmode. An adaptive compression method based on triangulated-surfaces model is put forward.Normal-vector angles between triangles are computed to find prime vertices for removal. Ring datastructure is adopted to save massive data effectively. It allows the efficient retrieval of allneighboring vertices and triangles of a given vertices. To avoid long and thin triangles, a newre-triangulation approach based on normalized minimum-vertex-distance is proposed, in which thevertex distance and interior angle of triangle are considered. Results indicate that the compressionmethod has high efficiency and can get reliable precision. The method can be applied in fastreverse engineering to acquire an optimal subset of the original massive data.
文摘A real-time data compression wireless sensor network based on Lempel-Ziv-Welch encoding(LZW)algorithm is designed for the increasing data volume of terminal nodes when using ZigBee for long-distance wireless communication.The system consists of a terminal node,a router,a coordinator,and an upper computer.The terminal node is responsible for storing and sending the collected data after the LZW compression algorithm is compressed;The router is responsible for the relay of data in the wireless network;The coordinator is responsible for sending the received data to the upper computer.In terms of network function realization,the development and configuration of CC2530 chips on terminal nodes,router nodes,and coordinator nodes are completed using the Z-stack protocol stack,and the network is successfully organized.Through the final simulation analysis and test verification,the system realizes the wireless acquisition and storage of remote data,and reduces the network occupancy rate through the data compression,which has a certain practical value and application prospects.
基金The authors would like to acknowledge the support from Project“973”of the State Key Fundamental Research under grant G1998030415.
文摘Process data compression and trending are essential for improving control system performances. Swing Door Trending (SDT) algorithm is well designed to adapt the process trend while retaining the merit of simplicity. But it cannot handle outliers and adapt to the fluctuations of actual data. An Improved SDT (ISDT) algorithm is proposed in this paper. The effectiveness and applicability of the ISDT algorithm are demonstrated by computations on both synthetic and real process data. By applying an adaptive recording limit as well as outliers-detecting rules, a higher compression ratio is achieved and outliers are identified and eliminated. The fidelity of the algorithm is also improved. It can be used both in online and batch mode, and integrated into existing software packages without change.
文摘Due to the large scale and complexity of civil infrastructures, structural health monitoring typically requires a substantial number of sensors, which consequently generate huge volumes of sensor data. Innovative sensor data compression techniques are highly desired to facilitate efficient data storage and remote retrieval of sensor data. This paper presents a vibration sensor data compression algorithm based on the Differential Pulse Code Modulation (DPCM) method and the consideration of effects of signal distortion due to lossy data compression on structural system identification. The DPCM system concerned consists of two primary components: linear predictor and quantizer. For the DPCM system considered in this study, the Least Square method is used to derive the linear predictor coefficients and Jayant quantizer is used for scalar quantization. A 5-DOF model structure is used as the prototype structure in numerical study. Numerical simulation was carried out to study the performance of the proposed DPCM-based data compression algorithm as well as its effect on the accuracy of structural identification including modal parameters and second order structural parameters such as stiffness and damping coefficients. It is found that the DPCM-based sensor data compression method is capable of reducing the raw sensor data size to a significant extent while having a minor effect on the modal parameters as well as second order structural parameters identified from reconstructed sensor data.
基金key project of the National Natural Science Foundation of China,Information Acquirement and Publish System of Shipping Lane in Harbor,the fund of Beijing Science and Technology Commission Network Monitoring and Application Demonstration in Food Security,the Program for New Century Excellent Talents in University,National Natural Science Foundation of ChinaProject,Fundamental Research Funds for the Central Universities
文摘The wireless sensor network (WSN) plays an important role in monitoring the environment near the harbor in order to make the ships nearby out of dangers and to optimize the utilization of limited sea routes. Based on the historical data collected by the buoys with sensing capacities, a novel data compression algorithm called adaptive time piecewise constant vector quantization (ATPCVQ) is proposed to utilize the principal components. The proposed system is capable of lowering the budget of wireless communication and enhancing the lifetime of sensor nodes subject to the constrain of data precision. Furthermore, the proposed algorithm is verified by using the practical data in Qinhuangdao Port of China.
基金This work is sponsored by the National Natural Science Foundation of China Grant No.61100008Natural Science Foundation of Heilongjiang Province of China under Grant No.LC2016024+1 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions Grant No.17KJB520044Six Talent Peaks Project in Jiangsu Province No.XYDXX-108.
文摘Covert channel of the packet ordering is a hot research topic.Encryption technology is not enough to protect the security of both sides of communication.Covert channel needs to hide the transmission data and protect content of communication.The traditional methods are usually to use proxy technology such as tor anonymous tracking technology to achieve hiding from the communicator.However,because the establishment of proxy communication needs to consume traffic,the communication capacity will be reduced,and in recent years,the tor technology often has vulnerabilities that led to the leakage of secret information.In this paper,the covert channel model of the packet ordering is applied into the distributed system,and a distributed covert channel of the packet ordering enhancement model based on data compression(DCCPOEDC)is proposed.The data compression algorithms are used to reduce the amount of data and transmission time.The distributed system and data compression algorithms can weaken the hidden statistical probability of information.Furthermore,they can enhance the unknowability of the data and weaken the time distribution characteristics of the data packets.This paper selected a compression algorithm suitable for DCCPOEDC and analyzed DCCPOEDC from anonymity,transmission efficiency,and transmission performance.According to the analysis results,it can be seen that DCCPOEDC optimizes the covert channel of the packet ordering,which saves the transmission time and improves the concealment compared with the original covert channel.
文摘Shannon gave the sampling theorem about the band limited functions in 1948, but the Shannon's theorem cannot adapt to the need of modern high technology. This paper gives a new high speed sampling theorem which has a fast convergence rate, a high precision, and a simple algorithm. A practical example has been used to verify its efficiency.
文摘A new real-time algorithm of data compression, including the segment-normalized logical compression and socalled 'one taken from two samples',is presented for broadband high dynamic seismic recordings. This algorithm was tested by numerical simulation and data observed. Its results demonstrate that total errors in recovery data are less than 1% of original data in time domain,0.5% in frequency domain, when using these two methods together.Its compression ratio is greater than 3.The data compression softwares based on the algorithm have been used in the GDS-1000 portable broadband digital seismograph.
文摘System-on-a-chips with intellectual property cores need a large volume of data for testing. The large volume of test data requires a large testing time and test data memory. Therefore new techniques are needed to optimize the test data volume, decrease the testing time, and conquer the ATE memory limitation for SOC designs. This paper presents a new compression method of testing for intellectual property core-based system-on-chip. The proposed method is based on new split- data variable length (SDV) codes that are designed using the split-options along with identification bits in a string of test data. This paper analyses the reduction of test data volume, testing time, run time, size of memory required in ATE and improvement of compression ratio. Experimental results for ISCAS 85 and ISCAS 89 Benchmark circuits show that SDV codes outperform other compression methods with the best compression ratio for test data compression. The decompression architecture for SDV codes is also presented for decoding the implementations of compressed bits. The proposed scheme shows that SDV codes are accessible to any of the variations in the input test data stream.
基金supported by the National Natural Sci-ence Foundation of China(No.52077195).
文摘Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This limitation significantly hinders the effective deployment of situational awareness technologies for systematic applications.In this work,an effective curvature quantified Douglas-Peucker(CQDP)-based PMU data compression method is proposed for situational awareness of power systems.First,a curvature integrated distance(CID)for measuring the local flection and fluc-tuation of PMU signals is developed.The Doug-las-Peucker(DP)algorithm integrated with a quan-tile-based parameter adaptation scheme is then proposed to extract feature points for profiling the trends within the PMU signals.This allows adaptive adjustment of the al-gorithm parameters,so as to maintain the desired com-pression ratio and reconstruction accuracy as much as possible,irrespective of the power system dynamics.Fi-nally,case studies on the Western Electricity Coordinat-ing Council(WECC)179-bus system and the actual Guangdong power system are performed to verify the effectiveness of the proposed method.The simulation results show that the proposed method achieves stably higher compression ratio and reconstruction accuracy in both steady state and in transients of the power system,and alleviates the compression performance degradation problem faced by existing compression methods.Index Terms—Curvature quantified Douglas-Peucker,data compression,phasor measurement unit,power sys-tem situational awareness.
基金Project supported by the Information Technology R&D Program of MOTIE/KEIT(No.10044092)Research Funds of Chonbuk National University in 2013
文摘Controller area networks (CANs) have been designed for multiplexing communication between electronic control units (ECUs) in vehicles and many high-level industrial control applications. When a CAN bus is overloaded by a large number of ECUs connected to it, both the waiting time and the error probability of the data transmission are increased. Thus, it is desirable to reduce the CAN frame length, since the duration of data transmission is proportional to the frame length. In this paper, we present a CAN message compression method to reduce the CAN frame length. Experimental results indicate that CAN transmission data can be compressed by up to 81.06% with the proposed method. By using an embedded test board, we show that 64-bit engine management system (EMS) CAN data compression can be performed within 0.16 ms; consequently, the proposed algorithm can be successfully used in automobile applications.
文摘The general concept of data compression consists in removing the redundancy existing in data to find a more compact representation. This paper is concerned with a new method of compression using the second generation wavelets based on the lifting scheme, which is a simple but powerful wavelet construction method. It has been proved by its successful application to a real-time monitoring system of large hydraulic machines that it is a promising compression method.
基金Supported by Strategic Priority Research Program on Space Science of Chinese Academy of Sciences(XDA040402)National Natural Science Foundation of China(1111403027)
文摘The Dark Matter Particle Explorer(DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic ray detection. The silicon tracker(STK) is a subdetector of the DAMPE payload.It has excellent position resolution(readout pitch of 242 μm), and measures the incident direction of particles as well as charge. The STK consists of 12 layers of Silicon Micro-strip Detector(SMD), equivalent to a total silicon area of6.5 m2. The total number of readout channels of the STK is 73728, which leads to a huge amount of raw data to be processed. In this paper, we focus on the on-board data compression algorithm and procedure in the STK, and show the results of initial verification by cosmic-ray measurements.
基金Supported by the National High-tech R&D Program of China(NO.2007AA120501)
文摘High compression ratio,high decoding performance,and progressive data transmission are the most important require-ments of vector data compression algorithms for WebGIS.To meet these requirements,we present a new compression approach.This paper begins with the generation of multiscale data by converting float coordinates to integer coordinates.It is proved that the distance between the converted point and the original point on screen is within 2 pixels,and therefore,our approach is suitable for the visualization of vector data on the client side.Integer coordinates are passed to an Integer Wavelet Transformer,and the high-frequency coefficients produced by the transformer are encoded by Canonical Huffman codes.The experimental results on river data and road data demonstrate the effectiveness of the proposed approach:compression ratio can reach 10% for river data and 20% for road data,respectively.We conclude that more attention needs be paid to correlation between curves that contain a few points.
基金This work has been conducted under the project of“SFI Smart Maritime(237917/O30)-Norwegian Centre for im-proved energy-efficiency and reduced emissions from the mar-itime sector”that is partly funded by the Research Council of NorwayAn initial version of this paper is presented at the 35th International Conference on Ocean,Offshore and Arc-tic Engineering(OMAE 2016),Busan,Korea,June,2016,(OMAE2016-54093).
文摘Modern vessels are designed to collect,store and communicate large quantities of ship performance and navigation information through complex onboard data handling processes.That data should be transferred to shore based data centers for further analysis and storage.However,the associated transfer cost in large-scale data sets is a major challenge for the shipping industry,today.The same cost relates to the amount of data that are transferring through various communication networks(i.e.satellites and wireless networks),i.e.between vessels and shore based data centers.Hence,this study proposes to use an autoencoder system architecture(i.e.a deep learning approach)to compress ship performance and navigation parameters(i.e.reduce the number of parameters)and transfer through the respective communication networks as reduced data sets.The data compression is done under the linear version of an autoencoder that consists of principal component analysis(PCA),where the respective principal components(PCs)represent the structure of the data set.The compressed data set is expanded by the same data structure(i.e.an autoencoder system architecture)at the respective data center requiring further analyses and storage.A data set of ship performance and navigation parameters in a selected vessel is analyzed(i.e.data compression and expansion)through an autoencoder system architecture and the results are presented in this study.Furthermore,the respective input and output values of the autoencoder are also compared as statistical distributions and sample number series to evaluate its performance.
基金the National Natural Science Foundation of China under Grant !.69773037Foundational R&D Plan of China under Grant!G1999D3270
文摘This paper defines second-order and third-order permutation global functions and presents the corresponding higher-order cellular automaton approach to the hyper-parallel undistorted data compression. The genetic algorithm is successfully devoted to finding out all the correct local compression rules for the higher-order cellular automaton. The correctness of the higher-order compression rules, the time complexity, and the systolic hardware implementation issue are discussed. In comparison with the first-order automaton method reported, the proposed higher-order approach has much faster compression speed with almost the same degree of cellular structure complexity for hardware implementation.
基金supported by the National Natural Science Foundation of China(60933011,61170258)
文摘A compression algorithm is proposed in this paper for reducing the size of sensor data. By using a dictionary-based lossless compression algorithm, sensor data can be compressed efficiently and interpreted without decompressing. The correlation between redundancy of sensor data and compression ratio is explored. Further, a parallel compression algorithm based on MapReduce [1] is proposed. Meanwhile, data partitioner which plays an important role in performance of MapReduce application is discussed along with performance evaluation criteria proposed in this paper. Experiments demonstrate that random sampler is suitable for highly redundant sensor data and the proposed compression algorithms can compress those highly redundant sensor data efficiently.