期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
In-situ observations of damage-fracture evolution in surrounding rock upon unloading in 2400-m-deep tunnels 被引量:11
1
作者 Haosen Guo Qiancheng Sun +2 位作者 Guangliang Feng Shaojun Li Yaxun Xiao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第4期437-446,共10页
The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractu... The damage-fracture evolution of deep rock mass has obvious particularity,which is revealed in 2400-mdeep tunnels by field tests.The evolution of the excavation damaged zone depth is consistent with that of the fractured zone depth.The ratio of the excavation damaged zone depth to the excavation fractured zone depth is greater than 2.0 in a rock mass with both high strength and good integrity,but less than1.5 in a rock mass with lower strength or poor integrity.Zonal disintegration in a rock mass with high strength and fair integrity is more likely to occur when it contains more than two groups of primary fractures in damaged zones.Fractures develop outward in zonal disintegration but are totally different from the single-zone fracture,in which the fractures develop inward,and it is the starting position of the fractured zone when the excavation surface of the middle pilot is 7–9 m close to the pre-set borehole and it stops after the excavation surface of the baseplate is 11–14 m away.The most intense evolution occurs around 2–4 m from the pre-set borehole in the sidewall expansion stage.The research results provide a reference for the monitoring scheme and support design of CJPL-Ⅲin its future construction. 展开更多
关键词 deep tunnel Fractured zone Damaged zone In-situ observation Unloading of rock mass
下载PDF
Zonal disintegration phenomenon in enclosing rock mass surrounding deep tunnels——Elasto-plastic analysis of stress field of enclosing rock mass 被引量:10
2
作者 WU Hao FANG Qin ZHANG Ya-dong GONG Zi-ming 《Mining Science and Technology》 EI CAS 2009年第1期84-90,共7页
The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constit... The zonal disintegration phenomenon (ZDP) is a typical phenomenon in deep block rock masses. In order to investigate the mechanism of ZDP, an improved non-linear Hock-Brown strength criterion and a bi-linear constitutive model of rock mass were used to analyze the elasto-plastic stress field of the enclosing rock mass around a deep round tunnel. The radius of the plastic region and stress of the enclosing rock mass were obtained by introducing dimensionless parameters of radial distance. The results show that tunneling in deep rock mass causes a maximum stress zone to appear in the vicinity of the boundary of the elastic and the plastic zone in the surrounding rock mass. Under the compression of a large tangential force and a small radial force, the rock mass in the maximum stress zone was in an approximate uniaxial loading state, which could lead to a split failure in the rock mass. 展开更多
关键词 enclosing rock mass around deep tunnels zonal disintegration equivalent material Hoek-Brown strength criterion
下载PDF
Attenuation characteristics of impact-induced seismic wave in deep tunnels:An in situ investigation based on pendulum impact test 被引量:1
3
作者 Jian Wu Quansheng Liu +5 位作者 Xiaoping Zhang Chuiyi Zhou Xin Yin Weiqiang Xie Xu Liang Jiaqi Huang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第2期494-504,共11页
The radiated seismic energy is an important index for the intensity assessment of microseismic(MS)events and the early warning of dynamic disasters.However,the energy of MS signals is significantly attenuated due to t... The radiated seismic energy is an important index for the intensity assessment of microseismic(MS)events and the early warning of dynamic disasters.However,the energy of MS signals is significantly attenuated due to the heterogeneity and viscous damping of rock media.Therefore,the study on attenuation characteristics of MS signals in underground engineering has practical significance for the accurately estimation of radiated seismic energy.Based on a pendulum impact test facility and MS monitoring system,an in situ investigation was carried out to explore attenuation characteristics at a deep tunnel.The results show that the seismic energy and peak particle velocity(PPV)attenuation are exponentially related to the propagation distance.The attenuation coefficient of energy is larger than that of PPV.With the increase in the input impact-energy,the seismic energy attenuation coefficient decreases as a power function.An empirical relationship between energy attenuation coefficient and wave impedance of rock mass was established in this scenario.Moreover,the time-frequency characteristics and energy distribution laws of impact-induced signals were investigated by the continuous wavelet transform(CWT)and wavelet packet analyses,respectively.The dominant frequency of signals decreases gradually as the propagation distance increases.Based on the energy attenuation characteristics,a new method was proposed to calculate the released source energy of MS events in the field.This study can provide an insight into energy attenuation characteristics of seismic waves and references for attenuation correction in seismic energy calculation. 展开更多
关键词 Attenuation characteristics Microseismic monitoring Pendulum impact facility Seismic energy deep tunnels
下载PDF
Reducing risk in long deep tunnels by using TBM and drill-and-blast methods in the same project-the hybrid solution 被引量:2
4
作者 Nick Barton 《Journal of Rock Mechanics and Geotechnical Engineering》 2012年第2期115-126,共12页
There are many examples of TBM tunnels through mountains, or in mountainous terrain, which have suffered the ultimate fate of abandonment, due to insufficient pre-investigation. Depth-of-drilling limitations are inevi... There are many examples of TBM tunnels through mountains, or in mountainous terrain, which have suffered the ultimate fate of abandonment, due to insufficient pre-investigation. Depth-of-drilling limitations are inevitable when depths approach or even exceed l or 2 km. Uncertainties about the geology, hydro-geology, rock stresses and rock strengths go hand-in-hand with deep or ultra-deep tunnels. Unfortunately, unexpected conditions tend to have a much bigger impact on TBM projects than on drill-and-blast projects. There are two obvious reasons. Firstly the circular excavation maximizes the tangential stress, making the relation to rock strength a higher source of potential risk. Secondly, the TBM may have been progressing fast enough to make probe-drilling seem to be unnecessary. If the stress-to-strength ratio becomes too high, or if faulted rock with high water pressure is unexpectedly encountered, the "unexpected events" may have a remarkable delaying effect on TBM. A simple equation explains this phenomenon, via the adverse local Q-value that links directly to utilization. One may witness dramatic reductions in utilization, meaning ultra-steep deceleration-of-the-TBM gradients in a log-log plot of advance rate versus time. Some delays can be avoided or reduced with new TBM designs, where belief in the need for probe-drilling and sometimes also pre-injection, have been fully appreciated. Drill-and-blast tunneling, inevitably involving numerous "probe-holes" prior to each advance, should be used instead, if investigations have been too limited. TBM should be used where there is lower cover and where more is known about the rock and structural conditions. The advantages of the superior speed of TBM may then be fully realized. Choosing TBM because a tunnel is very long increases risk due to the law of deceleration with increased length, especially if there is limited pre-investigation because of tunnel depth. 展开更多
关键词 tunnel boring machine (TBM) rock strength deep tunnels tangential stress pre-injection Q-values UTILIZATION risk
下载PDF
Effect of layered joints on rockburst in deep tunnels 被引量:5
5
作者 Mingming He Jinrui Zhao +1 位作者 Bianyuan Deng Zhiqiang Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第2期70-90,共21页
The existence of joints in the surrounding rock mass has a considerable efect on tunnel rockbursts.Herein,we studied the efect of layered joints with diferent inclination angles and spacings on rockburst in deep tunne... The existence of joints in the surrounding rock mass has a considerable efect on tunnel rockbursts.Herein,we studied the efect of layered joints with diferent inclination angles and spacings on rockburst in deep tunnels and investigated the failure area,deformation process of the surrounding rock mass,stress change inside the surrounding rock mass,velocity of the failed rock,and the kinetic energy of the failure.The failure type of the surrounding rock mass can thus be determined.The results showed that the intensity of rockburst increases as rock quality designation(RQD)decreases,while the deformation rate of the surrounding rock mass frst increases and then decreases.The deformation rate exhibits a turning point between RQD=50 and 70,below which the deformation rate of the surrounding rock mass gradually decreases,ultimately ceasing to be a rockburst.Rockburst always occurs perpendicular to the direction of the joint.Whenσ_(x)=σ_(y),as the joint inclination angle changes from 45°to 90°,the intensity of a rockburst frst decreases(from 45°to 60°),and then increases(from 60°to 90°).When combined with the evolution law of stress and strain energy,the rockburst process can be divided into four stages. 展开更多
关键词 ROCKBURST Jointed rock mass Numerical simulation deep tunnel
下载PDF
Zonal disintegration phenomenon in rock mass surrounding deep tunnels 被引量:9
6
作者 WU Hao FANG Qin GUO Zhi-kun 《Journal of China University of Mining and Technology》 EI 2008年第2期187-193,共7页
Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope duri... Zonal disintegration is a typical static phenomenon of deep rock masses. It has been defined as alternating regions of fractured and relatively intact rock mass that appear around or in front of the working stope during excavation of a deep tunnel. Zonal disintegration phenomenon was successfully demonstrated in the laboratory with 3D tests on analogous gypsum models, two circular cracked zones were observed in the test. The linear Mohr-Coulomb yield criterion was used with a constitutive model that showed linear softening and ideal residual plastic to analyze the elasto-plastic field of the enclosing rock mass around a deep tunnel. The results show that tunneling causes a maximum stress zone to appear between an elastic and plastic zone in the surrounding rock. The zonal disintegration phenomenon is analyzed by considering the stress-strain state of the rock mass in the vicinity of the maximum stress zone. Creep instability failure of the rock due to the development of the plastic zone, and transfer of the maximum stress zone into the rock mass, are the cause of zonal disintegration. An analytical criterion for the critical depth at which zonal disintegration can occur is derived. This depth depends mainly on the character and stress concentration coefficient of the rock mass. 展开更多
关键词 block-hierarchical structure zonal disintegration phenomenon enclosing rock mass around deep tunnel equivalent material stress concentration coefficient
下载PDF
Analysis of mechanical behavior of soft rocks and stability control in deep tunnels 被引量:5
7
作者 Hui Zhou Chuanqing Zhang +2 位作者 Zhen Li Dawei Hu Jing Hou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2014年第3期219-226,共8页
Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed wit... Due to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and waterlweakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a large-scale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of compressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deed tunnel construction in similar geological condition~ 展开更多
关键词 deep tunnel Soft rock Water-weakening effect Large deformation Stability
下载PDF
Amplification effect of near-field ground motion around deep tunnels based on finite fracturing seismic source model
8
作者 Qiankuan Wang Shili Qiu +4 位作者 Yao Cheng Shaojun Li Ping Li Yong Huang Shirui Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1761-1781,共21页
Dynamic failure of rock masses around deep tunnels,such as fault-slip rockburst and seismic-induced collapse,can pose a significant threat to tunnel construction safety.One of the most significant factors that control... Dynamic failure of rock masses around deep tunnels,such as fault-slip rockburst and seismic-induced collapse,can pose a significant threat to tunnel construction safety.One of the most significant factors that control the accuracy of its risk assessment is the estimation of the ground motion around a tunnel caused by seismicity events.In general,the characteristic parameters of ground motion are estimated in terms of empirical scaling laws.However,these scaling laws make it difficult to accurately estimate the near-field ground motion parameters because the roles of control factors,such as tunnel geometry,damage zone distribution,and seismic source parameters,are not considered.For this,the finite fracturing seismic source model(FFSSM)proposed in this study is used to simulate the near-field ground motion characteristics around deep tunnels.Then,the amplification effects of ground motion caused by the interaction between seismic waves and deep tunnels and corresponding control factors are studied.The control effects of four factors on the near-field ground motion amplification effect are analyzed,including the main seismic source wavelength,tunnel span,tunnel shape,and range of damage zones.An empirical formula for the maximum amplification factor(a_(m))of the near-field ground motion around deep tunnels is proposed,which consists of four control factors,i.e.the wavelength control factor(F_(λ)),tunnel span factor(F_(D)),tunnel shape factor(F_(s))and excavation damage factor(F_(d)).This empirical formula provides an easy approach for accurately estimating the ground motion parameters in seismicityprone regimes and the rock support design of deep tunnels under dynamic loads. 展开更多
关键词 Near-field ground motion Amplification effect Seismic waves deep tunnel ROCKBURST
下载PDF
Mechanism of zonal disintegration phenomenon in enclosing rock mass around deep tunnels
9
作者 吴昊 郭志昆 +2 位作者 方秦 张亚栋 柳锦春 《Journal of Central South University》 SCIE EI CAS 2009年第2期303-311,共9页
In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent materia... In order to study the mechanism of the zonal disintegration phenomenon(ZDP),both experimental and theoretical investigations were carried out.Firstly,based on the similarity law,gypsum was chosen as equivalent material to simulate the deep rock mass,the excavation of deep tunnel was modeled by drilling a hole in the gypsum models,two circular cracked zones were measured in the model,and ZDP in the enclosing rock mass around deep tunnel was simulated in 3D gypsum model tests.Secondly, based on the elasto-plastic analysis of the stressed-strained state of the surrounding rock mass with the improved Hoek-Brown strength criterion and the bilinear constitutive model,the maximum stress zone occurred in vicinity of the elastic-plastic interface due to the excavation of the deep tunnel,rock material in maximum stress zone is in the approximate uniaxial loading state owing to the larger tangential force and smaller radial force,the mechanism of ZDP was explained,which lay in the creep instability failure of rock mass due to the development of plastic zone and transfer of the maximum stress zone within the rock mass.Thirdly,the analytical critical depth for the occurrence of ZDP was obtained,which depended on the mechanical indices and stress concentration coefficient of rock mass. 展开更多
关键词 zonal disintegration phenomenon (ZDP) block-hierarchical structure deep tunnel creep instability stress concentration coefficient
下载PDF
Support design method for deep soft-rock tunnels in non-hydrostatic high in-situ stress field
10
作者 ZHENG Ke-yue SHI Cheng-hua +3 位作者 ZHAO Qian-jin LEI Ming-feng JIA Chao-jun PENG Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2431-2445,共15页
Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunne... Due to the long-term plate tectonic movements in southwestern China,the in-situ stress field in deep formations is complex.When passing through deep soft-rock mass under non-hydrostatic high in-situ stress field,tunnels will suffer serious asymmetric deformation.There is no available support design method for tunnels under such a situation in existing studies to clarify the support time and support stiffness.This study first analyzed the mechanical behavior of tunnels in non-hydrostatic in-situ stress field and derived the theoretical equations of the ground squeezing curve(GSC)and ground loosening curve(GLC).Then,based on the convergence confinement theory,the support design method of deep soft-rock tunnels under non-hydrostatic high in-situ stress field was established considering both squeezing and loosening pressures.In addition,this method can provide the clear support time and support stiffness of the second layer of initial support.The proposed design method was applied to the Wanhe tunnel of the China-Laos railway in China.Monitoring data indicated that the optimal support scheme had a good effect on controlling the tunnel deformation in non-hydrostatic high in-situ stress field.Field applications showed that the secondary lining could be constructed properly. 展开更多
关键词 non-hydrostatic stress field high in-situ stress deep soft-rock tunnel squeezing pressure loosening pressure support design method
下载PDF
The role of polyurethane foam compressible layer in the mechanical behaviour of multi-layer yielding supports for deep soft rock tunnels
11
作者 Haibo Wang Fuming Wang +3 位作者 Chengchao Guo Lei Qin Jun Liu Tongming Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4554-4569,共16页
The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not... The polyurethane foam(PU)compressible layer is a viable solution to the problem of damage to the secondary lining in squeezing tunnels.Nevertheless,the mechanical behaviour of the multi-layer yielding supports has not been thoroughly investigated.To fill this gap,large-scale model tests were conducted in this study.The synergistic load-bearing mechanics were analyzed using the convergenceconfinement method.Two types of multi-layer yielding supports with different thicknesses(2.5 cm,3.75 cm and 5 cm)of PU compressible layers were investigated respectively.Digital image correlation(DIC)analysis and acoustic emission(AE)techniques were used for detecting the deformation fields and damage evolution of the multi-layer yielding supports in real-time.Results indicated that the loaddisplacement relationship of the multi-layer yielding supports could be divided into the crack initiation,crack propagation,strain-hardening,and failure stages.Compared with those of the stiff support,the toughness,deformability and ultimate load of the yielding supports were increased by an average of 225%,61%and 32%,respectively.Additionally,the PU compressible layer is positioned between two primary linings to allow the yielding support to have greater mechanical properties.The analysis of the synergistic bearing effect suggested that the thickness of PU compressible layer and its location significantly affect the mechanical properties of the yielding supports.The use of yielding supports with a compressible layer positioned between the primary and secondary linings is recommended to mitigate the effects of high geo-stress in squeezing tunnels. 展开更多
关键词 Multi-layer yielding supports Polyurethane foam compressible layer Synergistic mechanism Large-scale model test deep soft rock tunnels
下载PDF
3D DEM simulation of hard rock fracture in deep tunnel excavation induced by changes in principal stress magnitude and orientation 被引量:1
12
作者 Weiqi Wang Xia-Ting Feng +2 位作者 Qihu Wang Rui Kong Chengxiang Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期3870-3884,共15页
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ... To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress. 展开更多
关键词 deep hard rock tunnel Three-dimensional(3D)discrete element model(DEM) Magnitude and orientation of principal stress Transient unloading Fracture mechanism
下载PDF
Inverting the rock mass P-wave velocity field ahead of deep buried tunnel face while borehole drilling
13
作者 Liu Liu Shaojun Li +5 位作者 Minzong Zheng Dong Wang Minghao Chen Junbo Zhou Tingzhou Yan Zhenming Shi 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期681-697,共17页
Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detect... Imaging the wave velocity field surrounding a borehole while drilling is a promising and urgently needed approach for extending the exploration range of the borehole point.This paper develops a drilling process detection(DPD)system consisting of a multifunctional sensor and a pilot geophone installed at the top of the drilling rod,geophones at the tunnel face,a laser rangefinder,and an onsite computer.A weighted adjoint-state first arrival travel time tomography method is used to invert the P-wave velocity field of rock mass while borehole drilling.A field experiment in the ongoing construction of a deep buried tunnel in southwestern China demonstrated the DPD system and the tomography method.Time-frequency analysis of typical borehole drilling detection data shows that the impact drilling source is a pulse-like seismic exploration wavelet.A velocity field of the rock mass in a triangular area defined by the borehole trajectory and geophone receiving line can be obtained.Both the borehole core and optical image validate the inverted P-wave velocity field.A numerical simulation of a checkerboard benchmark model is used to test the tomography method.The rapid convergence of the misfits and consistent agreement between the inverted and observed travel times validate the P-wave velocity imaging. 展开更多
关键词 deep buried tunnel Wave velocity field Borehole drilling Tomography Rock mass
下载PDF
Excavation-induced microseismicity and rockburst occurrence:Similarities and differences between deep parallel tunnels with alternating soft-hard strata 被引量:10
14
作者 FENG Guang-liang CHEN Bing-rui +3 位作者 JIANG Quan XIAO Ya-xun NIU Wen-jing LI Peng-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期582-594,共13页
Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and anal... Excavation-induced microseismicity and rockburst occurrence in deep underground projects provide invaluable information that can be used to warn rockburst occurrence,facilitate rockburst mitigation procedures,and analyze the mechanisms responsible for their occurrence.Based on the deep parallel tunnels with the maximum depth of 1890 m created as part of the Neelum–Jhelum hydropower project in Pakistan,similarities and differences on excavation-induced microseismicity and rockburst occurrence between parallel tunnels with soft and hard alternant strata are studied.Results show that a large number of microseismic(MS)events occurred in each of the parallel tunnels during excavation.Rockbursts occurred most frequently in certain local sections of the two tunnels.Significant differences are found in the excavation-induced microseismicity(spatial distribution and number of MS events,distribution of MS energy,and pattern of microseismicity variation)and rockbursts characteristics(the number and the spatial distribution)between the parallel tunnels.Attempting to predict the microseismicity and rockburst intensities likely to be encountered in subsequent tunnel based on the activity encountered when the parallel tunnel was previously excavated will not be an easy or accurate procedure in deep tunnel projects involving complex lithological conditions. 展开更多
关键词 MICROSEISMICITY ROCKBURST soft and hard alternant strata deep parallel tunnels Neelum–Jhelum hydropower project
下载PDF
Support pressure assessment for deep buried railway tunnels using BQ-index 被引量:6
15
作者 WANG Ming-nian WANG Zhi-long +3 位作者 TONG Jian-jun ZHANG Xiao DONG Yu-cang LIU Da-gang 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第1期247-263,共17页
Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different roc... Estimation of support pressure is extremely important to the support system design and the construction safety of tunnels.At present,there are many methods for the estimation of support pressure based on different rock mass classification systems,such as Q system,GSI system and RMR system.However,various rock mass classification systems are based on different tunnel geologic conditions in various regions.Therefore,each rock mass classification system has a certain regionality.In China,the BQ-Inex(BQ system)has been widely used in the field of rock engineering ever since its development.Unfortunately,there is still no estimation method of support pressure with BQ-index as parameters.Based on the field test data from 54 tunnels in China,a new empirical method considering BQ-Inex,tunnel span and rock weight is proposed to estimate the support pressure using multiple nonlinear regression analysis methods.And then the significance and necessity of support pressure estimation method for the safety of tunnel construction in China is explained through the comparison and analysis with the existing internationally widely used support pressure estimation methods of RMR system,Q system and GSI system.Finally,the empirical method of estimating the support pressure based on BQ-index was applied to designing the support system in the China’s high-speed railway tunnel—Zhengwan high-speed railway and the rationality of this method has been verified through the data of field test. 展开更多
关键词 rock mass classification support pressure deep buried tunnel field test multiple nonlinear regression analysis BQ-Index
下载PDF
Effect of frequency and flexibility ratio on the seismic response of deep tunnels 被引量:1
16
作者 Eimar Sandoval Antonio Bobet 《Underground Space》 SCIE EI 2017年第2期125-133,共9页
Two-dimensional dynamic numerical analyses have been conducted,using FLAC 7.0,to evaluate the seismic response of underground structures located far from the seismic source,placed in either linear-elastic or nonlinear... Two-dimensional dynamic numerical analyses have been conducted,using FLAC 7.0,to evaluate the seismic response of underground structures located far from the seismic source,placed in either linear-elastic or nonlinear elastoplastic ground.The interaction between the ground and deep circular tunnels with a tied interface is considered.For the simulations,it is assumed that the liner remains in its elastic regime,and plane strain conditions apply to any cross section perpendicular to the tunnel axis.An elastoplastic constitutive model is implemented in FLAC to simulate the nonlinear ground.The effect of input frequency and relative stiffness between the liner and the ground,on the seismic response of tunnels,is evaluated.The response is studied in terms of distortions normalized with respect to those of the free field,and load demand(axial forces and bending moments)in the liner.In all cases,i.e.for linear-elastic and nonlinear ground models,the results show negligible effect of the input frequency on the distortions of the cross section,for input frequencies smaller than 5 Hz;that is for ratios between the wave length and the tunnel opening(k=D)larger than ten for linear-elastic and nine for nonlinear ground.Larger normalized distortions are obtained for the nonlinear than for the linear-elastic ground,for the same relative stiffness,with differences increasing as the tunnel becomes more flexible,or when the amplitude of the dynamic input shear stress increases.It has been found that normalized distortions for the nonlinear ground do not follow a unique relationship,as it happens for the linear-elastic ground,but increase as the amplitude of the dynamic input increases.The loading in the liner decreases as the structure becomes more flexible with respect to the ground,and is smaller for a tunnel placed in a stiffer nonlinear ground than in a softer nonlinear ground,for the same flexibility ratio. 展开更多
关键词 deep circular tunnel Dynamic numerical analysis Flexibility ratio DISTORTION Seismic response
原文传递
Viscoelastic Burger’s model for tunnels supported with tangentially yielding liner 被引量:1
17
作者 Xiongyu Hu Marte Gutierrez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期826-837,共12页
This study proposed an analytical model for the tunnel supported with a tangentially yielding liner in viscoelastic ground.The efficiency of the developed analytical model was verified by comparing the calculated resu... This study proposed an analytical model for the tunnel supported with a tangentially yielding liner in viscoelastic ground.The efficiency of the developed analytical model was verified by comparing the calculated results with associated numerical simulation results.Using the analytical model,a comprehensive parameter sensitivity analysis was performed to examine the effects of the rate of tunnel face advancement,concrete liner thickness,installation time of liner,and strength and thickness of yielding elements on the tunnel responses.The results highlight the significant benefit of the tangentially yielding liner to relieve overstress in the tunnel liner and improve the stability of the tunnel.The yield efficiency of the tangentially yielding liner depends highly on the yielding strength and deformable capacity of the yielding elements and less on the installation time. 展开更多
关键词 Viscoelastic Burger’s rock deep tunnel Tangentially yielding liner Closed-form solution
下载PDF
Research on in situ stress inversion of deep-buried tunnel based on pressure/tension axis mechanism and geological structure
18
作者 Guanfu Chen Xiaoli Liu Danqing Song 《Deep Underground Science and Engineering》 2023年第1期61-73,共13页
The investigation of the in situ stress distribution has always been a key condition for engineering design of deep tunnels and analysis of surrounding rock stability.In this paper,a comprehensive judgment method coup... The investigation of the in situ stress distribution has always been a key condition for engineering design of deep tunnels and analysis of surrounding rock stability.In this paper,a comprehensive judgment method coupled with pressure/tension(P/T)axis mechanism and geological structure is proposed to invert the in situ stress in the Duoxiongla tunnel in Tibet.In the process of TBM tunnel excavation,3887 groups of microseismic events were collected by means of microseismic monitoring technology.By studying the temporal and spatial distribution of 3887 groups of microseismic events,42 groups of microseismic data were selected for in situ stress inversion.Then the focal mechanisms of 42 groups of microseisms were inverted.Combined with the analysis of the previous geological survey,the inversion results of the in situ stress were analyzed.According to the focal mechanism of the tunnel area,the linear in situ stress inversion method was used to invert the in situ stress in the source area.Finally,according to the PTGS(pressure/tension axis mechanism and geological structure)comprehensive judgment method proposed in this paper,the in situ stress of the tunnel microseismic region was determined.The results show that there are mainly three groups of fissures and joint surfaces in the tunnel area,and the in situ stress is dominated by the horizontrun tectonic stress;the main driving force of the rupture surface in the excavation process of Duoxiongla tunnel is the horizontal tectonic stress;the distribution of the maximum and minimum principal stress obtained by the inversion is consistent with the distribution of the P/T axis;combined with the linear in situ stress inversion method and the comprehensive judgment of PTGS,the azimuth and dip angles of the three principal stresses are finally determined as N90.71°E,4.06°,N5.35°W,3.06°,and N8.10W,85.32°,respectively.The study verifies the feasibility of microseismic inversion of in situ stress. 展开更多
关键词 deep tunnel focal mechanism geological structure microseismic monitoring stress inversion
下载PDF
Rockburst criterion and evaluation method for potential rockburst pit depth considering excavation damage effect 被引量:1
19
作者 Jinhao Dai Fengqiang Gong Lei Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1649-1666,共18页
Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Ta... Excavation-induced disturbances in deep tunnels will lead to deterioration of rock properties and formation of excavation damaged zone(EDZ).This excavation damage effect may affect the potential rockburst pit depth.Taking two diversion tunnels of Jinping II hydropower station for example,the relationship between rockburst pit depth and excavation damage effect is first surveyed.The results indicate that the rockburst pit depth in tunnels with severe damage to rock masses is relatively large.Subsequently,the excavation-induced damage effect is characterized by disturbance factor D based on the Hoek-Brown criterion and wave velocity method.It is found that the EDZ could be further divided into a high-damage zone(HDZ)with D=1 and weak-damage zone(WDZ),and D decays from one to zero linearly.For this,a quantitative evaluation method for potential rockburst pit depth is established by presenting a three-element rockburst criterion considering rock strength,geostress and disturbance factor.The evaluation results obtained by this method match well with actual observations.In addition,the weakening of rock mass strength promotes the formation and expansion of potential rockburst pits.The potential rockburst pit depth is positively correlated with HDZ and WDZ depths,and the HDZ depth has a significant contribution to the potential rockburst pit depth. 展开更多
关键词 deep tunnel ROCKBURST Rockburst pit Excavation damage effect Hoek-Brown criterion
下载PDF
Numerical simulation of the effect of coupling support of bolt-mesh-anchor in deep tunnel 被引量:18
20
作者 SUN Xiao-ming CAI Feng +1 位作者 YANG Jun CAO Wu-fu 《Mining Science and Technology》 EI CAS 2009年第3期352-357,共6页
The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of... The mechanical effects of bolt-mesh-anchor coupling support in deep tunnels were studied by using a numerical method, based on deep tunnel coupling supporting techniques and non-linear deformation mechanical theory of rock mass at great depths.It is shown that the potential of a rigid bolt support can be efficiently activated through the coupling effect between a bolt-net support and the surrounding rock.It is found that the accumulated plastic energy in the surrounding rock can be sufficiently transformed by the coupling effect of a bolt-mesh-tray support.The strength of the surrounding rock mass can be mobilized to control the deforma-tion of the surrounding rock by a pre-stress and time-space effect of the anchor support.The high stress transformation effect can be realized by the mechanical coupling effect of the bolt-mesh-anchor support, whereby the force of the support and deformation of the surrounding rock tends to become uniform, leading to a sustained stability of the tunnel. 展开更多
关键词 mining engineering deep tunnel non-linear large deformation mechanics bolt-mesh-anchor support coupling support effect
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部