期刊文献+
共找到356篇文章
< 1 2 18 >
每页显示 20 50 100
WAVELET METHOD FOR CALCULATING THE DEFECT STATES OF TWO-DIMENSIONAL PHONONIC CRYSTALS 被引量:16
1
作者 Zhizhong Yah Yuesheng Wang Chuanzeng Zhang 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第2期104-109,共6页
Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique... Based on the variational theory, a wavelet-based numerical method is developed to calculate the defect states of acoustic waves in two-dimensional phononic crystals with point and line defects. The supercell technique is applied. By expanding the displacement field and the material constants (mass density and elastic stiffness) in periodic wavelets, the explicit formulations of an eigenvalue problem for the plane harmonic bulk waves in such a phononic structure are derived. The point and line defect states in solid-liquid and solid-solid systems are calculated. Comparisons of the present results with those measured experimentally or those from the plane wave expansion method show that the present method can yield accurate results with faster convergence and less computing time. 展开更多
关键词 acoustic wave phononic crystal defect state WAVELET band structure
下载PDF
Electronic structure and defect states of transition films from amorphous to microcrystalline silicon studied by surface photovoltage spectroscopy
2
作者 于威 王春生 +3 位作者 路万兵 何杰 韩晓霞 傅广生 《Chinese Physics B》 SCIE EI CAS CSCD 2007年第8期2310-2314,共5页
In this paper, surface photovoltage spectroscopy (SPS) is used to determine the electronic structure of the hydrogenated transition Si films. All samples are prepared by using helicon wave plasma-enhanced chemical v... In this paper, surface photovoltage spectroscopy (SPS) is used to determine the electronic structure of the hydrogenated transition Si films. All samples are prepared by using helicon wave plasma-enhanced chemical vapour deposition technique, the films exhibit a transition from the amorphous phase to the microcrystalline phase with increasing temperature. The film deposited at lower substrate temperature has the amorphous-like electronic structure with two types of dominant defect states corresponding to the occupied Si dangling bond states (D^0/D^-) and the empty Si dangling states (D+). At higher substrate temperature, the crystallinity of the deposited films increases, while their band gap energy decreases. Meanwhile, two types of additional defect states is incorporate into the films as compared with the amorphous counterpart, which is attributed to the interface defect states between the microcrystalline Si grains and the amorphous matrix. The relative SPS intensity of these two kinds of defect states in samples deposited above 300℃ increases first and decreases afterwards, which may be interpreted as a result of the competition between hydrogen release and crystalline grain size increment with increasing substrate temperature. 展开更多
关键词 microcrystalline silicon defect states surface photovoltaic spectroscopy
下载PDF
Low temperature photoluminescence study of Ga As defect states
3
作者 Jia-Yao Huang Lin Shang +6 位作者 Shu-Fang Ma Bin Han Guo-Dong Wei Qing-Ming Liu Xiao-Dong Hao Heng-Sheng Shan Bing-She Xu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期192-196,共5页
Low temperature(77 K)photoluminescence measurements have been performed on different GaAs substrates to evaluate the GaAs crystal quality.Several defect-related luminescence peaks have been observed,including 1.452 eV... Low temperature(77 K)photoluminescence measurements have been performed on different GaAs substrates to evaluate the GaAs crystal quality.Several defect-related luminescence peaks have been observed,including 1.452 eV,1.476 eV,1.326 eV peaks deriving from 78 meV GaAs antisite defects,and 1.372 eV,1.289 eV peaks resulting from As vacancy related defects.Changes in photoluminescence emission intensity and emission energy as a function of temperature and excitation power lead to the identification of the defect states.The luminescence mechanisms of the defect states were studied by photoluminescence spectroscopy and the growth quality of GaAs crystal was evaluated. 展开更多
关键词 low temperature photoluminescence GaAs antisite defects luminescence mechanisms of defect states GaAs crystal quality
下载PDF
Influence of defect states on band gaps in the two-dimensional phononic crystal of 4340 steel in an epoxy
4
作者 孔肖燕 岳蕾蕾 +1 位作者 陈雨 刘应开 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期400-403,共4页
The band structures of a new two-dimensional triangle-shaped array geometry of 4340 steel cylinders of square cross section in an epoxy resin were studied by the plane-wave expansion and supercell calculation method. ... The band structures of a new two-dimensional triangle-shaped array geometry of 4340 steel cylinders of square cross section in an epoxy resin were studied by the plane-wave expansion and supercell calculation method. The band gaps of this type of phononic crystals with different defects were calculated such as defect-free, 60° crystal linear defect states, 120° crystal linear defect states, and 180° crystal linear defect states. It was found that the band gap will emerge in different linear defects of the phononic crystals and the bandwidth of linear defect states is larger than that of the free-defect crystal by about 2.14 times within the filling fraction F = 0.1-0.85. In addition, the influence of the filling fraction on the relative width of the minimum band gap is discussed. 展开更多
关键词 defect state band width number of band gap
下载PDF
Influence of defect states on the performances of planar tin halide perovskite solar cells 被引量:1
5
作者 Shihua Huang Zhe Rui +1 位作者 Dan Chi Daxin Bao 《Journal of Semiconductors》 EI CAS CSCD 2019年第3期19-24,共6页
Although tin halide perovskite has shown excellent photoelectric performance, its efficiency of solar cell is low compared with that of lead halide. In order to enhance the efficiency of tin halide perovskite solar ce... Although tin halide perovskite has shown excellent photoelectric performance, its efficiency of solar cell is low compared with that of lead halide. In order to enhance the efficiency of tin halide perovskite solar cell, a deep understanding of the role of the defects in the perovskite absorption layer and at the electron transport layer(ETL)/absorber or absorber/hole transport layer(HTL) interface is very necessary. In this work, the planar heterojunction-based CH_3NH_3SnI_3 perovskite solar cells were simulated with the SCAPS-1D program. Simulation results revealed a great dependence of device efficiency on defect density and interface quality of the perovskite absorber. The defect density at the front interface is critical for high efficiency, and the polarity of the interface charge has a different impact on the device efficiency. Strikingly, an efficiency over 29% was obtained under the moderate simulation conditions. 展开更多
关键词 simulation TIN HALIDE PEROVSKITE interface defect state HETEROJUNCTION solar cell
下载PDF
Effects of defect states on the performance of perovskite solar cells 被引量:2
6
作者 司凤娟 汤富领 +1 位作者 薛红涛 祁荣斐 《Journal of Semiconductors》 EI CAS CSCD 2016年第7期24-30,共7页
We built an ideal perovskite solar cell model and investigated the effects of defect states on the so- lar cell's performance. The verities of defect states with a different energy level in the band gap and those in ... We built an ideal perovskite solar cell model and investigated the effects of defect states on the so- lar cell's performance. The verities of defect states with a different energy level in the band gap and those in the absorption layer CH3NH3PbI3 (MAPbI3), the interface between the buffer layer/MAPbI3, and the interface be- tween the hole transport material (HTM) and MAPbI3, were studied. We have quantitatively analyzed these effects on perovskite solar cells' performance parameters. They are open-circuit voltage, short-circuit current, fill factor, and photoelectric conversion efficiency. We found that the performances of perovskite solar cells change worse with defect state density increasing, but when defect state density is lower than 1016 cm^-3, the effects are small. Defect states in the absorption layer have much larger effects than those in the adjacent interface layers. The per-ovskite solar cells have better performance as its working temperature is reduced. When the thickness of MAPbI3 is about 0.3μm, perovskite solar cells show better comprehensive performance, while the thickness 0.05μm for Spiro-OMeTAD is enough. 展开更多
关键词 device modeling defect states perovskite solar cells
原文传递
Effects of defect states on the performance of CuInGaSe_2 solar cells 被引量:1
7
作者 万福成 汤富领 +3 位作者 薛红涛 路文江 冯煜东 芮执元 《Journal of Semiconductors》 EI CAS CSCD 2014年第2期76-81,共6页
Device modeling has been carried out to investigate the effects of defect states on the performance of ideal CulnGaSe2 (CIGS) thin film solar cells theoretically. The varieties of defect states (location in the ban... Device modeling has been carried out to investigate the effects of defect states on the performance of ideal CulnGaSe2 (CIGS) thin film solar cells theoretically. The varieties of defect states (location in the band gap and densities) in absorption layer CIGS and in buffer layer CdS were examined. The performance parameters: open-circuit voltage, short-circuit current, fill factor, and photoelectric conversion efficiency for different defect states were quantitatively analyzed. We found that defect states always harm the performance of CIGS solar cells, but when defect state density is less than 10 14 cm-3 in CIGS or less than 10 18 cm-3 in CdS, defect states have little effect on the performances. When defect states are located in the middle of the band gap, they are more harmful. The effects of temperature and thickness are also considered. We found that CIGS solar cells have optimal performance at about 170 K and 2 μm of CIGS is enough for solar light absorption. 展开更多
关键词 device modeling defect states solar cell conversion efficiency
原文传递
Decade Milestone Advancement of Defect-Engineered g-C_(3)N_(4) for Solar Catalytic Applications 被引量:3
8
作者 Shaoqi Hou Xiaochun Gao +8 位作者 Xingyue Lv Yilin Zhao Xitao Yin Ying Liu Juan Fang Xingxing Yu Xiaoguang Ma Tianyi Ma Dawei Su 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期153-218,共66页
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil... Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis. 展开更多
关键词 defect engineering g-C_(3)N_(4) Electronic band structures Photocarrier transfer kinetics defect states
下载PDF
Novel ultra-wideband fluorescence material:Defect state control based on nickel-doped semiconductor QDs embedded in inorganic glasses
9
作者 Zheng Wang Feifei Huang +3 位作者 Muzhi Cai Xianghua Zhang Degang Deng Shiqing Xu 《Journal of Materiomics》 SCIE CSCD 2023年第2期338-344,共7页
In recent years,the development of an environmentally friendly quantum dots(QDs)embedded luminous solid by a simple method has attracted considerable attention.In this study,semiconductor ZnS QDs were successfully pre... In recent years,the development of an environmentally friendly quantum dots(QDs)embedded luminous solid by a simple method has attracted considerable attention.In this study,semiconductor ZnS QDs were successfully prepared in an inorganic matrix of amorphous glass,which yielded beneficial broadband emission in the long-wavelength region of the visible range.The strong red emission belonged to the defect state energy level of the ZnS QDs,which could be enhanced by incorporation of nickel ions into the fixed matrix to regulate the defects state.The novel material had a small self-absorption,wide excitation and emission ranges,and thus potential applications in light-conversion devices,luminescent solar concentrators,and solar cell cover glasses. 展开更多
关键词 ZnS quantum dots glass Nickel-doping defect states Broad-band emission
原文传递
White-light upconversion emission of lanthanide double-doped oxide nanoparticles via defect state luminescence of ZnO
10
作者 李月梅 李永梅 +1 位作者 王锐 徐衍岭 《Science China Materials》 SCIE EI CSCD 2017年第12期1245-1252,共8页
The white upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) is mainly made up of the color red, green and blue. Interestingly, the white-light-emitting UCNPs can be obtained via a complex metho... The white upconversion luminescence (UCL) of upconversion nanoparticles (UCNPs) is mainly made up of the color red, green and blue. Interestingly, the white-light-emitting UCNPs can be obtained via a complex method of tridoping lanthanide ions such as Yb^3+, Er^3+, and Tm^3+. We herein report that an excellent white UCL can be obtained from Yb/Tm double-doped ZnO. In this system, the blue and red UCL-emissions around 475 and 652 nm originate from ^1G4→^3H6 and ^1G4→^3F4 transition of Tm^3+, respectively, and the green one can be attributed to the defect states (oxygen va- cancies) luminescence (DSL) of the ZnO host. Meanwhile, the fine nanostructure of ZnO:Yb/Tm is prepared by adjusting the concentration of OH-. Particularly, the one dimentional pencil-shaped nanorods with high aspect ratio achieve a strong green DSL emission due to the high concentration of oxygen vacancy. The oxygen vacancy defects play an irreplaceable role in affecting the intensities of blue and red UCL by acting as the intermediate state in the energy transfer process. More importantly, we demonstrate that the DSL and UCL can be combined into systems, paving a new road for obtaining the white UCL emission. 展开更多
关键词 white upconversion luminescence pencil-shaped ZnO:Yb/Tm nanorods defect states luminescence
原文传递
Energy level analyses of even-parity J=1 and 2 Rydberg states of Sn I by multichannel quantum defect theory
11
作者 由帅 凤艳艳 戴振文 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2229-2237,共9页
This paper analyzes the energy levels along the even-parity J = 1 and 2 Rydberg series of Sn I by multichannel quantum defect theory. A good agreement between theoretical and experimental energy levels was achieved. B... This paper analyzes the energy levels along the even-parity J = 1 and 2 Rydberg series of Sn I by multichannel quantum defect theory. A good agreement between theoretical and experimental energy levels was achieved. Below 59198 cm^-1, a total of 85 and 23 new energy levels, respectively, in the J = 1 and J = 2 series, which cannot be measured previously by experiments, are predicted in this work. Based on the calculated admixture coefficients of each channel, interchannel interactions were discussed in detail. The results are helpful to understand the characteristics of configuration interaction among even-parity levels in Sn I. 展开更多
关键词 atom Sn Rydberg state multichannel quantum defect theory
下载PDF
Solid-State Reaction and Vacancy-Type Defects in Bilayer Fe/Hf Studied by the Slow Positron Beam
12
作者 K. Yamada T. Sasaki +5 位作者 T. Nagata I. Kanazawa R. Suzuki T. Ohdaira K. Nozawa F. Komori 《Journal of Applied Mathematics and Physics》 2015年第2期233-239,共7页
The positron annihilation lifetimes and the Doppler broadening by slow positron beam are measured in thin Fe films with thickness 500 nm, a thin Hf film with thickness 100 nm, and the bilayer Fe (50 nm)/Hf (50 nm) on ... The positron annihilation lifetimes and the Doppler broadening by slow positron beam are measured in thin Fe films with thickness 500 nm, a thin Hf film with thickness 100 nm, and the bilayer Fe (50 nm)/Hf (50 nm) on quartz glass substrate. We have analyzed the behavior in vacancy-type defects in each layer through some deposition temperatures and annealing. It is observed that the thin Fe film, the thin Hf film, and the bilayer Fe (50 nm)/Hf (50 nm) already contain many vacancy-type defects. We have investigated the change of densities of the vacancy-carbon complex and the small vacancy-cluster with carbons, through solid-state amorphization of Fe (50 nm)/Hf (50 nm) bilayer. 展开更多
关键词 Metallic Films POSITRON ANNIHILATION Measurement SOLID-state Reaction FE Film Diffusion Vacancy-Type defects
下载PDF
Modulation of Photonic Bandgap and Localized States by Dielectric Constant Contrast and Filling Factor in Photonic Crystals
13
作者 陈沁 黄永箴 +1 位作者 国伟华 于丽娟 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2003年第12期1233-1238,共6页
The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant... The band structure of 2D photonic crystals (PCs) and localized states resulting from defects are analyzed by finite-difference time-domain (FDTD) technique and Padé approximation.The effect of dielectric constant contrast and filling factor on photonic bandgap (PBG) for perfect PCs and localized states in PCs with point defects are investigated.The resonant frequencies and quality factors are calculated for PCs with different defects.The numerical results show that it is possible to modulate the location,width and number of PBGs and frequencies of the localized states only by changing the dielectric constant contrast and filling factor. 展开更多
关键词 photonic crystals photonic bandgap defect states FDTD
下载PDF
Identification and elimination of inductively coupled plasma-induced defects in Al_xGa_(1-x)N/GaN heterostructures 被引量:1
14
作者 林芳 沈波 +6 位作者 卢励吾 刘新宇 魏珂 许福军 王彦 马楠 黄俊 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第7期393-398,共6页
By using temperature-dependent Hall, variable-frequency capacitance-voltage and cathodoluminescence (CL) measurements, the identification of inductively coupled plasma (ICP)-induced defect states around the AlxGa1... By using temperature-dependent Hall, variable-frequency capacitance-voltage and cathodoluminescence (CL) measurements, the identification of inductively coupled plasma (ICP)-induced defect states around the AlxGa1-xN/GaN heterointerface and their elimination by subsequent annealing in AlxGa1-xN/GaN heterostructures are systematically investigated. The energy levels of interface states with activation energies in a range from 0.211 to 0.253 eV below the conduction band of GaN are observed. The interface state density after the ICP-etching process is as high as 2.75× 10^12 cm^-2.eV^-1. The ICP-induced interface states could be reduced by two orders of magnitude by subsequent annealing in N2 ambient. The CL studies indicate that the ICP-induced defects should be Ga-vacancy related. 展开更多
关键词 inductively coupled plasma subsequent annealing defect state
下载PDF
Large-scale photonic crystals with inserted defects and their optical properties
15
作者 李超荣 李娟 +4 位作者 杨虎 赵永强 吴艳 董文钧 陈本永 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第8期603-607,共5页
Deliberately introducing defects into photonic crystals is an important way to functionalize the photonic crystals. We prepare a special large-scale three-dimensional (3D) photonic crystal (PC) with designed defec... Deliberately introducing defects into photonic crystals is an important way to functionalize the photonic crystals. We prepare a special large-scale three-dimensional (3D) photonic crystal (PC) with designed defects by an easy and low-cost method. The defect layer consists of photoresist strips or air-core strips. Field emission scanning electron microscopy (FESEM) shows that the 3D PC is of good quality and the defect layer is uniform. Different defect states shown in the ultraviolet-visible spectra are induced by the photoresist strip layer and air-core strip layer. The special large-scale 3D PC can be tested for integrated optical circuits, and the defects can act as optical waveguides. 展开更多
关键词 photonic crystal designed defects PHOTOLITHOGRAPHY defect state
下载PDF
Unveiling Defect-Mediated Carrier Dynamics in Few-Layer MoS2 Prepared by Ion Exchange Method via Ultrafast Vis-NIR-MIR Spectroscopy
16
作者 Zhen Chi Hui-hui Chen +1 位作者 Zhuo Chen Hai-long Chen 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2020年第5期547-553,I0001-I0005,I0078,共13页
Defect-mediated processes in two-dimensional transition metal dichalcogenides have a significant influence on their carrier dynamics and transport properties,however,the detailed mechanisms remain poorly understood.He... Defect-mediated processes in two-dimensional transition metal dichalcogenides have a significant influence on their carrier dynamics and transport properties,however,the detailed mechanisms remain poorly understood.Here,we present a comprehensive ultrafast study on defect-mediated carrier dynamics in ion exchange prepared few-layer MoS2 by femtosecond time-resolved Vis-NIR-MIR spectroscopy.The broadband photobleaching feature observed in the near-infrared transient spectrum discloses that the mid-gap defect states are widely distributed in few-layer MoS2 nanosheets.The processes of fast trapping of carriers by defect states and the following nonradiative recombination of trapped carriers are clearly revealed,demonstrating the mid-gap defect states play a significant role in the photoinduced carrier dynamics.The positive to negative crossover of the signal observed in the mid-infrared transient spectrum further uncovers some occupied shallow defect states distributed at less than0.24 e V below the conduction band minimum.These defect states can act as effective carrier trap centers to assist the nonradiative recombination of photo-induced carriers in few-layer MoS2 on the picosecond time scale. 展开更多
关键词 Two-dimensional materials Ultrafast spectroscopy defect states Carrier dynamics
下载PDF
Passivation of carbon dimer defects in amorphous SiO_2/4H–SiC(0001) interface:A first-principles study 被引量:3
17
作者 Yi-Jie Zhang Zhi-Peng Yin +1 位作者 Yan Su De-Jun Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期376-383,共8页
An amorphous SiO2/4 H–Si C(0001) interface model with carbon dimer defects is established based on density functional theory of the first-principle plane wave pseudopotential method.The structures of carbon dimer d... An amorphous SiO2/4 H–Si C(0001) interface model with carbon dimer defects is established based on density functional theory of the first-principle plane wave pseudopotential method.The structures of carbon dimer defects after passivation by H2 and NO molecules are established,and the interface states before and after passivation are calculated by the Heyd–Scuseria–Ernzerhof(HSE06) hybrid functional scheme.Calculation results indicate that H2 can be adsorbed on the O2–C = C–O2 defect and the carbon–carbon double bond is converted into a single bond.However,H2 cannot be adsorbed on the O2–(C = C)′ –O2 defect.The NO molecules can be bonded by N and C atoms to transform the carbon–carbon double bonds,thereby passivating the two defects.This study shows that the mechanism for the passivation of Si O2/4 H–SiC(0001) interface carbon dimer defects is to convert the carbon–carbon double bonds into carbon dimers.Moreover,some intermediate structures that can be introduced into the interface state in the band gap should be avoided. 展开更多
关键词 4H-SIC interface defect density of states firstprinciple
下载PDF
Behaviours of the excited states 1s^2 np along lithium isoelectronic sequence from Z=11 to 20 被引量:3
18
作者 胡木宏 王治文 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第3期908-914,共7页
Based on the obtained energy values of 1s^2np (n≤ 9) states for lithium-like systems from Z=11 to 20 (by the authors of this paper: Hu M H and Wang Z W 2004 Chin. Phys. 13 662), this paper determines the quantum... Based on the obtained energy values of 1s^2np (n≤ 9) states for lithium-like systems from Z=11 to 20 (by the authors of this paper: Hu M H and Wang Z W 2004 Chin. Phys. 13 662), this paper determines the quantum defects, as slowly varying function of energy, of this Rydberg series. Using them as input, it can predict the energies of any highly excited states below the ionization threshold for this series a^cording to the quantum defect theory. The regularities of variation for quantum defects of the series along this isoelectronic sequence are physically analysed and discussed. The screening parameters, which are equal to the effective screening charge of the core-electrons, are also obtained. 展开更多
关键词 lithium-like system excited state quantum defect screening parameter
下载PDF
Energy levels of 1s^2n d(n≤9)states for lithium-like ions 被引量:3
19
作者 胡木宏 王治文 +2 位作者 曾凡伟 王涛 王晶 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期169-175,共7页
The full-core plus correlation method with multi-configuration interaction wave functions is extended to the calcu- lation of the non-relativistic energies of ls2nd (n ≤9) states for the lithium isoelectronic seque... The full-core plus correlation method with multi-configuration interaction wave functions is extended to the calcu- lation of the non-relativistic energies of ls2nd (n ≤9) states for the lithium isoelectronic sequence from Z = 11 to 20. Relativistic and mass-polarization effects on the energy are calculated as the first-order perturbation correction. The quantum-electrodynamics correction is also included. The fine structure splittings are determined from the expectation values of spin-orbit and spin-other-orbit interaction operators in the Pauli-Breit approximation. Combining the term energies of lowly excited states obtained with the quantum defects calculated by the single channel quantum defect theory, each of which is a smooth function of energy and approximated by a weakly varying function of energy, the ion potentials of highly excited states (n ≥ 6) are obtained with the semi-empirical iteration method. The results are compared with experimental data in the literature and found to be closely consistent with the regularity. 展开更多
关键词 lithium-like ions excited states quantum defect theory quantum defect
下载PDF
Si _3O cluster:excited properties under external electric field and oxygen-deficient defect models 被引量:4
20
作者 徐国亮 刘雪峰 +2 位作者 谢会香 张现周 刘玉芳 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第1期291-295,共5页
This paper investigates the excited states of Si3O molecule by using the single-excitation configuration interaction and density functional theory. It finds that the visible light absorption spectrum of Si3O molecule ... This paper investigates the excited states of Si3O molecule by using the single-excitation configuration interaction and density functional theory. It finds that the visible light absorption spectrum of Si3O molecule comprises the yellow and the purple light without external electric field, however all the visible light is included except the green light under the action of external electric field. Oxygen-deficient defects, which also can be found in Si3O molecule, have been used to explain the 1 from silicon-based materials but the microstructures of the materials are still uncertain Our results accord with the experimental values perfectly, this fact suggests that the structure of Si3O molecule is expected to be one of the main basic structures of the materials, so the oxygen-deficient defect structural model for Si3O molecule also has been provided to research the structures of materials. 展开更多
关键词 Si3O molecule excited state LUMINESCENCE oxygen-deficient defects
下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部