期刊文献+
共找到323篇文章
< 1 2 17 >
每页显示 20 50 100
Deployment Dynamic Modeling and Driving Schemes for a Ring-Truss Deployable Antenna
1
作者 Baiyan He Lijun Jia +3 位作者 Kangkang Li Rui Nie Yesen Fan Guobiao Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期163-182,共20页
Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector ... Mesh reflector antennas are widely used in space tasks owing to their light weight,high surface accuracy,and large folding ratio.They are stowed during launch and then fully deployed in orbit to form a mesh reflector that transmits signals.Smooth deployment is essential for duty services;therefore,accurate and efficient dynamic modeling and analysis of the deployment process are essential.One major challenge is depicting time-varying resistance of the cable network and capturing the cable-truss coupling behavior during the deployment process.This paper proposes a general dynamic analysis methodology for cable-truss coupling.Considering the topological diversity and geometric nonlinearity,the cable network's equilibrium equation is derived,and an explicit expression of the time-varying tension of the boundary cables,which provides the main resistance in truss deployment,is obtained.The deployment dynamic model is established,which considers the coupling effect between the soft cables and deployable truss.The effects of the antenna's driving modes and parameters on the dynamic deployment performance were investigated.A scaled prototype was manufactured,and the deployment experiment was conducted to verify the accuracy of the proposed modeling method.The proposed methodology is suitable for general cable antennas with arbitrary topologies and parameters,providing theoretical guidance for the dynamic performance evaluation of antenna driving schemes. 展开更多
关键词 Cable antenna Deployment dynamics Performance evaluation Driving scheme deployable structure
下载PDF
GEOMETRIC DESIGN OF DEPLOYABLE/RETRACTABLE MAST 被引量:1
2
作者 杨玉龙 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第4期250-256,共7页
To simplify the complicated design process of deployable/retractable structures, a new design process is developed. The process is divided into three phases: the concept design phase, the model phase and the optimiza... To simplify the complicated design process of deployable/retractable structures, a new design process is developed. The process is divided into three phases: the concept design phase, the model phase and the optimization phase. In each phase, different parameter targets have to be fulfilled. According to three phases, a deployable/retractable mast composed of four right triangle prism modules in the longitudinal direction is designed. It can be deployed and folded simultaneously by the linear movements of sleeve-joints. The deployable and retractable movement of the mast is analyzed and key joint forms are designed. Then bar diameters and joint forms are modified based on mast structural mechanics characteristics in the optimization phase. Finally a 1:1 scaled model mast is built to verify the design and the optimization. Analytical results show that the model mast has the advantages of simple locking mechanism, fewer types of joints and bars, so it can be easily manufactured. 展开更多
关键词 deployable/retractable mast geometric design design process OPTIMIZATION
下载PDF
Topology Structure Synthesis and Analysis of Spatial Pyramid Deployable Truss Structures for Satellite SAR Antenna 被引量:24
3
作者 WANG Yan DENG Zongquan +2 位作者 LIU Rongqiang YANG Hui GUO Hongwei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2014年第4期683-692,共10页
Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To... Many attentions for structural synthesis are paid to planar linkages and parallel mechanisms, while design novel pyramid deployable truss structure(PDTS) of satellite SAR mainly depends on experience of designer. To design novel configuration of PDTS, a two-step topology structure synthesis and analysis approach is proposed. Firstly, a conceptual configuration of PDTS is synthesized. Weighted graph and weighted adjacency matrix are established to realize topological description for PDTS. Graph properties are then summarized to distinguish differentia between PDTS and other type structures. According to graph properties, a procedure for synthesis conceptual configuration of PDTS is presented. Secondly, join relationship of components in a PDTS is analyzed. Kinematic chain and corresponding incidence/adjacency matrix are employed to analyze join relationship of PDTS. Properties and simplified rules of kinematic chain are extracted to construct kinematic chain. A procedure for construction kinematic chain of PDTS is then established. Finally, with this two-step approach all 11 rectangular pyramid deployable structures whose folded state is planar are discovered and their kinematic chains are constructed. Based on synthesis results, a novel deployable support structure for satellite SAR is designed. The proposed research can be applied to obtain some novel PDTSs, which is of great importance to design some novel deployable support structures for satellite SAR antenna. 展开更多
关键词 structural synthesis deployable truss structure spatial linkage graph theory SAR antenna
下载PDF
Recent Advances in Space-Deployable Structures in China 被引量:10
4
作者 Xiaofei Ma Tuanjie Li +10 位作者 Jingya Ma Zhiyi Wang Chuang Shi Shikun Zheng Qifeng Cui Xiao Li Fan Liu Hongwei Guo Liwu Liu Zuowei Wang Yang Li 《Engineering》 SCIE EI CAS 2022年第10期207-219,共13页
Deployable space structure technology is an approach used in building spacecraft,especially when realizing deployment and folding functions.Once in orbit,the structures are released from the fairing,deployed,and posit... Deployable space structure technology is an approach used in building spacecraft,especially when realizing deployment and folding functions.Once in orbit,the structures are released from the fairing,deployed,and positioned.With the development of communication,remote-sensing,and navigation satellites,space-deployable structures have become cutting-edge research topics in space science and technology.This paper summarizes the current research status and development trend of spacedeployable structures in China,including large space mesh antennas,space solar arrays,and deployable structures and mechanisms for deep-space exploration.Critical technologies of space-deployable structures are addressed from the perspectives of deployable mechanisms,cable-membrane form-finding,dynamic analysis,reliable environmental adaptability analysis,and validation.Finally,future technology developments and trends are elucidated in the fields of mesh antennas,solar arrays,deployable mechanisms,and on-orbit adjustment,assembly,and construction. 展开更多
关键词 deployable space structures Mesh antennas Solar arrays Deep-space exploration
下载PDF
Novel Surface Design of Deployable Reflector Antenna Based on Polar Scissor Structures 被引量:8
5
作者 Pengyuan Zhao Jinguo Liu +2 位作者 Chenchen Wu Yangmin Li Keli Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第5期4-18,共15页
Space-deployable mechanisms can be used as supporting structures for large-diameter antennas in space engineering.This study proposes a novel method for constructing the surface design of space reflector antennas base... Space-deployable mechanisms can be used as supporting structures for large-diameter antennas in space engineering.This study proposes a novel method for constructing the surface design of space reflector antennas based on polar scissor units.The concurrency and deployability equations of the space scissor unit with definite surface constraints are derived using the rod and vector methods.Constraint equations of the spatial transformation for space n-edge polar scissor units are summarized.A new closed-loop deployable structure,called the polar scissor deployable antenna(PSDA),is designed by combining planar polar scissor units with spatial polar scissor units.The overconstrained problem is solved by releasing the curve constraint that locates at the end-point of the planar scissor mechanism.Kinematics simulation and error analysis are performed.The results show that the PSDA can effectively fit the paraboloid of revolution.Finally,deployment experiments verify the validity and feasibility of the proposed design method,which provides a new idea for the construction of large space-reflector antennas. 展开更多
关键词 deployable structures Polar scissor unit Reflector antenna Surface design
下载PDF
Effects of Joint on Dynamics of Space Deployable Structure 被引量:5
6
作者 GUO Hongwei ZHANG Jing +1 位作者 LIU Rongqiang DENG Zongquan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期861-872,共12页
Joints are necessary components in large space deployable truss structures which have significant effects on dynamic behavior of these joint dominated structures.Previous researches usually analyzed effects of one or ... Joints are necessary components in large space deployable truss structures which have significant effects on dynamic behavior of these joint dominated structures.Previous researches usually analyzed effects of one or fewer joint characters on dynamics of jointed structures.Effects of joint stiffness,damping,location,number,clearance and contact stiffness on dynamics of jointed structures are systematically analyzed.Cantilever beam model containing linear joints is developed based on finite element method,influence of joint on natural frequencies and mode shapes of the jointed system are analyzed.Analytical results show that frequencies of jointed system decrease dramatically when peak mode shapes occur at joint locations,and there are cusp shapes present in mode shapes.System frequencies increase with joint damping increasing,there are different joint damping to achieve maximum system damping for different joint stiffness.Joint nonlinear force-displacement is described by describing function method,one-DOF model containing nonlinear joints is established to analyze joints freeplay and hysteresis nonlinearities.Analysis results show that nonlinear effects of freeplay and hysteresis make dynamic responses switch from one resonance frequency to another frequency when amplitude exceed demarcation values.Joint contact stiffness determine degree of system nonlinearity,while exciting force level,clearance and slipping force affect amplitude of dynamic response.Dynamic responses of joint dominated deployable truss structure under different sinusoidal exciting force levels are tested.The test results show obvious nonlinear behaviors contributed by joints,dynamic response shifts to lower frequency and higher amplitude as exciting force increasing.The test results are further compared with analytical results,and joint nonlinearity tested is coincident with hysteresis nonlinearity.Analysis method of joint effects on dynamic characteristics of jointed system is proposed,which can be used in optimal design of joint parameters to achieve optimum dynamic performance of jointed system. 展开更多
关键词 deployable structure JOINT DYNAMIC mode shape EXPERIMENT
下载PDF
Static analysis of synchronism deployable antenna 被引量:8
7
作者 GUAN Fu-ling SHOU Jian-jun +1 位作者 HOU Guo-yong ZHANG Jing-jie 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第8期1365-1371,共7页
A 3D synchronism deployable antenna was designed, analyzed, and manufactured by our research group. This an-tenna consists of tetrahedral elements from central element. Because there are springs at the ends of some of... A 3D synchronism deployable antenna was designed, analyzed, and manufactured by our research group. This an-tenna consists of tetrahedral elements from central element. Because there are springs at the ends of some of the rods, spider joints are applied. For analysis purpose, the structure is simplified and modelled by using 2D beam elements that have no bending stiffness. Displacement vectors are defined to include two translational displacements and one torsional displacement. The stiff-ness matrix derived by this method is relatively simple and well defined. The analysis results generated by using software de-veloped by our research group agreed very well with available test data. 展开更多
关键词 Space deployable structures Analysis design Reflector antenna
下载PDF
Design of Self‑Reconfigurable Multiarm Robot Mechanism Based on Deployable Kinematic Chains 被引量:2
8
作者 Fu‑Qun Zhao Sheng Guo +2 位作者 Hai‑Jun Su Hai‑Bo Qu Ya‑Qiong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第5期34-50,共17页
As the structures of multiarm robots are serially arranged,the packaging and transportation of these robots are often inconvenient.The ability of these robots to operate objects must also be improved.Addressing this i... As the structures of multiarm robots are serially arranged,the packaging and transportation of these robots are often inconvenient.The ability of these robots to operate objects must also be improved.Addressing this issue,this paper presents a type of multiarm robot that can be adequately folded into a designed area.The robot can achieve different operation modes by combining different arms and objects.First,deployable kinematic chains(DKCs)are designed,which can be folded into a designated area and be used as an arm structure in the multiarm robot mechanism.The strategy of a platform for storing DKCs is proposed.Based on the restrictions in the storage area and the characteristics of parallel mechanisms,a class of DKCs,called base assembly library,is obtained.Subsequently,an assembly method for the synthesis of the multiarm robot mechanism is proposed,which can be formed by the connection of a multiarm robot mechanism with an operation object based on a parallel mechanism structure.The formed parallel mechanism can achieve a reconfigurable characteristic when different DKCs connect to the operation object.Using this method,two types of multiarm robot mechanisms with four DKCs that can switch operation modes to perform different tasks through autonomous combination and release operation is proposed.The obtained mechanisms have observable advantages when compared with the traditional mechanisms,including optimizing the occupied volume during transportation and using parallel mechanism theory to analyze the switching of operation modes. 展开更多
关键词 DESIGN Multiarm robot deployable kinematic chain Parallel mechanism Motion set
下载PDF
TRACTIVE PERFORMANCE ANALYSIS ON RADIALLY DEPLOYABLE WHEEL CONFIGURATION OF LUNAR ROVER VEHICLE BY DISCRETE ELEMENT METHOD 被引量:8
9
作者 LI Wen GAO Feng JIA Yang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第5期13-18,共6页
With the consideration of volume constraint of launch vehicle and trafficability of rover vehicle on lunar regolith terrain, a new design of radially deployable wheel is presented. For the purpose of achieving the mes... With the consideration of volume constraint of launch vehicle and trafficability of rover vehicle on lunar regolith terrain, a new design of radially deployable wheel is presented. For the purpose of achieving the meso-mechanics and dynamical behavior of lunar soil particles as well as macro-parameters of tractive performance for radially deployable wheel, the interaction between two types of wheel configurations and lunar soil particles is analyzed by means of discrete element method. The network of contact forces, the displacement vector chart, and the deformation of lunar soil beneath wheels are plotted. The equations of soil thrust, motion resistance, drawbar pull and driven torque are derived in granular scale based on the coordinates transformation and algebraic summation. The calculated results show that there is sufficient traction for both 6-split and 12-split radially deployable wheels with 304 mm outspread diameter to negotiate lunar regolith terrain specified here; the value of drawbar pull enhances with the increase of split number of radially deployable wheel, however, the required driven torque increases simultaneously, therefore, the tractive efficiency decreases. 展开更多
关键词 Radially deployable wheel Discrete element method Tractive performance Trafficability Lunar regolith
下载PDF
Dynamic analysis and nonlinear identification of space deployable structure 被引量:1
10
作者 郭宏伟 刘荣强 邓宗全 《Journal of Central South University》 SCIE EI CAS 2013年第5期1204-1213,共10页
The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum mod... The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies. 展开更多
关键词 deployable structure finite element model equivalent continuum model NONLINEAR dynamic analysis
下载PDF
Shape-sizing nested optimization of deployable structures using SQP 被引量:1
11
作者 戴璐 关富玲 《Journal of Central South University》 SCIE EI CAS 2014年第7期2915-2920,共6页
The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by... The potential role of formal structural optimization was investigated for designing foldable and deployable structures in this work.Shape-sizing nested optimization is a challenging design problem.Shape,represented by the lengths and relative angles of elements,is critical to achieving smooth deployment to a desired span,while the section profiles of each element must satisfy structural dynamic performances in each deploying state.Dynamic characteristics of deployable structures in the initial state,the final state and also the middle deploying states are all crucial to the structural dynamic performances.The shape was represented by the nodal coordinates and the profiles of cross sections were represented by the diameters and thicknesses.SQP(sequential quadratic programming) method was used to explore the design space and identify the minimum mass solutions that satisfy kinematic and structural dynamic constraints.The optimization model and methodology were tested on the case-study of a deployable pantograph.This strategy can be easily extended to design a wide range of deployable structures,including deployable antenna structures,foldable solar sails,expandable bridges and retractable gymnasium roofs. 展开更多
关键词 deployable structures OPTIMIZATION minimum mass dynamic constraints SQP(sequential quadratic programming) algorithm
下载PDF
Dynamic analysis of a deployable/retractable damped cantilever beam 被引量:1
12
作者 Ming LIU Zhi LI +2 位作者 Xiaodong YANG Wei ZHANG CWLIM 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第9期1321-1332,共12页
Deployable/retractable damped cantilever beams are a class of time-varying parametric structures which have attracted considerable research interest due to their many potential applications in the intelligent robot fi... Deployable/retractable damped cantilever beams are a class of time-varying parametric structures which have attracted considerable research interest due to their many potential applications in the intelligent robot field and aerospace.In the present work,the dynamic characteristics of a deployable/retractable damped cantilever beam are investigated experimentally and theoretically.The time-varying damping,as a function of the beam length,is obtained by both the enveloped fitting method and the period decrement method.Furthermore,the governing equation of the deployable/retractable damped cantilever beam is derived by introducing the time-varying damping parameter,and the corresponding closed-form solution and vibration principles are investigated based on the averaged method.The theoretical predictions for transient dynamic responses are in good agreement with the experimental results.The dynamic mechanism analysis on time-varying damping offers flexible technology in mechanical and aerospace fields. 展开更多
关键词 time-varying damping VIBRATION experimental method transient response deployable/retractable damped cantilever beam
下载PDF
Watt Linkage–Based Legged Deployable Landing Mechanism for Reusable Launch Vehicle: Principle, Prototype Design, and Experimental Validation 被引量:1
13
作者 Haitao Yu Baolin Tian +6 位作者 Zhen Yan Haibo Gao Hongjian Zhang Huiqiang Wu Yingchao Wang Yuhong Shi Zongquan Deng 《Engineering》 SCIE EI CAS CSCD 2023年第1期120-133,共14页
The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final ... The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final stage of recovery. This study proposes a novel legged deployable landing mechanism (LDLM) for RLV. The Watt-II six-bar mechanism is adopted to obtain the preferred configuration via the application of the linkage variation approach. To endow the proposed LDLM with advantages of large landing support region, lightweight, and reasonable linkage internal forces, a multi-objective optimization paradigm is developed. Furthermore, the optimal scale parameters for guiding the LDLM prototype design is obtained numerically using the non-dominated sorting genetic algorithm-II (NSGA-II) evolutionary algorithm. A fully-functional scaled RLV prototype is developed by integrating the gravity-governed deploying scheme to facilitate unfolding action to avoid full-range actuation, a dual-backup locking mechanism to enhance reliability of structure stiffening as fully deployed, and a shock absorber (SA) with multistage honeycomb to offer reliable shock absorbing performance. The experimental results demonstrate that the proposed LDLM is capable of providing rapid and smooth deployment (duration less than 1.5 s) with mild posture disturbance to the cabin (yaw and pitch fluctuations less than 6°). In addition, it provides satisfactory impact attenuation (acceleration peak less than 10g (g is the gravitational acceleration)) in the 0.2 m freefall test, which makes the proposed LDLM a potential alternative for developing future RLV archetype. 展开更多
关键词 Reusable launch vehicle(RLV) deployable mechanism Optimization desi gn
下载PDF
Design and Kinematics Analysis of Support Structure for Multi-Configuration Rigid-Flexible Coupled Modular Deployable Antenna 被引量:1
14
作者 TIAN Dake FAN Xiaodong +3 位作者 JIN Lu GUO Zhenwei GAO Haiming CHEN Hanting 《Aerospace China》 2021年第3期46-53,共8页
In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and th... In order to meet the urgent need for diversified and multi-functional deployable antennas in many major national aerospace projects,such as interstellar exploration,the fourth phase of lunar exploration project,and the industrial application of Bei Dou,a deployable antenna structure composed of hexagonal prism and pentagonal prism modules is proposed.Firstly,the arrangement and combination rules of pentagonal prism and hexagonal prism modules on the plane were analyzed.Secondly,the spatial geometric model of the deployable antenna composed of pentagonal prism and hexagonal prism modules was established.The influence of module size on the antenna shape was then analyzed,and the kinematic model of the deployable antenna established by coordinate transformation.Finally,the above model was verified using MATLAB software.The simulation results showed that the proposed modular deployable antenna structure can realize accurate connection between modules,complete the expected deployment and folding functional requirements.It is hoped that this research can provide reference for the basic research and engineering application of deployable antennas in China. 展开更多
关键词 space deployable antenna support structure rigid flexible coupling kinematics analysis numerical simulation
下载PDF
A Method for the Configuration Design of a Space Truss Deployable Mechanism and Its Application 被引量:1
15
作者 LI Bo 《International Journal of Plant Engineering and Management》 2010年第4期236-241,共6页
A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency m... A method based on the metamorphic principle is proposed for the analysis of the configuration design of a space truss deployable mechanism. The configuration change and correspondent topological graphs and adjacency matrixes at different work-stage of the mechanism, which is helpful to completely understand the composition and change rules of the metamorphic mechanism, are analyzed to indicate the metamorphic relationship in one working cycle. Furthermore, the static distance matrix, dynamic distance matrix and stiffness matrix of the mechanism are derived to assess the ability of the designed configuration to reveal some of the topological characteristics like compactness, dynamic sensitivity and stiffness. Using this proposed method in a space truss deployable mechanism helps the designer to evaluate its performance at the conceptual stage of design and make a rapid, reasonable selection for configuration design, which provides means for processing its type of analysis by computer. 展开更多
关键词 space truss deployable mechanism metamorphic mechanism configuration change topology analysis
下载PDF
A Shape-Memory Deployable Subsystem with a Large Folding Ratio in China’s Tianwen-1 Mars Exploration Mission
16
作者 Chengjun Zeng Liwu Liu +14 位作者 Yang Du Miao Yu Xiaozhou Xin Tianzhen Liu Peilei Xu Yu Yan Dou Zhang Wenxu Dai Xin Lan Fenghua Zhang Linlin Wang Xue Wan Wenfeng Bian Yanju Liu Jinsong Leng 《Engineering》 SCIE EI CAS CSCD 2023年第9期49-57,共9页
Once China’s Tianwen-1 Mars probe arrived in a Mars orbit after a seven-month flight in the deep cold space environment,it would be urgently necessary to monitor its state and the surrounding environment.To address t... Once China’s Tianwen-1 Mars probe arrived in a Mars orbit after a seven-month flight in the deep cold space environment,it would be urgently necessary to monitor its state and the surrounding environment.To address this issue,we developed a flexible deployable subsystem based on shape memory polymer composites(SMPC-FDS)with a large folding ratio,which incorporates a camera and two temperature telemetry points for monitoring the local state of the Mars orbiter and the deep space environment.Here,we report on the development,testing,and successful application of the SMPC-FDS.Before reaching its Mars remote-sensing orbit,the SMPC-FDS is designed to be in a folded state with high stiffness;after reaching orbit,it is in a deployed state with a large envelope.The transition from the folded state to the deployed state is achieved by electrically heating the shape memory polymer composites(SMPCs);during this process,the camera on the SMPC-FDS can capture the local state of the orbiter from multiple angles.Moreover,temperature telemetry points on the SMPC-FDS provide feedback on the environment temperature and the temperature change of the SMPCs during the energization process.By simulating a Mars on-orbit space environment,the engineering reliability of the SMPC-FDS was comprehensively verified in terms of the material properties,structural dynamic performance,and thermal vacuum deployment feasibility.Since the launch of Tianwen-1 on 23 July 2020,scientific data on the temperature environment around Tianwen-1 has been successfully acquired from the telemetry points on the SMPCFDS,and the local state of the orbiter has been photographed in orbit,showing the national flag of China fixed on the orbiter. 展开更多
关键词 Flexible deployable structure Shape memory polymer composite Mars exploration Temperature telemetry On-orbit deployment
下载PDF
Configuration Synthesis and Lightweight Networking of Deployable Mechanism Based on a Novel Pyramid Module
17
作者 Jinwei Guo Jianliang He +2 位作者 Guoxing Zhang Yongsheng Zhao Yundou Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期294-310,共17页
Deployable mechanism with preferable deployable performance,strong expansibility,and lightweight has attracted much attention because of their potential in aerospace.A basic deployable pyramid unit with good deployabi... Deployable mechanism with preferable deployable performance,strong expansibility,and lightweight has attracted much attention because of their potential in aerospace.A basic deployable pyramid unit with good deployability and expandability is proposed to construct a sizeable deployable mechanism.Firstly,the basic unit folding principle and expansion method is proposed.The configuration synthesis method of adding constraint chains of spatial closed-loop mechanism is used to synthesize the basic unit.Then,the degree of freedom of the basic unit is analyzed using the screw theory and the link dismantling method.Next,the three-dimensional models of the pyramid unit,expansion unit,and array unit are established,and the folding motion simulation analysis is carried out.Based on the number of components,weight reduction rate,and deployable rate,the performance characteristics of the three types of mechanisms are described in detail.Finally,prototypes of the pyramid unit,combination unit,and expansion unit are developed to verify further the correctness of the configuration synthesis based on the pyramid.The proposed deployable mechanism provides aference for the design and application of antennas with a large aperture,high deployable rate,and lightweight.It has a good application prospect in the aerospace field. 展开更多
关键词 Pyramid unit deployable mechanism Configuration synthesis Structural design Lightweight networking
下载PDF
Dynamic Characteristics of Planar Deployable Structure Based on ScissorLike Element Using Influence Coefficient Method
18
作者 Jianfeng Li Sanmin Wang +2 位作者 Changjian Zhi Bo Li Qi'an Peng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2017年第5期53-60,共8页
In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influen... In order to execute geometric analysis for planar deployable mechanism of scissors unit,the dynamic analysis model of scissor planar deployable structure is created based on the Cartesian coordinate system,the influence coefficient is acquired by means of the coordinate transformation,combining the D 'Alembert 's principle with Dynamic-Static method,the dynamic characteristic analysis is completed finally. Moreover,specific calculating examples are adopted to verify the effectiveness of proposed method,and the result shows that the movement of each component of scissors unit mechanism is more smooth during initial deployment stage,however,when the configuration angle θ of unit mechanism is approaching π,some comparative large variations would appear on movement parameters and hinge constraint force. 展开更多
关键词 DYNAMIC characteristics deployable structure influence COEFFICIENT method CARTESIAN COORDINATE DYNAMIC model
下载PDF
Design and dynamic analysis of a scissors hoop-rib truss deployable antenna mechanism
19
作者 Bo Han Xiangkun Li +3 位作者 Jian Sun Yundou Xu Jiantao Yao Yongsheng Zhao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期399-413,共15页
As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general par... As the support mechanism of space-borne antennas,space deployable antenna mechanism belongs to complex multi-closed-loop coupling mechanism,configuration design and dynamic analysis are more difficult than general parallel mechanism.In this paper,an unequal-length scissors mechanism(ULSM)is proposed by changing the position of the internal rotational joint through a basic scissors mechanism.A scissors hoop-rib truss deployable antenna mechanism(SHRTDAM)is constructed by replacing the parabolic rib with the ULSM.Kinematic analysis of SHRTDAM is conducted,and the degree of freedom(DOF)of the whole antenna mechanism is analyzed based on screw theory,the result showed that it has only one DOF.Velocity and acceleration characteristics of SHRTDAM are obtained by the screw derivative and rotation transformation.Based on Lagrange equation,dynamic model of this mechanism is established,the torque required to drive the mechanism is simulated and verified by Adams and MATLAB software.In addition,a ground experiment prototype of 1.5-m diameter was fabricated and a deployment test is conducted,which demonstrated the mobility and deployment performance of the whole mechanism.The mechanism proposed in this paper can provide a good reference for the design and analysis of large aperture space deployable antennas. 展开更多
关键词 Scissors mechanism deployable antenna Screw theory Kinematic analysis Dynamic analysis
下载PDF
Nonlinear Dynamics Analysis of Joint Dominated Space Deployable Truss Structures
20
作者 Hong-Wei Guo Jing Zhang +2 位作者 Rong-Qiang Liu Zong-Quan Deng Deng-Qing Cao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第1期68-74,共7页
Joints are necessary components in the larger space deployable truss structures which have significant effect on the dynamics behavior of these deployable joint-dominated structures. Four kinds of joints' nonlinea... Joints are necessary components in the larger space deployable truss structures which have significant effect on the dynamics behavior of these deployable joint-dominated structures. Four kinds of joints' nonlinear force-displacement relationship are analyzed based on describing function method. The dynamic responses of one-DOF jointed system under different exciting force levels are investigated to understand the influence of joint nonlinearity on dynamic responses. The influences of joint characterizing parameters on joint nonlinearities are analyzed. Dynamic responses of the modular beam-like deployable joint-dominated truss structure are tested under different sinusoidal exciting force levels. The experimental results show obvious nonlinear behaviors contributed by joints that dynamic response shifts to lower resonance frequency and higher amplitude with the increase of exciting force. The nonlinearity of the joints in the tested structure is compared with the theoretical results and identified to meet with the hysteresis nonlinearity. 展开更多
关键词 deployable truss structure JOINT NONLINEAR DYNAMIC EXPERIMENT
下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部