The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were coll...The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.展开更多
Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and co...Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar.展开更多
The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing...The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing a selective catalytic reduction(SCR)technology is considered.It is found that for a fixed injection velocity,the degree of ammonia leakage changes depending on the temperature.The higher the temperature,the faster the catalytic reduction reaction and the smaller the degree of ammonia leakage.The temperature has a great influence on the catalytic reduction reaction rate.At an injection velocity of 10000/h,the average reaction rate at 420℃ is 12 times higher than that at 180℃.The injection velocity has a weak influence on the reaction rate.When the injection velocity changes from 10000/h to 40000/h at the same temperature,the average reaction rate does not change appreciably.However,increasing the space velocity can accelerate the leakage of ammonia,thereby miti-gating the benefits associated with the NO_(x) conversion.展开更多
Power deterioration is a major problem for diesel engines operating at high altitudes.This problem stems from the limited availability of turbocharger energy,which is not enough to increase the boost pressure to the r...Power deterioration is a major problem for diesel engines operating at high altitudes.This problem stems from the limited availability of turbocharger energy,which is not enough to increase the boost pressure to the required level.In this study,a control strategy is introduced in order to achieve engine power recovery at different altitudes.It is shown that as the altitude increases from 0 to 4500 m,the required boost pressure ratio increases from 2.4 to 4.3.The needed turbocharger energy should be increased accordingly by 240%,and the TCC(turbine characterization coefficient)should be adjusted within wide ranges.A 12%decrease in the TCC can lead to a rise of the intake air pressure,which can compensate the pressure decrease due to a 1000 m altitude increase.The fluctuation range of boost pressure was within 14.5 kPa for variations in altitude from 0 to 4500 m.展开更多
Experiments were conducted on a diesel-methanol dual-fuel(DMDF)engine modified by a six-cylinder,turbocharged,inter-cooled diesel engine.According to the number of diesel injection,the experiments are divided to two p...Experiments were conducted on a diesel-methanol dual-fuel(DMDF)engine modified by a six-cylinder,turbocharged,inter-cooled diesel engine.According to the number of diesel injection,the experiments are divided to two parts:the single injectionmode and double injectionmode.The results show that,at the double injectionmode,themaximumof pressure rise rate is small and the engine runs smoothly,however,knock still occurswhen the cocombustion ratio(CCR)is big enough.Under knock status,the power density of the block vibration concentrating at some special frequencies rises dramatically,and the special frequency of single injection mode(about 4.1 kHz)is lower than that of double injection mode(7–9 kHz).The cylinder pressure oscillations of knock status are very different fromthe non-knock status.Under knock status,cylinder pressure oscillations become more concentrated and fiercer at some special frequencies,and the same as the block vibration.The special frequency of single injection mode(3–6 kHz)is lower than that of double injection mode(above 9 kHz).展开更多
This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for...This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for membrane desalination devices to produce fresh water.A new exhaust-gas heat exchanger of fins and tube,with a reinforced heat transfer tube section,unequal spacing fins,a mixing zone between the fin groups and four routes tube bundle,was designed.Numerical simulations were also used to provide reference information for structural design.Experiments were carried out for exhaust gas waste heat recovery from a marine diesel engine in an engine test bench utilizing the heat exchanger.The experimental results show that the difference between heat absorption by water and heat reduction of exhaust gas is less than 6.5%.After the water flow rate was adjusted,the exhaust gas waste heat recovery efficiency was higher than 70%,and the exhaust-gas heat exchanger’s outlet water temperature was 55°C–85°C at different engine loads.This means that the heat recovery from the exhaust gas of a marine diesel engine meets the requirement to drive a membrane desalination device to produce fresh water for fishers working in small and medium-sized fishing vessels.展开更多
Aim To study the diesel engine management spstem (DEMS). The DEMS can consider many engine parameters and so it can acquire the optimum system performance. Methods On the basis of analyzing the characteristics of die...Aim To study the diesel engine management spstem (DEMS). The DEMS can consider many engine parameters and so it can acquire the optimum system performance. Methods On the basis of analyzing the characteristics of diesel engine electronic system, the real-time, multi-tasks system design methods were used for the heavy duty vehicular diesel engine electronic control system . The hardware and software of DEMS were developed. Results and Conalusion By the test on dieSel engine bed, the system was verified and the foundation of the fully developed DEMS was laid.展开更多
Aim To ivestigate the influence on the cylinder head's stress distribution and value caused by its structure's changes.Methods Three types of cylinder heads of high power diesel engines were analysed with fini...Aim To ivestigate the influence on the cylinder head's stress distribution and value caused by its structure's changes.Methods Three types of cylinder heads of high power diesel engines were analysed with finite element method using I-DEAS Master series software.The actual condition of the cylinder head was simulated with different kinds of elements.Tempera- ture method was used to exert the predeformation of the bolts to the finite element model,so the pretightening force was discribed accurately Results Stress distribution regularities of the cylinder head under different working conditions were taken On the basis,the analysing results ofthreeof design schemes were compared and the optimum structure was taken Conclusion Transition condition between the head plate and the standing board ,shape of the head plate and the jobbing sheet,etc will affect the cylinder head's bearing condition展开更多
Aim The particle texture from diesel engine was imitated by use of computer. Methods The theory of fractal geometry and the diffusion limited aggregation model were used to simulate the micron texture. Results The...Aim The particle texture from diesel engine was imitated by use of computer. Methods The theory of fractal geometry and the diffusion limited aggregation model were used to simulate the micron texture. Results The fractal dimensions of granule distribution and corpuscle superficial area are quite conformed with those of measurement. Conclusion The texture parameters of engine particle cluster can be obtained precisely by use of fractal theory.展开更多
A CAD system for the cylinder head is developed. As an integrated system, it can be used in 3 D modeling, 2 D drawing and finite element structural analysis and optimization. The key problems in system designing are...A CAD system for the cylinder head is developed. As an integrated system, it can be used in 3 D modeling, 2 D drawing and finite element structural analysis and optimization. The key problems in system designing are introduced. Design flow, system structure and how to solve the key problems are focused on. All of those would form the base for more research on how to use the modern CAD technology to design complex engine parts. And it is also a good example of using the modern CAD technology.展开更多
In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance...In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance was solved. The control system was based on the 8?bit electronic control unit(ECU) system and the assembly language was used to design the software for controlling the engine fuel quantity and the turbocharger of the variable geometry turbine for the heavy duty diesel engine. By changing the timing method for speed acquisition, the problem of speed disturbance was solved and the reliability of the ECU was improved.展开更多
The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the po...The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.展开更多
The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary pat...The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years.展开更多
Cu–Mn bimetal catalysts were prepared to remove nitrogen oxides(NOx)from diesel engine exhaust at low temperatures.At a Cu/Mn ratio of 3:2,the NOx conversions at 200°C reached 65%and 90%on Cu–Mn/ZSM‐5 and Cu–...Cu–Mn bimetal catalysts were prepared to remove nitrogen oxides(NOx)from diesel engine exhaust at low temperatures.At a Cu/Mn ratio of 3:2,the NOx conversions at 200°C reached 65%and 90%on Cu–Mn/ZSM‐5 and Cu–Mn/SAPO‐34,respectively.After a hydrothermal treatment and reaction in the presence of C3H6,the activity of Cu–Mn/SAPO‐34 was more stable than that of Cu–Mn/ZSM‐5.No obvious variations in the crystal structure or dealumination were observed,whereas the physical structure was best maintained in Cu–Mn/SAPO‐34.The atomic concentration of Cu on the surface of Cu–Mn/SAPO‐34 was quite stable,and the consumption of octahedrally coordinated Cu2+could be recovered.Conversely,the proportion of octahedrally coordinated Cu2+on the surface of Cu–Mn/ZSM‐5 significantly decreased.Therefore,besides the structure,the redox cycle between Cu+and octahedrally coordinated Cu2+played an important role in the stability of the catalysts.展开更多
Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying ...Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying fea- tures. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastlCA-SVM achieves higher classification accuracy and makes better general- ization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastlCA- SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of fea- ture extraction and the fault diagnosis of diesel engines.展开更多
Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carrie...Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured.展开更多
In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-d...In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).展开更多
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided i...This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).展开更多
The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of...The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.展开更多
Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemente...Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions.From that point,an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used.The variations of SOx emissions are computed in g/k W·h and in parts per million(ppm)as functions of the optimized parameters:brake specific fuel consumption and the amount of air-fuel ratio respectively.Then,a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load.These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.展开更多
基金the SINOPEC(124015)and the State Key Laboratory of Engines at Tianjin University(No.K2022-06).
文摘The aim of this study was to investigate the oxidation reactivity and behavior of exhaust particulate matter(PM)from diesel engines.PM samples from two diesel engines(1K,CY4102)with different emission levels were collected by a thermophoretic system and a quartz filter.The oxidation reactivity,oxidation behaviors,and physicochemical properties of the PM samples were analyzed using thermogravimetric analysis(TGA),high-resolution transmission electron microscopy(HRTEM),Fourier-transform infrared spectrometry(FTIR),and Raman spectroscopy.The results showed that there was a great difference in the oxidation reactivity of soot particles emitted by the two different diesel engines.A qualitative analysis of the factors influencing oxidation reactivity showed that the nanostructure,degree of graphitization,and relative concentration of aliphatic C—H functional groups were the most important factors,whereas no significant correlation was found between the primary particle size and activation energy of the diesel soot.Based on the oxidation behavior analysis,the diesel soot particles exhibited both internal and surface oxidation modes during the oxidation process.Surface oxidation was dominant during the initial stage,and as oxidation progressed,the mode gradually changed to internal oxidation.Internal oxidation mode of soot particles from the 1K engine was significantly higher than that of CY4102.
文摘Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar.
基金supported by the Natural Science Foundation Project of Shandong Provincial(Grant No.ZR2019MEE041)the open funds of National Engineering Laboratory of Mobile Source Emission Control Technology(Grant No.NELMS2019A01).
文摘The influence of heterogeneous flow injection of urea at different velocities and temperatures on NO x conversion efficiency,ammonia storage and ammonia leakage is investigated experimentally.A diesel engine employing a selective catalytic reduction(SCR)technology is considered.It is found that for a fixed injection velocity,the degree of ammonia leakage changes depending on the temperature.The higher the temperature,the faster the catalytic reduction reaction and the smaller the degree of ammonia leakage.The temperature has a great influence on the catalytic reduction reaction rate.At an injection velocity of 10000/h,the average reaction rate at 420℃ is 12 times higher than that at 180℃.The injection velocity has a weak influence on the reaction rate.When the injection velocity changes from 10000/h to 40000/h at the same temperature,the average reaction rate does not change appreciably.However,increasing the space velocity can accelerate the leakage of ammonia,thereby miti-gating the benefits associated with the NO_(x) conversion.
基金funded by the National Natural Science Foundation of China[Grant Nos.51576129 and 12102298]the China Postdoctoral Science Foundation[Grant No.2021M702443]the State Key Laboratory of Engines(Tianjin University)[Grant No.K2022-09].
文摘Power deterioration is a major problem for diesel engines operating at high altitudes.This problem stems from the limited availability of turbocharger energy,which is not enough to increase the boost pressure to the required level.In this study,a control strategy is introduced in order to achieve engine power recovery at different altitudes.It is shown that as the altitude increases from 0 to 4500 m,the required boost pressure ratio increases from 2.4 to 4.3.The needed turbocharger energy should be increased accordingly by 240%,and the TCC(turbine characterization coefficient)should be adjusted within wide ranges.A 12%decrease in the TCC can lead to a rise of the intake air pressure,which can compensate the pressure decrease due to a 1000 m altitude increase.The fluctuation range of boost pressure was within 14.5 kPa for variations in altitude from 0 to 4500 m.
基金funded by the Science Research Project of State Grid Shaanxi Electric Power Company(5226 KY22001J)Yulin Science and Technology Planning Project(CXY-2020-024)+1 种基金Natural Science Basic Research Plan of Shaanxi(2018JQ5115,2020JM-243)the Special Fund for Basic Scientific Research of Central Colleges,Chang’an University(2018JQ5115).
文摘Experiments were conducted on a diesel-methanol dual-fuel(DMDF)engine modified by a six-cylinder,turbocharged,inter-cooled diesel engine.According to the number of diesel injection,the experiments are divided to two parts:the single injectionmode and double injectionmode.The results show that,at the double injectionmode,themaximumof pressure rise rate is small and the engine runs smoothly,however,knock still occurswhen the cocombustion ratio(CCR)is big enough.Under knock status,the power density of the block vibration concentrating at some special frequencies rises dramatically,and the special frequency of single injection mode(about 4.1 kHz)is lower than that of double injection mode(7–9 kHz).The cylinder pressure oscillations of knock status are very different fromthe non-knock status.Under knock status,cylinder pressure oscillations become more concentrated and fiercer at some special frequencies,and the same as the block vibration.The special frequency of single injection mode(3–6 kHz)is lower than that of double injection mode(above 9 kHz).
基金supported by the National Key Research and Development Program of China[Grant No.2017YFE0116100]the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China[Grant No.KYCX20_2821].
文摘This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for membrane desalination devices to produce fresh water.A new exhaust-gas heat exchanger of fins and tube,with a reinforced heat transfer tube section,unequal spacing fins,a mixing zone between the fin groups and four routes tube bundle,was designed.Numerical simulations were also used to provide reference information for structural design.Experiments were carried out for exhaust gas waste heat recovery from a marine diesel engine in an engine test bench utilizing the heat exchanger.The experimental results show that the difference between heat absorption by water and heat reduction of exhaust gas is less than 6.5%.After the water flow rate was adjusted,the exhaust gas waste heat recovery efficiency was higher than 70%,and the exhaust-gas heat exchanger’s outlet water temperature was 55°C–85°C at different engine loads.This means that the heat recovery from the exhaust gas of a marine diesel engine meets the requirement to drive a membrane desalination device to produce fresh water for fishers working in small and medium-sized fishing vessels.
文摘Aim To study the diesel engine management spstem (DEMS). The DEMS can consider many engine parameters and so it can acquire the optimum system performance. Methods On the basis of analyzing the characteristics of diesel engine electronic system, the real-time, multi-tasks system design methods were used for the heavy duty vehicular diesel engine electronic control system . The hardware and software of DEMS were developed. Results and Conalusion By the test on dieSel engine bed, the system was verified and the foundation of the fully developed DEMS was laid.
文摘Aim To ivestigate the influence on the cylinder head's stress distribution and value caused by its structure's changes.Methods Three types of cylinder heads of high power diesel engines were analysed with finite element method using I-DEAS Master series software.The actual condition of the cylinder head was simulated with different kinds of elements.Tempera- ture method was used to exert the predeformation of the bolts to the finite element model,so the pretightening force was discribed accurately Results Stress distribution regularities of the cylinder head under different working conditions were taken On the basis,the analysing results ofthreeof design schemes were compared and the optimum structure was taken Conclusion Transition condition between the head plate and the standing board ,shape of the head plate and the jobbing sheet,etc will affect the cylinder head's bearing condition
文摘Aim The particle texture from diesel engine was imitated by use of computer. Methods The theory of fractal geometry and the diffusion limited aggregation model were used to simulate the micron texture. Results The fractal dimensions of granule distribution and corpuscle superficial area are quite conformed with those of measurement. Conclusion The texture parameters of engine particle cluster can be obtained precisely by use of fractal theory.
文摘A CAD system for the cylinder head is developed. As an integrated system, it can be used in 3 D modeling, 2 D drawing and finite element structural analysis and optimization. The key problems in system designing are introduced. Design flow, system structure and how to solve the key problems are focused on. All of those would form the base for more research on how to use the modern CAD technology to design complex engine parts. And it is also a good example of using the modern CAD technology.
文摘In order to sample the speed signal of electronic diesel engine in real time and make the engine work reliable, the diesel engine control system's speed acquisition was studied and the problem of speed disturbance was solved. The control system was based on the 8?bit electronic control unit(ECU) system and the assembly language was used to design the software for controlling the engine fuel quantity and the turbocharger of the variable geometry turbine for the heavy duty diesel engine. By changing the timing method for speed acquisition, the problem of speed disturbance was solved and the reliability of the ECU was improved.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2010AA044401)
文摘The hydraulic excavator energy-saving research mainly embodies the following three measures: to improve the performance of diesel engine and hydraulic component, to improve the hydraulic system, and to improve the power matching of diesel-hydraulic system-actuator. Although the above measures have certain energy-saving effect, but because the hydraulic excavator load changes frequently and fluctuates dramatically, so the diesel engine often works in high-speed and light load condition, and the fuel consumption is higher. Therefore, in order to improve the economy of diesel engine in light load, and reduce the fuel consumption of hydraulic excavator, energy management concept is proposed based on diesel engine cylinder deactivation technology. By comparing the universal characteristic under diesel normal and deactivated cylinder condition, the mechanism that fuel consumption can be reduced significantly by adopting cylinder deactivation technology under part of loads condition can be clarified. The simulation models for hydraulic system and diesel engine are established by using AMESim software, and fuel combustion consumption by using cylinder-deactivation-technology is studied through digital simulation approach. In this way, the zone of cylinder deactivation is specified. The testing system for the excavator with this technology is set up based on simulated results, and the results show that the diesel engine can still work at high efficiency with part of loads after adopting this technology; fuel consumption is dropped down to 11% and 13% under economic and heavy-load mode respectively under the condition of driving requirements. The research provides references to the energy-saving study of the hydraulic excavators.
文摘The demands for improved fuel economy,performance and emissions continue to pose challenges for engine designers and the materials they choose. This is particularly true for modern diesel engines,where the primary path to achieving improved engine performance and emissions is to increase the Peak Firing Pressure in the combustion chamber. The resulting increase in thermal and mechanical loading has required a change from conventional grey cast iron to Compacted Graphite Iron (CGI) in order to satisfy durability requirements without increasing the size or the weight of the engines. With at least 75% higher tensile strength,45% higher stiffness and approximately double the fatigue strength of conventional grey cast iron,CGI satisfies durability requirements and also provides the dimensional stability required to meet emissions legislation throughout the life of the engine. Currently,there are no CGI diesel engines running on the roads in North America. This is set to change considerably as new commercial vehicle and pick-up SUV diesel engines are launched with CGI cylinder blocks in 2008 and 2009. These initial programs will provide over 2 million CGI diesel engines when ramped to mature volume,potentially accounting for 10%-15% of the North American passenger vehicle fleet within the next four years.
基金supported by the National Natural Science Foundation of China(51008277)the Natural Science Foundation of Zhejiang Province(LY14E080001)the Key Project of Zhejiang Provincial Science and Technology Program(2012C03003-4)~~
文摘Cu–Mn bimetal catalysts were prepared to remove nitrogen oxides(NOx)from diesel engine exhaust at low temperatures.At a Cu/Mn ratio of 3:2,the NOx conversions at 200°C reached 65%and 90%on Cu–Mn/ZSM‐5 and Cu–Mn/SAPO‐34,respectively.After a hydrothermal treatment and reaction in the presence of C3H6,the activity of Cu–Mn/SAPO‐34 was more stable than that of Cu–Mn/ZSM‐5.No obvious variations in the crystal structure or dealumination were observed,whereas the physical structure was best maintained in Cu–Mn/SAPO‐34.The atomic concentration of Cu on the surface of Cu–Mn/SAPO‐34 was quite stable,and the consumption of octahedrally coordinated Cu2+could be recovered.Conversely,the proportion of octahedrally coordinated Cu2+on the surface of Cu–Mn/ZSM‐5 significantly decreased.Therefore,besides the structure,the redox cycle between Cu+and octahedrally coordinated Cu2+played an important role in the stability of the catalysts.
基金Supported by National Science and Technology Support Program of China(Grant No.2015BAF07B04)
文摘Numerous vibration-based techniques are rarely used in diesel engines fault diagnosis in a direct way, due to the surface vibration signals of diesel engines with the complex non-stationary and nonlinear time-varying fea- tures. To investigate the fault diagnosis of diesel engines, fractal correlation dimension, wavelet energy and entropy as features reflecting the diesel engine fault fractal and energy characteristics are extracted from the decomposed signals through analyzing vibration acceleration signals derived from the cylinder head in seven different states of valve train. An intelligent fault detector FastICA-SVM is applied for diesel engine fault diagnosis and classification. The results demonstrate that FastlCA-SVM achieves higher classification accuracy and makes better general- ization performance in small samples recognition. Besides, the fractal correlation dimension and wavelet energy and entropy as the special features of diesel engine vibration signal are considered as input vectors of classifier FastlCA- SVM and could produce the excellent classification results. The proposed methodology improves the accuracy of fea- ture extraction and the fault diagnosis of diesel engines.
基金Project(2011BAE22B05)supported by the National Science and Technology Pillar Program during the 12th Five-year Plan of China
文摘Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured.
基金This work was supported by the National Natural Science Foundation of China (No. 20425722, 20621140004);the Ministry of Science and Technology of China (No. 2006AA060304).
文摘In this study, the efforts to reduce NOx and particulate matter (PM) emissions from a diesel engine using both ethanol-selective catalytic reduction (SCR) of NOx over an Ag/Al2O3 catalyst and a biodiesel-ethanol-diesel fuel blend (BE-diesel) on an engine bench test are discussed. Compared with diesel fuel, use of BE-diesel increased PM emissions by 14% due to the increase in the soluble organic fraction (SOF) of PM, but it greatly reduced the Bosch smoke number by 60%-80% according to the results from 13-mode test of European Stationary Cycle (ESC) test. The SCR catalyst was effective in NOx reduction by ethanol, and the NOx conversion was approximately 73%. Total hydrocarbons (THC) and CO emissions increased significantly during the SCR of NOx process. Two diesel oxidation catalyst (DOC) assemblies were used after Ag/Al2O3 converter to remove CO and HC. Different oxidation catalyst showed opposite effect on PM emission. The PM composition analysis revealed that the net effect of oxidation catalyst on total PM was an integrative effect on SOF reduction and sulfate formation of PM. The engine bench test results indicated that the combination of BE-diesel and a SCR catalyst assembly could provide benefits for NOx and PM emissions control even without using diesel particle filters (DPFs).
文摘This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others).
文摘The effect of fin attachment on the thermal stress reduction of exhaust manifold of an off road diesel engine(Komatsu HD325-6) was investigated.For doing this,coupled thermo-fluid-solid analysis of exhaust manifold of the off road diesel engine was carried out.The thermal analysis,including thermal flow,thermal stress,and the thermal deformation of the manifold was investigated.The flow inside the manifold was simulated and then its properties including velocity,pressure,and temperature were obtained.The flow properties were transferred to the solid model and then the thermal stresses and the thermal deformations of the manifold under different operating conditions were calculated.Finally,based on the predicted thermal stresses and thermal deformations of the manifold body shell,two fin types as well as body shell thickness increase were applied in the critical induced thermal stress area of the manifold to reduce the thermal stress and thermal deformation.The results of the above modifications show that the combined modifications,i.e.the thickness increase and the fin attachment,decrease the thermal stresses by up to 28% and the contribution of the fin attachment in this reduction is much higher compared to the shell thickness increase.
基金performed within the Strategic Research Plan of the Centre for Marine Technology and Ocean Engineering(CENTEC)financed by Portuguese Foundation for Science and Technology(Fundacao para a Ciência e Tecnologia(FCT)),under contract UID/Multi/00134/2013-LISBOA-01-0145-FEDER-007629。
文摘Optimization procedures are required to minimize the amount of fuel consumption and exhaust emissions from marine engines.This study discusses the procedures to optimize the performance of any marine engine implemented in a 0D/1D numerical model in order to achieve lower values of exhaust emissions.From that point,an extension of previous simulation researches is presented to calculate the amount of SOx emissions from two marine diesel engines along their load diagrams based on the percentage of sulfur in the marine fuel used.The variations of SOx emissions are computed in g/k W·h and in parts per million(ppm)as functions of the optimized parameters:brake specific fuel consumption and the amount of air-fuel ratio respectively.Then,a surrogate model-based response surface methodology is used to generate polynomial equations to estimate the amount of SOx emissions as functions of engine speed and load.These developed non-dimensional equations can be further used directly to assess the value of SOx emissions for different percentages of sulfur of the selected or similar engines to be used in different marine applications.