To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,...To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic(MD)simulation.The atomic diffusion behaviors are compared between similar metal combinations(Al-Al,Cu-Cu)and dissimilar metal combinations(Al-Cu).By combining the simulation results and classical diffusion theory,the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained.The effects of material combinations and collision velocity on diffusion behaviors are also discussed.The diffusion behaviors of dissimilar material combinations strongly depend on the transverse velocity,whereas those of the similar material combinations are more dependent on the longitudinal velocity.These findings can provide guidance for optimizing welding parameters.展开更多
Diffusion behavior of Ni in Zr48Cu36Ag8Al8 metallic glass was investigated in the temperature range of 683-723 K by secondary ion mass spectrum(SIMS) and transmission electron microscope(TEM). The diffusivity of Ni in...Diffusion behavior of Ni in Zr48Cu36Ag8Al8 metallic glass was investigated in the temperature range of 683-723 K by secondary ion mass spectrum(SIMS) and transmission electron microscope(TEM). The diffusivity of Ni in Zr48Cu36Ag8Al8 is reasonably fitted by a single Arrhenius relation with small effective activation energy. The diffusivity of Ni in Zr48Cu36Ag8Al8 is an instantaneous function of annealing time in the supercooled liquid region. In addition, a large number of nano-crystals are detected near the interface of Ni-Zr48Cu36Ag8Al8 diffusion couple, and its width is broader than the Ni diffusion depth determined by SIMS. The results indicate that atomic inter-diffusion is an important factor to promote the formation of nano-crystals within the diffusion zone.展开更多
To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and d...To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and diffusion of harmful substances from a trackless rubber-wheel diesel vehicle.A computational fluid dynamics(CFD)model of the diffusion of harmful emissions was hence established and verified.From the perspective of risk analysis,the diffusion behavior and distribution of hazardous substances emitted by the diesel vehicle were studied under 4 different conditions;moreover,we identified areas characterized by hazardous levels of emissions.When the vehicle idled upwind in the roadway,high-risk areas formed behind and to the right of the vehicle:particularly high concentrations of pollutants were measured near the rear floor of the vehicle and within 5 m behind the vehicle.When the vehicle idled downwind,high-risk areas formed in front of it:particularly high concentrations of pollutants were measured near the floor and within 5 m from the front of the vehicle.In the above cases,the driver would not breathe highly polluted air and would be relatively safe.When the vehicle idled into the chamber,however,high-risk areas formed on both sides of the vehicle and near the upper roof.Forward entry of the vehicle caused a greater increase in the concentration of pollutants in the chamber and in the driver’s breathing zone compared with reverse entry.展开更多
Cu/W multilayer nanofilms are prepared in pure Ar and He/At mixing atmosphere by the rf magnetron sputtering method. The cross-sectional morphology and the defect distribution of the Cu/W multilayer nanofilms are char...Cu/W multilayer nanofilms are prepared in pure Ar and He/At mixing atmosphere by the rf magnetron sputtering method. The cross-sectional morphology and the defect distribution of the Cu/W multilayer nanofilms are characterized by scanning electron microscopy and Doppler broadening positron annihilation spectroscopy. The results show that plenty of point defects can be produced by introducing He during the growth of the multilayer nanofilms. With the increasing natural storage time, He located in the near surface of the Cu//W multilayer nanofilm at room temperature could be released gradually and induce the segregation of He-related defects due to the diffusion of He and defects. However, more He in the deep region spread along the interface of the Cu/W multilayer nanofilm. Meanwhile, the layer interfaces can still maintain their stability.展开更多
To elucidate the diffusion behavior of carbon atoms within the austenite region,the decarbonization of 72LX steel bloom was investigated.Experimental studies were performed to obtain the depth profiles of the decarbur...To elucidate the diffusion behavior of carbon atoms within the austenite region,the decarbonization of 72LX steel bloom was investigated.Experimental studies were performed to obtain the depth profiles of the decarburized layers within the temperature range of 950-1250℃.The findings show that,within a temperature range of 950-1200℃,both the depth of the decarburization layer of the grain interior(h_(in))and the depth of the decarbonization effect zone of the grain boundary(h_(b))increase concurrently with increasing holding temperatures and times and an inflection point is observed at 1200℃.By measuring the change in the sample diameter before and after the experiment,the change in the radius reduction of h_(Fe) causes by oxidation is obtained.Minimal changes are observed in h_(Fe) when the temperature is below 1050℃.As the temperature increases to 1100℃,a sudden change in h_(Fe) is observed,which corresponds to a rapid increase in oxidation.At temperatures above 1100℃,a more gradual change is observed.From the experimental results,a two-dimensional decarburization mathematical model is established and the carbon diffusion coefficients at different temperatures are obtained by simulation and regression fitting.The simulation values obtain from the carbon diffusion model matched well with the experimental values,thereby confirming the accuracy of the simulation process.展开更多
Ru-doped NiAlHf coatings were deposited on Ni-based single crystal substrate by arc ion plating technology.The failure mechanism and interfacial diffusion behavior were comparatively investigated with NiAlHf coating u...Ru-doped NiAlHf coatings were deposited on Ni-based single crystal substrate by arc ion plating technology.The failure mechanism and interfacial diffusion behavior were comparatively investigated with NiAlHf coating using scanning electron microscopy,electron probe micro-analyzer,and transmission electron microscopy.The results indicated that microstructure evolution of oxide scale induced by element diffusion process significantly affected oxidation resistance of NiAlHf/Ru coatings,resulting in formation of cracks and voids,thereby accelerating failure process.The precipitates in interdiffusion zone and secondary reaction zone of the substrate initiated by interfacial element diffusion were P phase andσphase,respectively.And the discrepancy in content was elucidated from the perspective of thermodynamics and kinetics.Besides,microstructural evolution between NiAlHf/Ru coatings and substrate was also deliberated.The research could not only provide profound understanding of NiAlHf/Ru coatings failure mechanism,but also had significant guidance for suppressing precipitation of topological close-packed phases and facilitating development of single crystal Ni-based superalloys.展开更多
The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,...The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,leading to the destruction of the coating layers.Investigating how carbon content affects element diffusion in silicon carbide-based TRISO composite fuel is of great significance for predicting reactor safety.In this study,silicon carbide-based TRISO composite fuels with different carbon contents were prepared by adding varying amounts of phenolic resin to the silicon carbide matrix.X-ray Diffraction(XRD)and Scanning Electron Microscopy(SEM)were employed to characterize the phase composition,morphology,and microstructure of the composite fuels.The elemental content in each coating layer of TRISO was quantified using Energy-Dispersive X-ray Spectroscopy(EDS).The results demonstrated that the addition of phenolic resin promoted the uniform distribution of sintering aids in the silicon carbide matrix.The atomic percentage(at.%)of aluminum(Al)in the pyrolytic carbon layer of the TRISO particles reached its lowest value of 0.55%when the phenolic resin addition was 1%.This is because the addition of phenolic resin caused the Al and silicon(Si)in the matrix to preferentially react with the carbon in the phenolic resin to form a metastable liquid phase,rather than preferentially consuming the pyrolytic carbon in the outer coating layer of the TRISO particles.The findings suggest that carbon addition through phenolic resin incorporation can effectively mitigate the deleterious reactions between the TRISO coating layers and sintering aids,thereby enhancing the durability and safety of silicon carbide-based TRISO composite fuels.展开更多
The diffusion behavior and reactions between AI and Ca in Mg alloys by diffusion couple method were investigated. Results demonstrate that Al2Ca is the only phase existing in the diffusion reaction layers. The volume ...The diffusion behavior and reactions between AI and Ca in Mg alloys by diffusion couple method were investigated. Results demonstrate that Al2Ca is the only phase existing in the diffusion reaction layers. The volume fraction of Al2Ca in diffusion reaction layers increases linearly with temperature. The standard enthalpy of formation for intermetallic compounds was rationalized on the basis of the Miedema model. Al-Ca intermetallic compounds were preferable to form in the Mg-Al-Ca ternary system under the same conditions. Over the range of 350-400℃, the structure of Al2Ca is more stable than that of Al4Ca, Al14Ca13and Al3Ca8, The growth constants of the layer I, layer II and entire diffusion reaction layers were determined. The activation energies for the growth of the layer I, layer II and entire diffusion reaction layers were (80.74 ± 3.01 ) kJ/mol, (93.45 ±2.12) kJ/mol and (83.52 ±1.50) kJ/mot, respectively. In layer I and II, AI has higher integrated interdiffusion coefficients D^i^Int,layer layer than Ca. The average effective interdiffusion coefficients D^Al^eff values are higher than D^Ca^eff in the layer I and II.展开更多
NiAl-La2O3 compostite coating was prepared by Ni-La2O3 electrodeposited and pack aluminized at 1173 K on Ni-base superalloy K38. The result of oxidation in air at 1273 K for 20 h shows that the oxidation rate of NiAl-...NiAl-La2O3 compostite coating was prepared by Ni-La2O3 electrodeposited and pack aluminized at 1173 K on Ni-base superalloy K38. The result of oxidation in air at 1273 K for 20 h shows that the oxidation rate of NiAl-La2O3 coating is remarkably lower than that of NiAl-La2O3 free coating. The oxide film surface morphology of NiAl-La2O3 composite coating was obviously modified after oxidation. HREM study of the fine structure of aluminum oxide on the composite coating shows that La2O3 particles with diameter of 10 ̄40 nm were incorporated into u-Al2O3 layer. It is believed that La2O3 dispersive particles improve NiAl coating oxidation resistance by a way to influence aluminum layer microstructure and to modify cationic transfer behavior of the layer growth.展开更多
Coral materials can replace concrete aggregates and achieve material self sufficiency for reducing the construction costs of island projects.This paper studies the effects of different mineral admixtures on the proper...Coral materials can replace concrete aggregates and achieve material self sufficiency for reducing the construction costs of island projects.This paper studies the effects of different mineral admixtures on the properties of coral aggregate concrete(CAC).The chloride concentration of CAC after different erosion times is measured using the potentiometric method,and the porosity of the CAC is ca lculated using thermogravimetric and drying methods.The chloride concentration of the CAC presents a two-phases dis tribution.The peak chloride concentration fol-lowed a power function,increasing with the erosion time.The chloride diffusion coefficient of CAC is 7.9%-37.5%larger than that of ordinary aggregate concrete,and the addition of 15% fly ash and 5%silica fume can significantly reduce the chloride diffusion coefficient,with a maximum reduction of 45.0%.The porosity obtained via the thermogravimetric and drying methods is well correlated.The porosity has a strong negative correlation with the compressive strength and a strong positive correlation with the chloride diffusion coefficient.展开更多
Poly(aryl ether keton e)(PAEK) films with different crystallinities were obtained by controlling the cooling rate,which were subjected to the absorption and desorption of methylene chloride(CH_(2)Cl_(2)).We employed a...Poly(aryl ether keton e)(PAEK) films with different crystallinities were obtained by controlling the cooling rate,which were subjected to the absorption and desorption of methylene chloride(CH_(2)Cl_(2)).We employed attenuated total reflection Fourier transform infrared(ATR-FTIR)spectroscopy analyses to investigate the diffusion behavior of CH_(2)Cl_(2) in PAEK films with different crystallinities.According to the Fickian diffusion model,the calculated diffu sion coefficients of CH_(2)Cl_(2) in PAEK films were observed to decrease with increasing crystallinity.The effect of CH_(2)Cl_(2)absorption and desorption on the mechanical properties of PAEK films with different crystallinity was further analyzed using tensile tests.The tensile tests exhibited that CH_(2)Cl_(2) has two concurrent effects:plasticization and solvent-induced crystallization.Differential scanning calorimetry(DSC) and wide-angle X-ray diffraction(WXRD) techniques further confirmed solvent-induced crystallization behavior.The results would be beneficial to understand the solvent resistance of PAEK materials and consequently provide the practical application conditions of PAEK with a theoretical basis.展开更多
Currently the catalysis of hydrogen evolution reaction(HER)is mainly focused on the inherent electrocatalytic activity at relatively lower current densities while scarce at high current densities.Nevertheless,the latt...Currently the catalysis of hydrogen evolution reaction(HER)is mainly focused on the inherent electrocatalytic activity at relatively lower current densities while scarce at high current densities.Nevertheless,the latter is highly demanding in efficient mass-production of hydrogen.A SiO_(2) nanospheres template-synthesis is used to prepare mesoporous molybdenum carbide nanocrystals-embedded nitrogen-doped carbon foams(mp-Mo_(2)C/NC).The material shows much more excellent catalytic activity than the non-etched Mo_(2)C/NC toward hydrogen evolution reaction(HER)in acidic medium.More interestingly mp-Mo_(2)C/NC still has larger overpotential than Pt/C at lower current densities,but possess remarkably smaller overpotential than the latter at higher current densities for much better electrocatalytic performance.An approach is developed to investigate the electrode kinetics by Tafel plots,especially with eliminating the diffusion effect,indicating that Pt/C and mp-Mo_(2)C/NC display different reaction mechanisms.At low current densities the former presents reversible reaction,while the latter shows mixed electrochemical polarization/reversible electrode process.In the region of higher current densities,the former becomes totally gas-diffusion controlled with large overpotential,while the latter can still retain an electrode polarization process for much lower overpotential at the same current density.Result endorses that the meso-porously structured mp-Mo_(2)C/NC plays a critical role in avoiding gas diffusion control-resulting large overpotential at high current densities.This work holds great potential for an inexpensive catalyst better than Pt/C in practical applications of mass-production hydrogen at high current densities,while clearly shedding fundamental lights on designs of rational HER catalysts for the uses at high current densities.展开更多
Information diffusion may lead to behaviors related to information content.This paper considers the co-existence of information and behavior diffusion in social networks.The state of users is divided into six categori...Information diffusion may lead to behaviors related to information content.This paper considers the co-existence of information and behavior diffusion in social networks.The state of users is divided into six categories,and the rules and model of collaborative diffusion of information and behavior are established.The influence of different parameters and conditions on the proportions of behavior diffusion nodes and information diffusion ones is analyzed experimentally.The results show that the proportion of nodes taking action in uniform networks is higher than that in non-uniform networks.Although users are more likely to take actions related to information content after spreading or knowing information,the results show that it has little influence on the proportion of users taking action.The proportion is mainly affected by the probability that users who do not take action become ones who take.The greater the probability,the less the proportion of nodes who know information.In addition,compared with choosing the same node as the initial information and behavior diffusion node,choosing different nodes is more beneficial to the diffusion of behaviors related to information content.展开更多
WC-6MoxC-0.47Cr3C2-0.28VC binderless carbide was prepared by hot pressing (1700 °C, 20 MPa). The sample was observed and analyzed by scanning electron microscopy, energy dispersive X–ray spectroscopy and X–ra...WC-6MoxC-0.47Cr3C2-0.28VC binderless carbide was prepared by hot pressing (1700 °C, 20 MPa). The sample was observed and analyzed by scanning electron microscopy, energy dispersive X–ray spectroscopy and X–ray diffraction. The results show that during the hot pressing process, W atoms dissolve substantially into the MoxC crystal lattices; whilst, the reverse dissolution of Mo atoms into the WC crystal lattices takes place. Consequently, the main phase and binder phase structure are formed. The phase compositions of the main phase and binder phase are a WC-based solid solution containing Mo and a Mo2C-based solid solution containing W, respectively. The isotropic dissolution and precipitation of W and Mo atoms do not result in substantial carbide coarsening. The mechanism for the densification was discussed.展开更多
As the lightest two-dimensional material,monolayer borophene exhibits great potential as electrode materials,but it suffers from stability issues in the free-standing form.Here,the striped-borophene and graphene bilay...As the lightest two-dimensional material,monolayer borophene exhibits great potential as electrode materials,but it suffers from stability issues in the free-standing form.Here,the striped-borophene and graphene bilayer(sB/Gr)is found to be a high-performance anode material for rechargeable alkali-metal ion batteries.The first-principles results show that all the three alkali-metal atoms,Li,Na,and K,can be strongly adsorbed on sB/Gr with ultra-low diffusion barriers than that on pristine borophene/graphene,indicating good charge-discharge rates.Remarkably,high storage capacities are proposed for LIBs(1880 mA·h/g),NIBs(1648 mA·h/g),and KIBs(470 m A·h/g)with relatively small lattice change rate(<2.9%)in the process of alkali-metal atoms intercalations.These intriguing features of sB/Gr make it an excellent choice for batteries.展开更多
In this work, porous Ti6Al4V alloys with 30%-70% porosity for biomedical applications were fabricated by diffusion bonding of alloy meshes. Pore structure was characterized by Micro-CT and SEM. Compressive behavior in...In this work, porous Ti6Al4V alloys with 30%-70% porosity for biomedical applications were fabricated by diffusion bonding of alloy meshes. Pore structure was characterized by Micro-CT and SEM. Compressive behavior in the out-of-plane direction and biocompatibility with cortical bone were studied. The results reveal that the fabricated porous Ti6Al4V alloys possess anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The average pore size of porous Ti6Al4V alloys with 30%-70% porosity is in the range of 240-360 Bin. By tailoring diffusion bonding temperature, aspect ratio of alloy meshes and porosity, porous Ti6Al4V alloys with different compressive properties can be obtained, for instance, Young's modulus and yield stress in the ranges of 4-40 GPa and 70-500 MPa, respectively. Yield stress of porous Ti6Al4V alloys fabricated by diffusion bonding is close to that of alloys fabricated by rapid prototyping, hut higher than that of fabricated by powder sintering and space-holder method. Diffusion bonding temperature has some effects on the yield stress of porous Ti6Al4V alloys, but has a minor effect on the Young's modulus. The relationship between compressive properties and relative density conforms well to the Gibson-Ashby model. The Young's modulus is linear with the aspect ratio, while the yield stress is linear with the square of aspect ratio of alloy meshes. Porous Ti6Al4V alloys with 60%-70% porosity have potential for cortical bone implant applications.展开更多
In a gas-solid separation fluidized bed,mixing of fine coal is necessary to achieve a suitable bed density to enable effective separation of low rank coal.On the basis of a variety of mixture models,a gas-solid separa...In a gas-solid separation fluidized bed,mixing of fine coal is necessary to achieve a suitable bed density to enable effective separation of low rank coal.On the basis of a variety of mixture models,a gas-solid separation fluidized bed was judged,where fine coal particles of 0.6-1.0mm were uniformly mixed with magnetite powder.High-speed dynamic camera technology was combined with a slump-sampling method to study the mixing process of the fine coal in the fluidized bed.These results showed that limitations of the fluidized bed structure cause the mixing process to be dominated by lateral diffusion and supplemented by axial diffusion.Axial diffusion was mainly achieved through the ascension of bubbles,whereas lateral diffusion was determined by the bursting action of the gas bubbles at the surface of the bed and the undulating characteristics of the bed.The effective lateral diffusion coefficient increased exponentially with gas velocity but had no strong relationship with the bed height.As the feed point moved toward the center,fine coal began to diffuse to both sides,which shortened the time for the bed density stabilization from 20 to 5 min.The bed density of the layer was stabilized at approximately 1.75 g/cm3.The separation efficiency of the gas-solid separation fluidized bed containing binary mixtures was more obvious for 6-50 mm raw coal,with a probable error E of 0.16.展开更多
The cementite formation and coarsening behaviors of 0. 2 mass% C-5 mass% Mn steel during tempering at 500℃ were investigated by in-situ transmission electron microscope( TEM). In-situ TEM observation showed uniform...The cementite formation and coarsening behaviors of 0. 2 mass% C-5 mass% Mn steel during tempering at 500℃ were investigated by in-situ transmission electron microscope( TEM). In-situ TEM observation showed uniform distribution of cementite particles at the early stage of tempering in the rapidly heated( 500 ℃ / s) sample. Elemental analysis confirmed that the cementite growth was dominated by Mn diffusion. During the cementite growth,the coarsening behavior of intragranular cementite was significantly controlled by the matrix diffusion,while that of the intergranular cementite was mainly governed by the boundary diffusion. The in-situ TEM observation revealed that the dislocation pipe diffusion of Mn took place during tempering,which accelerated the Mn diffusion between cementite particles. The coarsening rates of individual cementite particles were calculated based on the in-situ TEM observation.展开更多
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid (Pb)/ liquid (Sn) diffusion couples were investigated under various static magnetic fields. Results show that the...A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid (Pb)/ liquid (Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field (〈0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level (0.8-5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.展开更多
基金supported by the Scientific Research Project of Hunan Provincial Department of Education(22C0642).
文摘To investigate the effects of material combinations and velocity conditions on atomic diffusion behavior near collision interfaces,this study simulates the atomic diffusion behavior near collision interfaces in Cu-Al,Al-Al and Cu-Cu combinations fabricated through collision welding using molecular dynamic(MD)simulation.The atomic diffusion behaviors are compared between similar metal combinations(Al-Al,Cu-Cu)and dissimilar metal combinations(Al-Cu).By combining the simulation results and classical diffusion theory,the diffusion coefficients for similar and dissimilar metal material combinations under different velocity conditions are obtained.The effects of material combinations and collision velocity on diffusion behaviors are also discussed.The diffusion behaviors of dissimilar material combinations strongly depend on the transverse velocity,whereas those of the similar material combinations are more dependent on the longitudinal velocity.These findings can provide guidance for optimizing welding parameters.
基金Project(JC20120203)supported by the Fundamental Research Fund of Northwestern Polytechnical University,ChinaProject(B08040)supported by the Program of Introducing Talents of Discipline to Universities,China
文摘Diffusion behavior of Ni in Zr48Cu36Ag8Al8 metallic glass was investigated in the temperature range of 683-723 K by secondary ion mass spectrum(SIMS) and transmission electron microscope(TEM). The diffusivity of Ni in Zr48Cu36Ag8Al8 is reasonably fitted by a single Arrhenius relation with small effective activation energy. The diffusivity of Ni in Zr48Cu36Ag8Al8 is an instantaneous function of annealing time in the supercooled liquid region. In addition, a large number of nano-crystals are detected near the interface of Ni-Zr48Cu36Ag8Al8 diffusion couple, and its width is broader than the Ni diffusion depth determined by SIMS. The results indicate that atomic inter-diffusion is an important factor to promote the formation of nano-crystals within the diffusion zone.
基金supported by the National Natural Science Foundation of China(Nos.52174191 and 51874191)the National Key R&D Program of China(No.2017YFC0805201)+1 种基金Qingchuang Science and Technology Project of Shandong Province University(No.2020KJD002)Taishan Scholars Project Special Funding(No.TS20190935).
文摘To define the diffusion behavior of harmful exhaust substances from diesel vehicles and support safety risk assessments of underground coal mines,we performed a multi-species coupling calculation of the emission and diffusion of harmful substances from a trackless rubber-wheel diesel vehicle.A computational fluid dynamics(CFD)model of the diffusion of harmful emissions was hence established and verified.From the perspective of risk analysis,the diffusion behavior and distribution of hazardous substances emitted by the diesel vehicle were studied under 4 different conditions;moreover,we identified areas characterized by hazardous levels of emissions.When the vehicle idled upwind in the roadway,high-risk areas formed behind and to the right of the vehicle:particularly high concentrations of pollutants were measured near the rear floor of the vehicle and within 5 m behind the vehicle.When the vehicle idled downwind,high-risk areas formed in front of it:particularly high concentrations of pollutants were measured near the floor and within 5 m from the front of the vehicle.In the above cases,the driver would not breathe highly polluted air and would be relatively safe.When the vehicle idled into the chamber,however,high-risk areas formed on both sides of the vehicle and near the upper roof.Forward entry of the vehicle caused a greater increase in the concentration of pollutants in the chamber and in the driver’s breathing zone compared with reverse entry.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11275132,51171124 and 11505121the International Science and Technology Cooperation Program of China under Grant No 2014DFR50710the Scientific and Technical Supporting Programs Funded by the Science and Technology Department of Sichuan Province under Grant No 2014GZ0004
文摘Cu/W multilayer nanofilms are prepared in pure Ar and He/At mixing atmosphere by the rf magnetron sputtering method. The cross-sectional morphology and the defect distribution of the Cu/W multilayer nanofilms are characterized by scanning electron microscopy and Doppler broadening positron annihilation spectroscopy. The results show that plenty of point defects can be produced by introducing He during the growth of the multilayer nanofilms. With the increasing natural storage time, He located in the near surface of the Cu//W multilayer nanofilm at room temperature could be released gradually and induce the segregation of He-related defects due to the diffusion of He and defects. However, more He in the deep region spread along the interface of the Cu/W multilayer nanofilm. Meanwhile, the layer interfaces can still maintain their stability.
基金Funded by the National Natural Science Foundation of China(U20A20272)the Special Projects for Military-Civilian Collaborative Innovation in Science and Technology of Hebei Province(202231401010003)the Open Topic of Key Laboratory of Material Forming and Structure Property Control from University of Science and Technology Liaoning(USTLKFSY201708)。
文摘To elucidate the diffusion behavior of carbon atoms within the austenite region,the decarbonization of 72LX steel bloom was investigated.Experimental studies were performed to obtain the depth profiles of the decarburized layers within the temperature range of 950-1250℃.The findings show that,within a temperature range of 950-1200℃,both the depth of the decarburization layer of the grain interior(h_(in))and the depth of the decarbonization effect zone of the grain boundary(h_(b))increase concurrently with increasing holding temperatures and times and an inflection point is observed at 1200℃.By measuring the change in the sample diameter before and after the experiment,the change in the radius reduction of h_(Fe) causes by oxidation is obtained.Minimal changes are observed in h_(Fe) when the temperature is below 1050℃.As the temperature increases to 1100℃,a sudden change in h_(Fe) is observed,which corresponds to a rapid increase in oxidation.At temperatures above 1100℃,a more gradual change is observed.From the experimental results,a two-dimensional decarburization mathematical model is established and the carbon diffusion coefficients at different temperatures are obtained by simulation and regression fitting.The simulation values obtain from the carbon diffusion model matched well with the experimental values,thereby confirming the accuracy of the simulation process.
基金This work was supported by Guangdong Special Support Program(No.2019BT02C629)GDAS0 Project of Science Technology Development(No.2020GDASYL-20200402005)+1 种基金The Scientific Research Fund of Guangdong Province,China(No.2016A030312015)Doctoral Research Initiation Program(No.84KZ-KZ08072).
文摘Ru-doped NiAlHf coatings were deposited on Ni-based single crystal substrate by arc ion plating technology.The failure mechanism and interfacial diffusion behavior were comparatively investigated with NiAlHf coating using scanning electron microscopy,electron probe micro-analyzer,and transmission electron microscopy.The results indicated that microstructure evolution of oxide scale induced by element diffusion process significantly affected oxidation resistance of NiAlHf/Ru coatings,resulting in formation of cracks and voids,thereby accelerating failure process.The precipitates in interdiffusion zone and secondary reaction zone of the substrate initiated by interfacial element diffusion were P phase andσphase,respectively.And the discrepancy in content was elucidated from the perspective of thermodynamics and kinetics.Besides,microstructural evolution between NiAlHf/Ru coatings and substrate was also deliberated.The research could not only provide profound understanding of NiAlHf/Ru coatings failure mechanism,but also had significant guidance for suppressing precipitation of topological close-packed phases and facilitating development of single crystal Ni-based superalloys.
基金funded by the Shanghai Academic/Technology Research Leader(Project No.21XD1432000).
文摘The coating layers of Tri-structural Isotropic Particles(TRISO)serve to protect the kernel and act as barriers to fission products.Sintering aids in the silicon carbide matrix variably react with TRISO coating layers,leading to the destruction of the coating layers.Investigating how carbon content affects element diffusion in silicon carbide-based TRISO composite fuel is of great significance for predicting reactor safety.In this study,silicon carbide-based TRISO composite fuels with different carbon contents were prepared by adding varying amounts of phenolic resin to the silicon carbide matrix.X-ray Diffraction(XRD)and Scanning Electron Microscopy(SEM)were employed to characterize the phase composition,morphology,and microstructure of the composite fuels.The elemental content in each coating layer of TRISO was quantified using Energy-Dispersive X-ray Spectroscopy(EDS).The results demonstrated that the addition of phenolic resin promoted the uniform distribution of sintering aids in the silicon carbide matrix.The atomic percentage(at.%)of aluminum(Al)in the pyrolytic carbon layer of the TRISO particles reached its lowest value of 0.55%when the phenolic resin addition was 1%.This is because the addition of phenolic resin caused the Al and silicon(Si)in the matrix to preferentially react with the carbon in the phenolic resin to form a metastable liquid phase,rather than preferentially consuming the pyrolytic carbon in the outer coating layer of the TRISO particles.The findings suggest that carbon addition through phenolic resin incorporation can effectively mitigate the deleterious reactions between the TRISO coating layers and sintering aids,thereby enhancing the durability and safety of silicon carbide-based TRISO composite fuels.
基金financial supports from the Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJ1712301, KJ1601302)Chongqing Science and Technology Commission (cstc2017jcyj AX0394, cstc2017jcyj A1019)+1 种基金the Research Foundation of Yangtze Normal University (2016RYQD15, 2016XJQN32)the National Natural Science Foundation of China (51701033)
文摘The diffusion behavior and reactions between AI and Ca in Mg alloys by diffusion couple method were investigated. Results demonstrate that Al2Ca is the only phase existing in the diffusion reaction layers. The volume fraction of Al2Ca in diffusion reaction layers increases linearly with temperature. The standard enthalpy of formation for intermetallic compounds was rationalized on the basis of the Miedema model. Al-Ca intermetallic compounds were preferable to form in the Mg-Al-Ca ternary system under the same conditions. Over the range of 350-400℃, the structure of Al2Ca is more stable than that of Al4Ca, Al14Ca13and Al3Ca8, The growth constants of the layer I, layer II and entire diffusion reaction layers were determined. The activation energies for the growth of the layer I, layer II and entire diffusion reaction layers were (80.74 ± 3.01 ) kJ/mol, (93.45 ±2.12) kJ/mol and (83.52 ±1.50) kJ/mot, respectively. In layer I and II, AI has higher integrated interdiffusion coefficients D^i^Int,layer layer than Ca. The average effective interdiffusion coefficients D^Al^eff values are higher than D^Ca^eff in the layer I and II.
文摘NiAl-La2O3 compostite coating was prepared by Ni-La2O3 electrodeposited and pack aluminized at 1173 K on Ni-base superalloy K38. The result of oxidation in air at 1273 K for 20 h shows that the oxidation rate of NiAl-La2O3 coating is remarkably lower than that of NiAl-La2O3 free coating. The oxide film surface morphology of NiAl-La2O3 composite coating was obviously modified after oxidation. HREM study of the fine structure of aluminum oxide on the composite coating shows that La2O3 particles with diameter of 10 ̄40 nm were incorporated into u-Al2O3 layer. It is believed that La2O3 dispersive particles improve NiAl coating oxidation resistance by a way to influence aluminum layer microstructure and to modify cationic transfer behavior of the layer growth.
基金This study was supported by the National Natural Science Foundation of China(No.51590914).
文摘Coral materials can replace concrete aggregates and achieve material self sufficiency for reducing the construction costs of island projects.This paper studies the effects of different mineral admixtures on the properties of coral aggregate concrete(CAC).The chloride concentration of CAC after different erosion times is measured using the potentiometric method,and the porosity of the CAC is ca lculated using thermogravimetric and drying methods.The chloride concentration of the CAC presents a two-phases dis tribution.The peak chloride concentration fol-lowed a power function,increasing with the erosion time.The chloride diffusion coefficient of CAC is 7.9%-37.5%larger than that of ordinary aggregate concrete,and the addition of 15% fly ash and 5%silica fume can significantly reduce the chloride diffusion coefficient,with a maximum reduction of 45.0%.The porosity obtained via the thermogravimetric and drying methods is well correlated.The porosity has a strong negative correlation with the compressive strength and a strong positive correlation with the chloride diffusion coefficient.
基金financially supported by the National Key R&D Program of China (No.2022YFB3709402)。
文摘Poly(aryl ether keton e)(PAEK) films with different crystallinities were obtained by controlling the cooling rate,which were subjected to the absorption and desorption of methylene chloride(CH_(2)Cl_(2)).We employed attenuated total reflection Fourier transform infrared(ATR-FTIR)spectroscopy analyses to investigate the diffusion behavior of CH_(2)Cl_(2) in PAEK films with different crystallinities.According to the Fickian diffusion model,the calculated diffu sion coefficients of CH_(2)Cl_(2) in PAEK films were observed to decrease with increasing crystallinity.The effect of CH_(2)Cl_(2)absorption and desorption on the mechanical properties of PAEK films with different crystallinity was further analyzed using tensile tests.The tensile tests exhibited that CH_(2)Cl_(2) has two concurrent effects:plasticization and solvent-induced crystallization.Differential scanning calorimetry(DSC) and wide-angle X-ray diffraction(WXRD) techniques further confirmed solvent-induced crystallization behavior.The results would be beneficial to understand the solvent resistance of PAEK materials and consequently provide the practical application conditions of PAEK with a theoretical basis.
基金supported by the Start-up grant from Suzhou University of Science and Technology.
文摘Currently the catalysis of hydrogen evolution reaction(HER)is mainly focused on the inherent electrocatalytic activity at relatively lower current densities while scarce at high current densities.Nevertheless,the latter is highly demanding in efficient mass-production of hydrogen.A SiO_(2) nanospheres template-synthesis is used to prepare mesoporous molybdenum carbide nanocrystals-embedded nitrogen-doped carbon foams(mp-Mo_(2)C/NC).The material shows much more excellent catalytic activity than the non-etched Mo_(2)C/NC toward hydrogen evolution reaction(HER)in acidic medium.More interestingly mp-Mo_(2)C/NC still has larger overpotential than Pt/C at lower current densities,but possess remarkably smaller overpotential than the latter at higher current densities for much better electrocatalytic performance.An approach is developed to investigate the electrode kinetics by Tafel plots,especially with eliminating the diffusion effect,indicating that Pt/C and mp-Mo_(2)C/NC display different reaction mechanisms.At low current densities the former presents reversible reaction,while the latter shows mixed electrochemical polarization/reversible electrode process.In the region of higher current densities,the former becomes totally gas-diffusion controlled with large overpotential,while the latter can still retain an electrode polarization process for much lower overpotential at the same current density.Result endorses that the meso-porously structured mp-Mo_(2)C/NC plays a critical role in avoiding gas diffusion control-resulting large overpotential at high current densities.This work holds great potential for an inexpensive catalyst better than Pt/C in practical applications of mass-production hydrogen at high current densities,while clearly shedding fundamental lights on designs of rational HER catalysts for the uses at high current densities.
基金supported in part by the National Natural Science Foundation of China(No.61973121)the Natural Science Research Project of the Anhui Higher Education Institution(No.KJ2021A0640).
文摘Information diffusion may lead to behaviors related to information content.This paper considers the co-existence of information and behavior diffusion in social networks.The state of users is divided into six categories,and the rules and model of collaborative diffusion of information and behavior are established.The influence of different parameters and conditions on the proportions of behavior diffusion nodes and information diffusion ones is analyzed experimentally.The results show that the proportion of nodes taking action in uniform networks is higher than that in non-uniform networks.Although users are more likely to take actions related to information content after spreading or knowing information,the results show that it has little influence on the proportion of users taking action.The proportion is mainly affected by the probability that users who do not take action become ones who take.The greater the probability,the less the proportion of nodes who know information.In addition,compared with choosing the same node as the initial information and behavior diffusion node,choosing different nodes is more beneficial to the diffusion of behaviors related to information content.
基金Project (51074189) supported by the National Natural Science Foundation of ChinaProject (20100162110001) supported by Research Fund for the Doctoral Program of Higher Education of ChinaProject (2011BAE09B02) supported by the National Key Technology R&D Program of China
文摘WC-6MoxC-0.47Cr3C2-0.28VC binderless carbide was prepared by hot pressing (1700 °C, 20 MPa). The sample was observed and analyzed by scanning electron microscopy, energy dispersive X–ray spectroscopy and X–ray diffraction. The results show that during the hot pressing process, W atoms dissolve substantially into the MoxC crystal lattices; whilst, the reverse dissolution of Mo atoms into the WC crystal lattices takes place. Consequently, the main phase and binder phase structure are formed. The phase compositions of the main phase and binder phase are a WC-based solid solution containing Mo and a Mo2C-based solid solution containing W, respectively. The isotropic dissolution and precipitation of W and Mo atoms do not result in substantial carbide coarsening. The mechanism for the densification was discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.12174084)the Scientific and Technological Research Foundation of Hebei Province,China(Grant No.ZD2021065)the Key Program of Natural Science Foundation of Hebei Province,China(Grant No.A2021205024)。
文摘As the lightest two-dimensional material,monolayer borophene exhibits great potential as electrode materials,but it suffers from stability issues in the free-standing form.Here,the striped-borophene and graphene bilayer(sB/Gr)is found to be a high-performance anode material for rechargeable alkali-metal ion batteries.The first-principles results show that all the three alkali-metal atoms,Li,Na,and K,can be strongly adsorbed on sB/Gr with ultra-low diffusion barriers than that on pristine borophene/graphene,indicating good charge-discharge rates.Remarkably,high storage capacities are proposed for LIBs(1880 mA·h/g),NIBs(1648 mA·h/g),and KIBs(470 m A·h/g)with relatively small lattice change rate(<2.9%)in the process of alkali-metal atoms intercalations.These intriguing features of sB/Gr make it an excellent choice for batteries.
基金supported by the National Basic Research Program of China (No. 2012CB619101)
文摘In this work, porous Ti6Al4V alloys with 30%-70% porosity for biomedical applications were fabricated by diffusion bonding of alloy meshes. Pore structure was characterized by Micro-CT and SEM. Compressive behavior in the out-of-plane direction and biocompatibility with cortical bone were studied. The results reveal that the fabricated porous Ti6Al4V alloys possess anisotropic structure with square pores in the in-plane direction and elongated pores in the out-of-plane direction. The average pore size of porous Ti6Al4V alloys with 30%-70% porosity is in the range of 240-360 Bin. By tailoring diffusion bonding temperature, aspect ratio of alloy meshes and porosity, porous Ti6Al4V alloys with different compressive properties can be obtained, for instance, Young's modulus and yield stress in the ranges of 4-40 GPa and 70-500 MPa, respectively. Yield stress of porous Ti6Al4V alloys fabricated by diffusion bonding is close to that of alloys fabricated by rapid prototyping, hut higher than that of fabricated by powder sintering and space-holder method. Diffusion bonding temperature has some effects on the yield stress of porous Ti6Al4V alloys, but has a minor effect on the Young's modulus. The relationship between compressive properties and relative density conforms well to the Gibson-Ashby model. The Young's modulus is linear with the aspect ratio, while the yield stress is linear with the square of aspect ratio of alloy meshes. Porous Ti6Al4V alloys with 60%-70% porosity have potential for cortical bone implant applications.
基金the National Natural Science Founda-tion of China(No.51774283,51221462)。
文摘In a gas-solid separation fluidized bed,mixing of fine coal is necessary to achieve a suitable bed density to enable effective separation of low rank coal.On the basis of a variety of mixture models,a gas-solid separation fluidized bed was judged,where fine coal particles of 0.6-1.0mm were uniformly mixed with magnetite powder.High-speed dynamic camera technology was combined with a slump-sampling method to study the mixing process of the fine coal in the fluidized bed.These results showed that limitations of the fluidized bed structure cause the mixing process to be dominated by lateral diffusion and supplemented by axial diffusion.Axial diffusion was mainly achieved through the ascension of bubbles,whereas lateral diffusion was determined by the bursting action of the gas bubbles at the surface of the bed and the undulating characteristics of the bed.The effective lateral diffusion coefficient increased exponentially with gas velocity but had no strong relationship with the bed height.As the feed point moved toward the center,fine coal began to diffuse to both sides,which shortened the time for the bed density stabilization from 20 to 5 min.The bed density of the layer was stabilized at approximately 1.75 g/cm3.The separation efficiency of the gas-solid separation fluidized bed containing binary mixtures was more obvious for 6-50 mm raw coal,with a probable error E of 0.16.
基金Item Sponsored by National Basic Research Program of China(2010CB630800,2015CB921700)National Natural Science Foundation of China(51471096,51001064)Specialized Research Fund for the Dectoral Program of Higher Education of China(20100002120047)
文摘The cementite formation and coarsening behaviors of 0. 2 mass% C-5 mass% Mn steel during tempering at 500℃ were investigated by in-situ transmission electron microscope( TEM). In-situ TEM observation showed uniform distribution of cementite particles at the early stage of tempering in the rapidly heated( 500 ℃ / s) sample. Elemental analysis confirmed that the cementite growth was dominated by Mn diffusion. During the cementite growth,the coarsening behavior of intragranular cementite was significantly controlled by the matrix diffusion,while that of the intergranular cementite was mainly governed by the boundary diffusion. The in-situ TEM observation revealed that the dislocation pipe diffusion of Mn took place during tempering,which accelerated the Mn diffusion between cementite particles. The coarsening rates of individual cementite particles were calculated based on the in-situ TEM observation.
基金financially supported by the National Natural Science Foundation of China (Nos. 51201029, 51071042 and 51374067)the Fundamental Research Funds for the Central Universities (Nos. N130409002, N130209001 and N130709001)+1 种基金the China Postdoctoral Science Foundation (No. 2012M520637)the National Basic Research Program of China (No. 2012CB619506)
文摘A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid (Pb)/ liquid (Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field (〈0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level (0.8-5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.