All-optical analog-to-digital conversion (ADC) has been extensively researched to break through the inherently limited operating speed of electronic devices. In this paper, we use the photonic crystal fiber (PCF) for ...All-optical analog-to-digital conversion (ADC) has been extensively researched to break through the inherently limited operating speed of electronic devices. In this paper, we use the photonic crystal fiber (PCF) for time-stretch (TS) analog-to-digital (A/D) conversion system through generating low noise, linear chirp distribution and flat super-continuum (SC). Based on the radio frequency (RF) analog signal modulated to the linearly chirped super-continuum, the large-dispersion photonic crystal fiber is used for time-domain stretching.展开更多
An optical fiber control and transmission module is designed and realized based on Virtex-7 field programmable gata array(FPGA), which can be applied in multi-channel broadband digital receivers. The module consists o...An optical fiber control and transmission module is designed and realized based on Virtex-7 field programmable gata array(FPGA), which can be applied in multi-channel broadband digital receivers. The module consists of sampling data transfer submodule and multi-channel synchronous sampling control submodule. The sampling data transmission in 4× fiber link channel is realized with the self-defined transfer protocol. The measured maximum data rate is 4.97 Gbyte/s. By connecting coherent clocks to the transmitter and receiver endpoints and using the self-defined transfer protocol, multi-channel sampling control signals transferred in optical fibers can be received synchronously by each analog-to-digital converter(ADC) with high accuracy and strong anti-interference ability. The module designed in this paper has certain reference value in increasing the transmission bandwidth and the synchronous sampling accuracy of multi-channel broadband digital receivers.展开更多
An all fiber pulsed coherent Doppler lidar (CDL) system at 1.54 μm wavelength is developed for wind profiles measurements. This lidar affords 43.0-μJ pulse energy at 10-kHz pulse repetition frequency with 500-ns p...An all fiber pulsed coherent Doppler lidar (CDL) system at 1.54 μm wavelength is developed for wind profiles measurements. This lidar affords 43.0-μJ pulse energy at 10-kHz pulse repetition frequency with 500-ns pulse width. The lidar is operated in monostatic mode with 50-mm diameter telescope. The heterodyne mixing signals are acquired with 500 M/s analog to digital converter and 2048 points fast Fourier transform (FFT) is implemented. Line of sight wind speeds are measured with more than 3.0-km range in a horizontal direction and about 1.9 km in the vertical direction with 75-m range resolution. Systematic error of speed measurement of 0.2 m/s is validated.展开更多
The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10–20 d B lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings ...The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10–20 d B lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter(ADC) chips with more than 24 bits in the market. In this paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus facilitating higher resolution and larger dynamic range seismic data acquisition. Experimental results show that, within the 0.1–40 Hz frequency range, the circuit board's dynamic range reaches 158.2 d B, its resolution reaches 25.99 bits, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even completely resolve the amplitude-limitation problem that so commonly occurs with broadband observation instruments during strong earthquakes.展开更多
An improved two-stage model of colorimetric characterization for liquid crystal display (LCD) was proposed. The model included an S-shape nonlinear function with four coefficients for each channel to fit the Tone re...An improved two-stage model of colorimetric characterization for liquid crystal display (LCD) was proposed. The model included an S-shape nonlinear function with four coefficients for each channel to fit the Tone reproduction curve (TRC), and a linear transfer matrix with black-level correction. To compare with the simple model (SM), gain-offset-gain (GOG), S-curve and three-one-dimensional look-up tables (3-1D LUTs) models, an identical LCD was characterized and the color differences were calculated and summarized using the set of 7 × 7 × 7 digital-to-analog converter (DAC) triplets as test data. The experimental results showed that the model was outperformed in comparison with the GOG and SM ones, and near to that of the S-curve model and 3-1D LUTs method.展开更多
A newΣΔmodulator architecture for thermal vacuum sensor ASICs is proposed.The micro-hotplate thermal vacuum sensor fabricated by surface-micrornachining technology can detect the gas pressure from 1 to 10;Pa. The am...A newΣΔmodulator architecture for thermal vacuum sensor ASICs is proposed.The micro-hotplate thermal vacuum sensor fabricated by surface-micrornachining technology can detect the gas pressure from 1 to 10;Pa. The amplified differential output voltage signal of the sensor feeds to theΣΔmodulator to be converted into digital domain.The presentedΣΔmodulator makes use of a feed-forward path to suppress the harmonic distortions and attain high linearity.Compared with other feed-forward architectures presented before,the circuit complexity,chip area and power dissipation of the proposed architecture are significantly decreased.The correlated double sampling technique is introduced in the 1st integrator to reduce the flicker noise.The measurement results demonstrate that the modulator achieves an SNDR of 79.7 dB and a DR of 80 dB over a bandwidth of 7.8 kHz at a sampling rate of 4 MHz.The circuit has been fabricated in a 0.5μm 2P3M standard CMOS technology.It occupies an area of 5 mm;and dissipates 9 mW from a single 3 V power supply.The performance of the modulator meets the requirements of the considered application.展开更多
基金supported by the Doctoral Program of Higher Education Research Fund (No.1101.01.001.672)
文摘All-optical analog-to-digital conversion (ADC) has been extensively researched to break through the inherently limited operating speed of electronic devices. In this paper, we use the photonic crystal fiber (PCF) for time-stretch (TS) analog-to-digital (A/D) conversion system through generating low noise, linear chirp distribution and flat super-continuum (SC). Based on the radio frequency (RF) analog signal modulated to the linearly chirped super-continuum, the large-dispersion photonic crystal fiber is used for time-domain stretching.
文摘An optical fiber control and transmission module is designed and realized based on Virtex-7 field programmable gata array(FPGA), which can be applied in multi-channel broadband digital receivers. The module consists of sampling data transfer submodule and multi-channel synchronous sampling control submodule. The sampling data transmission in 4× fiber link channel is realized with the self-defined transfer protocol. The measured maximum data rate is 4.97 Gbyte/s. By connecting coherent clocks to the transmitter and receiver endpoints and using the self-defined transfer protocol, multi-channel sampling control signals transferred in optical fibers can be received synchronously by each analog-to-digital converter(ADC) with high accuracy and strong anti-interference ability. The module designed in this paper has certain reference value in increasing the transmission bandwidth and the synchronous sampling accuracy of multi-channel broadband digital receivers.
基金supported by the National Natural Science Foundation of China under Grant No.60908036
文摘An all fiber pulsed coherent Doppler lidar (CDL) system at 1.54 μm wavelength is developed for wind profiles measurements. This lidar affords 43.0-μJ pulse energy at 10-kHz pulse repetition frequency with 500-ns pulse width. The lidar is operated in monostatic mode with 50-mm diameter telescope. The heterodyne mixing signals are acquired with 500 M/s analog to digital converter and 2048 points fast Fourier transform (FFT) is implemented. Line of sight wind speeds are measured with more than 3.0-km range in a horizontal direction and about 1.9 km in the vertical direction with 75-m range resolution. Systematic error of speed measurement of 0.2 m/s is validated.
基金supported by the National Natural Science Foundation of China(Grant No.41404142)the National Science and Technology Support Plan Project(Grant No.2012BAF14B12)+1 种基金the Basic Research Projects of Institute of Earthquake Science,CEA(Grant Nos.2014IES0201,2011IES0203&2015IES0406)the Earthquake Monitoring and Prediction Project,CEA(Grant No.16A46ZX262)
文摘The dynamic range of the currently most widely used 24-bit seismic data acquisition devices is 10–20 d B lower than that of broadband seismometers, and this can affect the completeness of seismic waveform recordings under certain conditions. However, this problem is not easy to solve because of the lack of analog to digital converter(ADC) chips with more than 24 bits in the market. In this paper, we propose a method in which an adder, an integrator, a digital to analog converter chip, a field-programmable gate array, and an existing low-resolution ADC chip are used to build a third-order 16-bit oversampling delta-sigma modulator. This modulator is equipped with a digital decimation filter, thus facilitating higher resolution and larger dynamic range seismic data acquisition. Experimental results show that, within the 0.1–40 Hz frequency range, the circuit board's dynamic range reaches 158.2 d B, its resolution reaches 25.99 bits, and its linearity error is below 2.5 ppm, which is better than what is achieved by the commercial 24-bit ADC chips ADS1281 and CS5371. This demonstrates that the proposed method may alleviate or even completely resolve the amplitude-limitation problem that so commonly occurs with broadband observation instruments during strong earthquakes.
基金This work was supported by the National Nature Science Foundation of China under Grant No. 60578011.
文摘An improved two-stage model of colorimetric characterization for liquid crystal display (LCD) was proposed. The model included an S-shape nonlinear function with four coefficients for each channel to fit the Tone reproduction curve (TRC), and a linear transfer matrix with black-level correction. To compare with the simple model (SM), gain-offset-gain (GOG), S-curve and three-one-dimensional look-up tables (3-1D LUTs) models, an identical LCD was characterized and the color differences were calculated and summarized using the set of 7 × 7 × 7 digital-to-analog converter (DAC) triplets as test data. The experimental results showed that the model was outperformed in comparison with the GOG and SM ones, and near to that of the S-curve model and 3-1D LUTs method.
基金Project supported by the National Natural Science Foundation of China(No.90607003).
文摘A newΣΔmodulator architecture for thermal vacuum sensor ASICs is proposed.The micro-hotplate thermal vacuum sensor fabricated by surface-micrornachining technology can detect the gas pressure from 1 to 10;Pa. The amplified differential output voltage signal of the sensor feeds to theΣΔmodulator to be converted into digital domain.The presentedΣΔmodulator makes use of a feed-forward path to suppress the harmonic distortions and attain high linearity.Compared with other feed-forward architectures presented before,the circuit complexity,chip area and power dissipation of the proposed architecture are significantly decreased.The correlated double sampling technique is introduced in the 1st integrator to reduce the flicker noise.The measurement results demonstrate that the modulator achieves an SNDR of 79.7 dB and a DR of 80 dB over a bandwidth of 7.8 kHz at a sampling rate of 4 MHz.The circuit has been fabricated in a 0.5μm 2P3M standard CMOS technology.It occupies an area of 5 mm;and dissipates 9 mW from a single 3 V power supply.The performance of the modulator meets the requirements of the considered application.