As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft ele...As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.展开更多
Micro gas turbine(MGT)is widely used in small-scale distributed power systems because of its low emissions and fuel flexibility.However,the under-utilization of its exhaust heat and the low electric efficiency are the...Micro gas turbine(MGT)is widely used in small-scale distributed power systems because of its low emissions and fuel flexibility.However,the under-utilization of its exhaust heat and the low electric efficiency are the main bottlenecks that restrict its application.Additionally,the flexible switching between the power generated by the MGT and the power grid is also a key factor for keeping the secure operation of a distributed power station.Therefore,this paper conducted some experimental investigations of a 30 kW MGT to provide reference solutions for the above issues.This MGT is located at Shanghai Jiao Tong University(SJTU),which is designed by the Gas Turbine Research Institute of SJTU,and is manufactured by a turbo machinery factory in Chongqing,China.The demonstration prototype is mainly composed of a single stage centrifugal compressor,a radial turbine,a combustor,a high-speed pennanent magnet generator,and a control system.The results show that the MGT can achieve steady operation at a low rotational speed from 10000 r/min to 34000 r/min in the case of using oil lubricated bearings,which can greatly reduce the economic cost compared with the use of air bearings.At the same time,the ignition success rate of combustion chamber(CC)reaches 98%at a low rotational speed,and a wide range of stable combustion area can be obtained,because of the novel design method of combustor by referencing the way applied in an axial flow aero-engine.The MGT generating set can achieve functions,such as starting up,ignition,stable operation,loaded operation,grid-connection and stopping.This system also can realize flexibly switching from the start motor mode to the generator mode,and from grid-connected mode to off^grid mode,because the innovative multi-state switching control system is adopted.The above research work can make our state master independent intellectual property rights of micro gas turbine,rather than continue to be subject to the technological monopoly of the developed states,which can provide theoretical and experimental support for the industrialization of MGT in China.展开更多
To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article com...To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods.展开更多
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen...With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.展开更多
The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblem...The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PClPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.展开更多
With the development and utilization of renewable energy,the scaling of microgrid composed of distributed generation systems and energy storing devices,e.g,photovoltaic(PV),wind power,micro gas turbine,fuel cell,are b...With the development and utilization of renewable energy,the scaling of microgrid composed of distributed generation systems and energy storing devices,e.g,photovoltaic(PV),wind power,micro gas turbine,fuel cell,are becoming much lager.Research on control of multi-inverter parallel is the focus as the key technique,which can improve the reliability of microgrids.The inverters in the microgrid operate in parallel,which not only facilitates the expansion of the microgrid but also improves the reliability of the operation of the microgrid system in off-grid mode.The key to the parallel operation of the inverter is to achieve even distribution of the load current.In this paper,a comprehensive review on the control strategies of parallel-operated inverters is presented.Also,the detailed analysis,comparison,and discussion on the existing parallel control strategies are investigated.展开更多
Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of sh...Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of short-range communication,we devise a series of distributed power control(DPC) schemes for energy conservation(EC)and enhancement of radio resource utilization in the hybrid system.Firstly,a constrained opportunistic power control model is built up to take advantage of the interference avoidance methodology in the presence of service requirement and power constraint.Then,biasing scheme and admission control are added to evade ineffective power consumption and maintain the feasibility of the system.Upon feasibility,a non-cooperative game is further formulated to exploit the profit in EC with minor influence on spectral efficiency(SE).The convergence of the DPC schemes is validated and their performance is confirmed via simulation results.展开更多
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distribute...The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.展开更多
To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of te...To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.展开更多
Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynami...Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.展开更多
Distributed power market trading has the characteristics of large number of participants,scattered locations,small single trading scale,and point-to-point trading.The traditional centralized power trading model has th...Distributed power market trading has the characteristics of large number of participants,scattered locations,small single trading scale,and point-to-point trading.The traditional centralized power trading model has the problems of large load,low efficiency,high cost,reliance on third parties and unreliable data.With the characteristics of decentralization and nontampering,blockchain can establish a point-to-point trusted trading environment and provide effective solutions to the above problems.Therefore,this paper proposed a distributed power market trading framework based on blockchain.In this framework,the distributed power supply characteristics and trading needs of each participant are analyzed,a complete distributed trading process based on blockchain is designed.In addition,we have studied the key technologies of distributed power market trading.With the goal of power service reputation and maximum revenue of distributed power providers,we have established a matching degree model,a distributed power market trading optimization model,and designed a smart contract-based power market trading optimization strategy and power trading settlement strategy.Finally,we designed experiments to verify the performance of the proposed framework.展开更多
A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communic...A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 5096 energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.展开更多
Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of dat...Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems.展开更多
The experiential adjustment process in an experiment on the ion source of the neutral beam injector system for the HT-7 Tokamak is reported in this paper. With regard to the data obtained in the same condition, in arr...The experiential adjustment process in an experiment on the ion source of the neutral beam injector system for the HT-7 Tokamak is reported in this paper. With regard to the data obtained in the same condition, in arranging the arc current intensities of every shot with a decay rank, the distributions of the arc current intensity correspond to the power laws, and the distribution obtained in the condition with the cryo-pump corresponds to the double Pareto distribution. Using the similar study method, the distributions of the arc duration are close to the power laws too. These power law distributions are formed rather naturally instead of being the results of purposeful seeking.展开更多
In order to optimize power utilization of relay nodes in cooperative communication,a power allocation algorithm with objective function to maximize system capacity is proposed.Based on the convex optimization theory,a...In order to optimize power utilization of relay nodes in cooperative communication,a power allocation algorithm with objective function to maximize system capacity is proposed.Based on the convex optimization theory,an ellipsoid algorithm is used to solve this problem,which could simplify the subgradient choosing steps and improve convergence stability,so that an optimized power allocation algorithm is presented.Theoretical analysis and simulation results show that the algorithm can effectively distribute the power of each node with lower complexity,and ensure the transmission capability of relay nodes in cooperative communication.展开更多
Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the ratin...Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the rating value,which needs the upper control link to eliminate the deviation.However,at present,most layered control requires a centralized control center,which excessively relies on microgrid central controller(MGCC)and real-time communication among distributed generation(DG),which has certain limitations.To solve the above problems,this paper proposes a hierarchical distributed power and power quality optimization strategy based on multi-agent finite time consistency algorithm(MA-FTCA).Firstly,based on the first layer droop control,MA-FTCA is applied to introduce frequency and voltage compensation to stabilize the system frequency and voltage at the rated value.Secondly,in the third layer,the MA-FTCA is adopted to estimate the total active power and total reactive power spare capacity of the system,to realize the reasonable distribution of active power and reactive power output of each DG according to its proportion of spare capacity when the system load side changes.The control strategy proposed in this paper adopts a completely distributed control method and does not need a centralized control center in each layer of control.Finally,MATLAB/Simulink simulation platform is used to verify the correctness and effectiveness of the proposed optimization strategy.展开更多
Periodical macro stripes have been found on diamond film prepared on a Si substrate by the multifilament chemical vapor deposition (CVD) method when the filament substrate distance is less than 2 mm. The properties ...Periodical macro stripes have been found on diamond film prepared on a Si substrate by the multifilament chemical vapor deposition (CVD) method when the filament substrate distance is less than 2 mm. The properties of the stripe on the film were characterized qualitatively by a scanning electron microscope (SEM) and Raman scattering spectrometer. The measurement results show that this stripe corresponds to the different kinds of the microstructure and thickness of the film. Through calculation of the thermal radiation energy density distribution on the surface of substrate, this phenomenon can be explained successfully.展开更多
文摘As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.
基金the National Natural Science Foundation of China(Grant No.51806137)Shanghai Sailing Program(Grant No.20QA1404700).
文摘Micro gas turbine(MGT)is widely used in small-scale distributed power systems because of its low emissions and fuel flexibility.However,the under-utilization of its exhaust heat and the low electric efficiency are the main bottlenecks that restrict its application.Additionally,the flexible switching between the power generated by the MGT and the power grid is also a key factor for keeping the secure operation of a distributed power station.Therefore,this paper conducted some experimental investigations of a 30 kW MGT to provide reference solutions for the above issues.This MGT is located at Shanghai Jiao Tong University(SJTU),which is designed by the Gas Turbine Research Institute of SJTU,and is manufactured by a turbo machinery factory in Chongqing,China.The demonstration prototype is mainly composed of a single stage centrifugal compressor,a radial turbine,a combustor,a high-speed pennanent magnet generator,and a control system.The results show that the MGT can achieve steady operation at a low rotational speed from 10000 r/min to 34000 r/min in the case of using oil lubricated bearings,which can greatly reduce the economic cost compared with the use of air bearings.At the same time,the ignition success rate of combustion chamber(CC)reaches 98%at a low rotational speed,and a wide range of stable combustion area can be obtained,because of the novel design method of combustor by referencing the way applied in an axial flow aero-engine.The MGT generating set can achieve functions,such as starting up,ignition,stable operation,loaded operation,grid-connection and stopping.This system also can realize flexibly switching from the start motor mode to the generator mode,and from grid-connected mode to off^grid mode,because the innovative multi-state switching control system is adopted.The above research work can make our state master independent intellectual property rights of micro gas turbine,rather than continue to be subject to the technological monopoly of the developed states,which can provide theoretical and experimental support for the industrialization of MGT in China.
基金funded by National Key Research and Development Program of China (2021YFB2601400)。
文摘To reduce carbon emissions,clean energy is being integrated into the power system.Wind power is connected to the grid in a distributed form,but its high variability poses a challenge to grid stability.This article combines wind turbine monitoring data with numerical weather prediction(NWP)data to create a suitable wind power prediction framework for distributed grids.First,high-precision NWP of the turbine range is achieved using weather research and forecasting models(WRF),and Kriging interpolation locates predicted meteorological data at the turbine site.Then,a preliminary predicted power series is obtained based on the fan’s wind speed-power conversion curve,and historical power is reconstructed using variational mode decomposition(VMD)filtering to form input variables in chronological order.Finally,input variables of a single turbine enter the temporal convolutional network(TCN)to complete initial feature extraction,and then integrate the outputs of all TCN layers using Long Short Term Memory Networks(LSTM)to obtain power prediction sequences for all turbine positions.The proposed method was tested on a wind farm connected to a distributed power grid,and the results showed it to be superior to existing typical methods.
文摘With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects.
基金National Natural Science Foundation of China(No.50595413)National Key Basic Research Program ("973" Program) (No.2004CB217904)
文摘The security constrained distributed optimal power flow (DOPF) of interconnected power systems is presented. The centralized OPF problem of the multi-area power systems is decomposed into independent DOPF subproblems, one for each area. The dynamic security region (DSR) to guarantee the transient stability constraints and static voltage stability region (SVSR) constraints, and line current limits are included as constraints. The solutions to the DOPF subproblems of the different areas are coordinated through a pricing mechanism until they converge to the centralized OPF solution. The nonlinear DOPF subproblem is solved by predictor-corrector interior point method (PClPM). The IEEE three-area RTS-96 system is worked out in order to demonstrate the effectiveness of the proposed method.
文摘With the development and utilization of renewable energy,the scaling of microgrid composed of distributed generation systems and energy storing devices,e.g,photovoltaic(PV),wind power,micro gas turbine,fuel cell,are becoming much lager.Research on control of multi-inverter parallel is the focus as the key technique,which can improve the reliability of microgrids.The inverters in the microgrid operate in parallel,which not only facilitates the expansion of the microgrid but also improves the reliability of the operation of the microgrid system in off-grid mode.The key to the parallel operation of the inverter is to achieve even distribution of the load current.In this paper,a comprehensive review on the control strategies of parallel-operated inverters is presented.Also,the detailed analysis,comparison,and discussion on the existing parallel control strategies are investigated.
基金This work has been partly supported by National Natural Science Foundation of China,National High Technology Research and Development Program of China (863 Program)
文摘Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of short-range communication,we devise a series of distributed power control(DPC) schemes for energy conservation(EC)and enhancement of radio resource utilization in the hybrid system.Firstly,a constrained opportunistic power control model is built up to take advantage of the interference avoidance methodology in the presence of service requirement and power constraint.Then,biasing scheme and admission control are added to evade ineffective power consumption and maintain the feasibility of the system.Upon feasibility,a non-cooperative game is further formulated to exploit the profit in EC with minor influence on spectral efficiency(SE).The convergence of the DPC schemes is validated and their performance is confirmed via simulation results.
基金supported by National Natural Science Foundation of China(61273108)the Fundamental Research Funds for the Central Universities(106112013CDJZR175501)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
文摘The uncertainty of distributed generation energy has dramatically challenged the coordinated development of distribution networks at all levels.This paper focuses on the multi-time-scale regulation model of distributed generation energy under normal conditions.The simulation results of the example verify the self-optimization characteristics and the effectiveness of real-time dispatching of the distribution network control technology at all levels under multiple time scales.
基金supported by the State Grid Science and Technology Project “Research on Technology System and Applications Scenarios of Artificial Intelligence in Power System” (No. SGZJ0000KXJS1800435)Key Technology Project of State Grid Shanghai Municipal Electric Power Company “Research and demonstration of Shanghai power grid reliability analysis platform”Key Technology Project of China Electric Power Research Institute “Research on setting calculation technology of power grid phase protection based on Artificial Intelligence” (JB83-19-007)
文摘To achieve optimal configuration of switching devices in a power distribution system,this paper proposes a repulsive firefly algorithm-based optimal switching device placement method.In this method,the influence of territorial repulsion during firefly courtship is considered.The algorithm is practically applied to optimize the position and quantity of switching devices,while avoiding its convergence to the local optimal solution.The experimental simulation results have showed that the proposed repulsive firefly algorithm is feasible and effective,with satisfying global search capability and convergence speed,holding potential applications in setting value calculation of relay protection and distribution network automation control.
基金supported by National Natural Science Foundation of China(NSFC)Key Program(61573094)the Fundamental Research Funds for the Central Universities(N140402001)
基金Project supported by National High-Technology Research andDevelopment Program of China (Grant No .2002AA517020)
文摘Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels.
文摘Distributed power market trading has the characteristics of large number of participants,scattered locations,small single trading scale,and point-to-point trading.The traditional centralized power trading model has the problems of large load,low efficiency,high cost,reliance on third parties and unreliable data.With the characteristics of decentralization and nontampering,blockchain can establish a point-to-point trusted trading environment and provide effective solutions to the above problems.Therefore,this paper proposed a distributed power market trading framework based on blockchain.In this framework,the distributed power supply characteristics and trading needs of each participant are analyzed,a complete distributed trading process based on blockchain is designed.In addition,we have studied the key technologies of distributed power market trading.With the goal of power service reputation and maximum revenue of distributed power providers,we have established a matching degree model,a distributed power market trading optimization model,and designed a smart contract-based power market trading optimization strategy and power trading settlement strategy.Finally,we designed experiments to verify the performance of the proposed framework.
基金Supported by National S&T Major Program of China(2013ZX03003002-003)
文摘A low-complexity distributed power allocation algorithm is proposed to reduce the interference and improve the transmitting rate of edge users. Different scenarios are considered and user experience of indoor communication is promoted. The simulation results prove the effectiveness of our algorithm. The proposed power control scheme ensures that more users can achieve their required rate and the fairness of different users is improved. Besides, more than 5096 energy can be saved without loss in outage ability, and energy efficiency is also promoted. In addition, the proposed algorithm can be extended to scenarios that the required rates of pico stations can be changed periodically.
基金supported by the National Key R&D Program of China(2020YFB0905900).
文摘Operation control of power systems has become challenging with an increase in the scale and complexity of power distribution systems and extensive access to renewable energy.Therefore,improvement of the ability of data-driven operation management,intelligent analysis,and mining is urgently required.To investigate and explore similar regularities of the historical operating section of the power distribution system and assist the power grid in obtaining high-value historical operation,maintenance experience,and knowledge by rule and line,a neural information retrieval model with an attention mechanism is proposed based on graph data computing technology.Based on the processing flow of the operating data of the power distribution system,a technical framework of neural information retrieval is established.Combined with the natural graph characteristics of the power distribution system,a unified graph data structure and a data fusion method of data access,data complement,and multi-source data are constructed.Further,a graph node feature-embedding representation learning algorithm and a neural information retrieval algorithm model are constructed.The neural information retrieval algorithm model is trained and tested using the generated graph node feature representation vector set.The model is verified on the operating section of the power distribution system of a provincial grid area.The results show that the proposed method demonstrates high accuracy in the similarity matching of historical operation characteristics and effectively supports intelligent fault diagnosis and elimination in power distribution systems.
基金Meg-science Engineering Project of the Chinese Academy of Sciences
文摘The experiential adjustment process in an experiment on the ion source of the neutral beam injector system for the HT-7 Tokamak is reported in this paper. With regard to the data obtained in the same condition, in arranging the arc current intensities of every shot with a decay rank, the distributions of the arc current intensity correspond to the power laws, and the distribution obtained in the condition with the cryo-pump corresponds to the double Pareto distribution. Using the similar study method, the distributions of the arc duration are close to the power laws too. These power law distributions are formed rather naturally instead of being the results of purposeful seeking.
基金Supported by the National High Technology Research and Development Programme of China(No.2008AA01A322)National Science andTechnology Major Projects(No.2011ZX03001-007-03)
文摘In order to optimize power utilization of relay nodes in cooperative communication,a power allocation algorithm with objective function to maximize system capacity is proposed.Based on the convex optimization theory,an ellipsoid algorithm is used to solve this problem,which could simplify the subgradient choosing steps and improve convergence stability,so that an optimized power allocation algorithm is presented.Theoretical analysis and simulation results show that the algorithm can effectively distribute the power of each node with lower complexity,and ensure the transmission capability of relay nodes in cooperative communication.
基金support provided by Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control(Lanzhou Jiaotong University),Ministry of Education(KFKT2020-11).
文摘Droop control is one of the main control strategies of islanded microgrid(MG),but the droop control cannot achieve reasonable power distribution of microgrid,resulting in frequency and voltage deviation from the rating value,which needs the upper control link to eliminate the deviation.However,at present,most layered control requires a centralized control center,which excessively relies on microgrid central controller(MGCC)and real-time communication among distributed generation(DG),which has certain limitations.To solve the above problems,this paper proposes a hierarchical distributed power and power quality optimization strategy based on multi-agent finite time consistency algorithm(MA-FTCA).Firstly,based on the first layer droop control,MA-FTCA is applied to introduce frequency and voltage compensation to stabilize the system frequency and voltage at the rated value.Secondly,in the third layer,the MA-FTCA is adopted to estimate the total active power and total reactive power spare capacity of the system,to realize the reasonable distribution of active power and reactive power output of each DG according to its proportion of spare capacity when the system load side changes.The control strategy proposed in this paper adopts a completely distributed control method and does not need a centralized control center in each layer of control.Finally,MATLAB/Simulink simulation platform is used to verify the correctness and effectiveness of the proposed optimization strategy.
文摘Periodical macro stripes have been found on diamond film prepared on a Si substrate by the multifilament chemical vapor deposition (CVD) method when the filament substrate distance is less than 2 mm. The properties of the stripe on the film were characterized qualitatively by a scanning electron microscope (SEM) and Raman scattering spectrometer. The measurement results show that this stripe corresponds to the different kinds of the microstructure and thickness of the film. Through calculation of the thermal radiation energy density distribution on the surface of substrate, this phenomenon can be explained successfully.