Works on exploring an environmentally clean method for producing an Mg,Al-hydrotalcite(Mg6Al2(OH) 16CO3·4H2O) layer and/or calcium carbonate(CaCO3) layer on Mg alloy in a carbonic acid solution system(aqueous HCO...Works on exploring an environmentally clean method for producing an Mg,Al-hydrotalcite(Mg6Al2(OH) 16CO3·4H2O) layer and/or calcium carbonate(CaCO3) layer on Mg alloy in a carbonic acid solution system(aqueous HCO3-/CO3 2-or Ca 2+ /HCO3-) at 50℃ were reviewed.Conversion treatment for the Mg,Al-hydrotalcite conversion coating was as follows.Mg alloy was treated first in acidic HCO3-/CO3 2-aqueous for precursor layer formation on Mg alloy surface and then in alkaline HCO3-/CO3 2-aqueous to form a crystallized Mg,Al-hydrotalcite coating.Duration of an Mg,Al-hydrotalcite coating on Mg alloy surface was reduced from 12 h to 4 h by the conversion treatment.On the other hand,for reducing the formation time of CaCO3 coating on Mg alloy,the aqueous Ca 2+ /HCO3-with a saturated Ca 2+ content was employed for developing a CaCO3 coating on Mg alloy.A dense CaCO3 coating could yield on Mg alloy surface in 2 h.Corrosion rate(corrosion current density,Jcorr) of the Mg,Al-hydrotalcite-coated sample and CaCO3-coated AZ91D sample was 7-10μA/cm 2,roughly two orders less than the Jcorr of the as-diecast sample(about 200μA/cm 2) . No corrosion spot on the Mg,Al-hydrotalcite-coated sample and CaCO3-coated sample was observed after 72 h and 192 h salt spray test,respectively.展开更多
The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-...The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-band is realized by combining with the local oscillator and the power control circuit to complete functions such as amplification, filtering and gain. In order to achieve the performance optimization and a high level of integration of the Ku-band monolithic microwave integrated circuits(MMIC) operating chip, the 3 D vertical interconnection micro-assembly technology is used. By stacking solder balls on the printed circuit board(PCB), the technology decreases the volume of the original transceiver to a miniaturized module. The module has a good electromagnetic compatibility through special structure designs. This module has the characteristics of miniaturization, low power consumption and high density, which is suitable for popularization in practical application.展开更多
Objective:Glioblastoma(GBM)is the most prevalent and aggressive adult primary cancer in the central nervous system.Therapeutic approaches for GBM treatment are under intense investigation,including the use of emerging...Objective:Glioblastoma(GBM)is the most prevalent and aggressive adult primary cancer in the central nervous system.Therapeutic approaches for GBM treatment are under intense investigation,including the use of emerging immunotherapies.Here,we propose an alternative approach to treat GBM through reprogramming proliferative GBM cells into non-proliferative neurons.Methods:Retroviruses were used to target highly proliferative human GBM cells through overexpression of neural transcription factors.Immunostaining,electrophysiological recording,and bulk RNA-seq were performed to investigate the mechanisms underlying the neuronal conversion of human GBM cells.An in vivo intracranial xenograft mouse model was used to examine the neuronal conversion of human GBM cells.Results:We report efficient neuronal conversion from human GBM cells by overexpressing single neural transcription factor Neurogenic differentiation 1(Neuro D1),Neurogenin-2(Neurog2),or Achaete-scute homolog 1(Ascl1).Subtype characterization showed that the majority of Neurog2-and Neuro D1-converted neurons were glutamatergic,while Ascl1 favored GABAergic neuron generation.The GBM cell-converted neurons not only showed pan-neuronal markers but also exhibited neuron-specific electrophysiological activities.Transcriptome analyses revealed that neuronal genes were activated in glioma cells after overexpression of neural transcription factors,and different signaling pathways were activated by different neural transcription factors.Importantly,the neuronal conversion of GBM cells was accompanied by significant inhibition of GBM cell proliferation in both in vitro and in vivo models.Conclusions:These results suggest that GBM cells can be reprogrammed into different subtypes of neurons,leading to a potential alternative approach to treat brain tumors using in vivo cell conversion technology.展开更多
The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to ...The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.展开更多
The time-interleaved analog-to-digital conversion(TIADC)technique is an effective method for increasing the sampling rate in a waveform digitization system.In this study,a 20-Gsps TIADC system was designed.A wide-band...The time-interleaved analog-to-digital conversion(TIADC)technique is an effective method for increasing the sampling rate in a waveform digitization system.In this study,a 20-Gsps TIADC system was designed.A wide-bandwidth performance was achieved by optimizing the analog circuits,and a sufficient effective number of bits(ENOB)performance guaranteed using the perfect reconstruction algorithm for mismatch error correction.The proposed system was verified by tests,and the results indicated that a-3 dB bandwidth of 6 GHz and the ENOB performance of 8.7 bits at 1 GHz and 7.6 bits at6 GHz were successfully achieved.展开更多
A new method creating depth information for 2D/3D conversion was proposed. The distance between objects is determined by the distances between objects and light source position which is estimated by the analysis of th...A new method creating depth information for 2D/3D conversion was proposed. The distance between objects is determined by the distances between objects and light source position which is estimated by the analysis of the image. The estimated lighting value is used to normalize the image. A threshold value is determined by some weighted operation between the original image and the normalized image. By applying the threshold value to the original image, background area is removed. Depth information of interested area is calculated from the lighting changes. The final 3D images converted with the proposed method are used to verify its effectiveness.展开更多
Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inheren...Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inherent strong covalent bonds,the direct synthesis of 2D planar structure from nonlayered materials,especially for the realization of large-size ultrathin 2D nonlayered materials,is still a huge challenge.Here,a general atomic substitution conversion strategy is proposed to synthesize large-size,ultrathin nonlayered 2D materials.Taking nonlayered CdS as a typical example,large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method,where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method.The size and thickness of CdS flakes can be controlled by the CdI2 precursor.The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS,which has been evidenced by experiments and theoretical calculations.The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials,providing a bridge between layered and nonlayered materials,meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.展开更多
2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor re...2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor required for conversion. In this paper, we introduce a distributed 2D-to-3D video conversion system that includes a 2D-to-3D video conversion module, architecture of the parallel computation on the cloud, and 3D video coding in the system. The system enables cooperation among multiple users in the simultaneous completion of their conversion tasks so that the conversion efficiency is greatly promoted. In the experiments, we evaluate the system based on criteria related to both time consumption and video coding performance.展开更多
An organic-magnesium complex conversion(OMCC)coating on AZ91D magnesium alloy was obtained by treating in a solution containing organic compounds.SEM,FESEM and XPS were used to examine the surface morphology,thickness...An organic-magnesium complex conversion(OMCC)coating on AZ91D magnesium alloy was obtained by treating in a solution containing organic compounds.SEM,FESEM and XPS were used to examine the surface morphology,thickness and structure of the conversion coatings.The results show that the continuous and uniform conversion coating is deposited on AZ91D alloy and the main component of the coatings is organic compound containing benzene ring,which forms a chemical bond with magnesium.The polarization measurement and salt spray test show that the corrosion resistance of the conversion coating is much higher than that of traditional chromate conversion coating.展开更多
A method for precise conversion between virtual world and real world is put forward in this paper. The method aims to precisely establish the connection between the virtual coordinates and the real coordinates with Op...A method for precise conversion between virtual world and real world is put forward in this paper. The method aims to precisely establish the connection between the virtual coordinates and the real coordinates with OpenGL. In the virtual world, two virtual cameras are set to capture the left and right perspective planar images, and coordinates of the planar images can be calculated by the perspective projection model. With coordinates of planar images, coordinates of the stereo- scopic image synthesized in the real world can be calculated by the binocular observation model. Therefore, the corresponding connection between the two systems is established. Experimental re- suits match data from this method well. Therefore, this method can precisely realize the conversion and the interactivity, laying a solid foundation for further study.展开更多
The speed and cost of A/D conversion are conflict to each other. As micro-controller speed is increasing and its internal function is improving, full utilization of its internal resource can dramatically increase A/D ...The speed and cost of A/D conversion are conflict to each other. As micro-controller speed is increasing and its internal function is improving, full utilization of its internal resource can dramatically increase A/D conversion speed and without compromising conversion quality. MSP430F11x1 series micro-controller is exploited to increase A/D conversion speed.展开更多
Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into l...Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.展开更多
This article proposes a general framework for the conversion of U-238 and Th-232 utilizing fusion-produced neutrons. This recognizes that emerging fusion technologies may not produce sufficient net energy output to ju...This article proposes a general framework for the conversion of U-238 and Th-232 utilizing fusion-produced neutrons. This recognizes that emerging fusion technologies may not produce sufficient net energy output to justify stand-alone applications, yet may be commercially viable for breeder transmutation or hybrid fusion-fission reactor concepts proposed herein to dispose of nuclear wastes and long life high radioactive fission products remaining in shutdown nuclear power plants. Results show that this could be achievable within a decade, given an appropriate fusion source. However, if 20% beryllium of nuclei density is added to the convertor blanket, the efficiency of the conversion process can be significantly increased. Also, the neutron energy spectrum resulting from dense D-D plasma core fusion is much softer than D-T fusion neutron source, hence the probability of (n, p) (n, α) backward decay reaction paths will be smaller and the conversion efficiency will be elevated.展开更多
The energy devices for generation,conversion,and storage of electricity are widely used across diverse aspects of human life and various industry.Three-dimensional(3D)printing has emerged as a promising technology for...The energy devices for generation,conversion,and storage of electricity are widely used across diverse aspects of human life and various industry.Three-dimensional(3D)printing has emerged as a promising technology for the fabrication of energy devices due to its unique capability of manufacturing complex shapes across different length scales.3D-printed energy devices can have intricate 3D structures for significant performance enhancement,which are otherwise impossible to achieve through conventional manufacturing methods.Furthermore,recent progress has witnessed that 3D-printed energy devices with micro-lattice structures surpass their bulk counterparts in terms of mechanical properties as well as electrical performances.While existing literature focuses mostly on specific aspects of individual printed energy devices,a brief overview collectively covering the wide landscape of energy applications is lacking.This review provides a concise summary of recent advancements of 3D-printed energy devices.We classify these devices into three functional categories;generation,conversion,and storage of energy,offering insight on the recent progress within each category.Furthermore,current challenges and future prospects associated with 3Dprinted energy devices are discussed,emphasizing their potential to advance sustainable energy solutions.展开更多
MoS_(2) is a highly promising material for application in lithium-ion battery anodes due to its high theoretical capacity and low cost.However,problems with a fast capacity decay over cycling,especially at the first c...MoS_(2) is a highly promising material for application in lithium-ion battery anodes due to its high theoretical capacity and low cost.However,problems with a fast capacity decay over cycling,especially at the first cycles,and poor rate performance have deterred its practical implementation.Herein,electrodes comprised solely of few-layers 2D MoS_(2) nanosheets have been manufactured by scalable liquid-phase exfoliation and spray deposition methods.The long-standing controversy questioning the reversibility of conversion processes of MoS_(2)-based electrodes was addressed.Raman studies revealed that,in 2D MoS_(2) electrodes,conversion processes are indeed reversible,where nanostructure played a key role.Cycling of the electrodes at high current rates revealed an intriguing phenomenon consisting of a continuously increasing capacity after ca.100-200 cycles.This phenomenon was comprehensively addressed by a variety of electrochemical and microscopy methods that revealed underlying physical activation mechanisms that involved a range of profound electrode structural changes.Activation mechanisms delivered a capacitive electrode of a superior rate performance and cycling stability,as compared to the corresponding pristine electrodes,and to MoS_(2) electrodes previously reported.Herein,we have devised a methodology to overcome the problem of cycling stability of 2D MoS_(2) electrodes.Moreover,activation of electrodes constitutes a methodology that could be applied to enhance the energy storage performance of electrodes based on other 2D nanomaterials,or combinations thereof,strategically combining chemistries to engineer electrodes of superior energy storage properties.展开更多
The synthesis of high value-added chemical products using CO_(2)and CH_(4)is a promising CO_(2)conversion technology that can reduce greenhouse gas emissions while also alleviating the energy crisis.However,problems s...The synthesis of high value-added chemical products using CO_(2)and CH_(4)is a promising CO_(2)conversion technology that can reduce greenhouse gas emissions while also alleviating the energy crisis.However,problems such as high energy consumption and strict reaction conditions in reforming process hinder the further development of the technology.In this work,carbon-nitrogen based composites were prepared for the first time according to the design principle from morphology to heterojunction,which is innovatively applied in the process of photocatalytic CH4reforming.Firstly,C_(3)N_(4)materials with different dimensions(D) are prepared and applied to a CO_(2)-CH_(4)photocatalytic system.Additionally,the 2D/2D TiO_(2)/g-C_(3)N_(4)heterostructure is constructed with the ultrasonic impregnation method to further improve charge generation,transfer,and separation efficiency.It is worth noting that the yield of CO reaches173.80 μmol g^(-1),and the catalytic performance is improved by 1546% compared to bulk C_(3)N_(4).Moreover,the physical and chemical properties of 2D/2D TiO_(2)/g-C_(3)N_(4)materials are studied using a variety of cha racterization methods.Furthermore,the work fu nction and adsorption energy of different C3N4/TiO_(2)models for CO_(2)adsorption are calculated by density functional theory(DFT).Then,a possible catalytic mechanism for photocatalytic CO_(2)and CH_(4) conversion is proposed based on DFT calculations and experimental results.This work provides a new technical route for the rapid conversion of CO_(2)and CH_(4) at room temperature,as well as a new research concept for achieving carbon neutrality.展开更多
基金Project supported by the Ministry of Education Under the ATU Plan
文摘Works on exploring an environmentally clean method for producing an Mg,Al-hydrotalcite(Mg6Al2(OH) 16CO3·4H2O) layer and/or calcium carbonate(CaCO3) layer on Mg alloy in a carbonic acid solution system(aqueous HCO3-/CO3 2-or Ca 2+ /HCO3-) at 50℃ were reviewed.Conversion treatment for the Mg,Al-hydrotalcite conversion coating was as follows.Mg alloy was treated first in acidic HCO3-/CO3 2-aqueous for precursor layer formation on Mg alloy surface and then in alkaline HCO3-/CO3 2-aqueous to form a crystallized Mg,Al-hydrotalcite coating.Duration of an Mg,Al-hydrotalcite coating on Mg alloy surface was reduced from 12 h to 4 h by the conversion treatment.On the other hand,for reducing the formation time of CaCO3 coating on Mg alloy,the aqueous Ca 2+ /HCO3-with a saturated Ca 2+ content was employed for developing a CaCO3 coating on Mg alloy.A dense CaCO3 coating could yield on Mg alloy surface in 2 h.Corrosion rate(corrosion current density,Jcorr) of the Mg,Al-hydrotalcite-coated sample and CaCO3-coated AZ91D sample was 7-10μA/cm 2,roughly two orders less than the Jcorr of the as-diecast sample(about 200μA/cm 2) . No corrosion spot on the Mg,Al-hydrotalcite-coated sample and CaCO3-coated sample was observed after 72 h and 192 h salt spray test,respectively.
文摘The idea of Ku-band transceiver frequency conversion module design based on 3D micropackaging technology is proposed. By using the double frequency conversion technology,the dual transceiver circuit from Ku-band to L-band is realized by combining with the local oscillator and the power control circuit to complete functions such as amplification, filtering and gain. In order to achieve the performance optimization and a high level of integration of the Ku-band monolithic microwave integrated circuits(MMIC) operating chip, the 3 D vertical interconnection micro-assembly technology is used. By stacking solder balls on the printed circuit board(PCB), the technology decreases the volume of the original transceiver to a miniaturized module. The module has a good electromagnetic compatibility through special structure designs. This module has the characteristics of miniaturization, low power consumption and high density, which is suitable for popularization in practical application.
基金supported by the Charles H.“Skip”Smith Endowment Fund and the Verne M.Willaman Endowment Fund from the Pennsylvania State University to G.C。
文摘Objective:Glioblastoma(GBM)is the most prevalent and aggressive adult primary cancer in the central nervous system.Therapeutic approaches for GBM treatment are under intense investigation,including the use of emerging immunotherapies.Here,we propose an alternative approach to treat GBM through reprogramming proliferative GBM cells into non-proliferative neurons.Methods:Retroviruses were used to target highly proliferative human GBM cells through overexpression of neural transcription factors.Immunostaining,electrophysiological recording,and bulk RNA-seq were performed to investigate the mechanisms underlying the neuronal conversion of human GBM cells.An in vivo intracranial xenograft mouse model was used to examine the neuronal conversion of human GBM cells.Results:We report efficient neuronal conversion from human GBM cells by overexpressing single neural transcription factor Neurogenic differentiation 1(Neuro D1),Neurogenin-2(Neurog2),or Achaete-scute homolog 1(Ascl1).Subtype characterization showed that the majority of Neurog2-and Neuro D1-converted neurons were glutamatergic,while Ascl1 favored GABAergic neuron generation.The GBM cell-converted neurons not only showed pan-neuronal markers but also exhibited neuron-specific electrophysiological activities.Transcriptome analyses revealed that neuronal genes were activated in glioma cells after overexpression of neural transcription factors,and different signaling pathways were activated by different neural transcription factors.Importantly,the neuronal conversion of GBM cells was accompanied by significant inhibition of GBM cell proliferation in both in vitro and in vivo models.Conclusions:These results suggest that GBM cells can be reprogrammed into different subtypes of neurons,leading to a potential alternative approach to treat brain tumors using in vivo cell conversion technology.
文摘The construction of S‐scheme heterojunction photocatalysts has been regarded as an effective avenue to facilitate the conversion of solar energy to fuel.However,there are still considerable challenges with regard to efficient charge transfer,the abundance of catalytic sites,and extended light absorption.Herein,an S‐scheme heterojunction of 2D/2D zinc porphyrin‐based metal‐organic frameworks/BiVO_(4)nanosheets(Zn‐MOF/BVON)was fabricated for efficient photocatalytic CO_(2)conversion.The optimal one shows a 22‐fold photoactivity enhancement when compared to the previously reported BiVO4 nanoflake(ca.15 nm),and even exhibits~2‐time improvement than the traditional g‐C3N4/BiVO4 heterojunction.The excellent photoactivities are ascribed to the strengthened S‐scheme charge transfer and separation,promoted CO_(2)activation by the well‐dispersed metal nodes Zn_(2)(COO)_(4)in the Zn‐MOF,and extended visible light response range based on the results of the electrochemical reduction,electron paramagnetic resonance,and in‐situ diffuse reflectance infrared Fourier transform spectroscopy.The dimension‐matched Zn‐MOF/BVON S‐scheme heterojunction endowed with highly efficient charge separation and abundant catalytic active sites contributed to the superior CO2 conversion.This study offers a facile strategy for constructing S‐scheme heterojunctions involving porphyrin‐based MOFs for solar fuel production.
基金supported in part by the National Natural Science Foundation of China(No.11675173)the Youth Innovation Promotion Association CASthe CAS Center for Excellence in Particle Physics(CCEPP)。
文摘The time-interleaved analog-to-digital conversion(TIADC)technique is an effective method for increasing the sampling rate in a waveform digitization system.In this study,a 20-Gsps TIADC system was designed.A wide-bandwidth performance was achieved by optimizing the analog circuits,and a sufficient effective number of bits(ENOB)performance guaranteed using the perfect reconstruction algorithm for mismatch error correction.The proposed system was verified by tests,and the results indicated that a-3 dB bandwidth of 6 GHz and the ENOB performance of 8.7 bits at 1 GHz and 7.6 bits at6 GHz were successfully achieved.
文摘A new method creating depth information for 2D/3D conversion was proposed. The distance between objects is determined by the distances between objects and light source position which is estimated by the analysis of the image. The estimated lighting value is used to normalize the image. A threshold value is determined by some weighted operation between the original image and the normalized image. By applying the threshold value to the original image, background area is removed. Depth information of interested area is calculated from the lighting changes. The final 3D images converted with the proposed method are used to verify its effectiveness.
基金This work was supported by National Natural Science Foundation of China(21825103,11774044,52072059)the Hubei Provincial Natural Science Foundation of China(2019CFA002)+1 种基金the Fundamental Research Funds for the Central Universities(2019kfyXMBZ018 and 2020kfyXJJS050)We also thank the technical support from Analytical and Testing Center in Huazhong University of Science and Technology.
文摘Nonlayered two-dimensional(2D)materials have attracted increasing attention,due to novel physical properties,unique surface structure,and high compatibility with microfabrication technique.However,owing to the inherent strong covalent bonds,the direct synthesis of 2D planar structure from nonlayered materials,especially for the realization of large-size ultrathin 2D nonlayered materials,is still a huge challenge.Here,a general atomic substitution conversion strategy is proposed to synthesize large-size,ultrathin nonlayered 2D materials.Taking nonlayered CdS as a typical example,large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method,where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method.The size and thickness of CdS flakes can be controlled by the CdI2 precursor.The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS,which has been evidenced by experiments and theoretical calculations.The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials,providing a bridge between layered and nonlayered materials,meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.
基金supported by the National Key Basic Research Program of China (973 Program) under Grant No. 2009CB320904the National Natural Science Foundation of China under Grants No. 61121002, No. 61231010, 91120004the Key Projects in the National Science and Technology Pillar Program under Grant No. 2011BAH08B03
文摘2D-to-3D video conversion is a feasible way to generate 3D programs for the current 3DTV industry. However, for large-scale 3D video production, current systems are no longer adequate in terms of the time and labor required for conversion. In this paper, we introduce a distributed 2D-to-3D video conversion system that includes a 2D-to-3D video conversion module, architecture of the parallel computation on the cloud, and 3D video coding in the system. The system enables cooperation among multiple users in the simultaneous completion of their conversion tasks so that the conversion efficiency is greatly promoted. In the experiments, we evaluate the system based on criteria related to both time consumption and video coding performance.
基金Project(50871046)supported by the National Natural Science Foundation of ChinaProject(2007KZ09)supported by the 2007 Scienceand Technology Support Plan of Changchun City,China
文摘An organic-magnesium complex conversion(OMCC)coating on AZ91D magnesium alloy was obtained by treating in a solution containing organic compounds.SEM,FESEM and XPS were used to examine the surface morphology,thickness and structure of the conversion coatings.The results show that the continuous and uniform conversion coating is deposited on AZ91D alloy and the main component of the coatings is organic compound containing benzene ring,which forms a chemical bond with magnesium.The polarization measurement and salt spray test show that the corrosion resistance of the conversion coating is much higher than that of traditional chromate conversion coating.
基金Supported by the National Natural Science Foundation of China ( 60674052)
文摘A method for precise conversion between virtual world and real world is put forward in this paper. The method aims to precisely establish the connection between the virtual coordinates and the real coordinates with OpenGL. In the virtual world, two virtual cameras are set to capture the left and right perspective planar images, and coordinates of the planar images can be calculated by the perspective projection model. With coordinates of planar images, coordinates of the stereo- scopic image synthesized in the real world can be calculated by the binocular observation model. Therefore, the corresponding connection between the two systems is established. Experimental re- suits match data from this method well. Therefore, this method can precisely realize the conversion and the interactivity, laying a solid foundation for further study.
文摘The speed and cost of A/D conversion are conflict to each other. As micro-controller speed is increasing and its internal function is improving, full utilization of its internal resource can dramatically increase A/D conversion speed and without compromising conversion quality. MSP430F11x1 series micro-controller is exploited to increase A/D conversion speed.
基金Natural Science Foundation from Colleges and Universities of Jiangsu Provine(06KJD510034)
文摘Proposed is an interference type of optical analog-to-digital conversion(ADC). The refractive index of Fabry-Perot cavity changes with different voltages. The Fabry-Perot resonator converts electronic intensity into light wavelength through selecting lights of different wavelengthes. The parameters of the scheme are acquired with the transmission matrix of optical element and the time of steady-state light field. The maximum sampling speedes of 4-bit, 6-bit, 7-bit, 8-bit and 9-bit(ADC) are 1.695×1010 count/s, 4.33×109 count/s, 2.38×109 count/s, 1.24×109 count/s and 5.9×108 count/s, respectively.
文摘This article proposes a general framework for the conversion of U-238 and Th-232 utilizing fusion-produced neutrons. This recognizes that emerging fusion technologies may not produce sufficient net energy output to justify stand-alone applications, yet may be commercially viable for breeder transmutation or hybrid fusion-fission reactor concepts proposed herein to dispose of nuclear wastes and long life high radioactive fission products remaining in shutdown nuclear power plants. Results show that this could be achievable within a decade, given an appropriate fusion source. However, if 20% beryllium of nuclei density is added to the convertor blanket, the efficiency of the conversion process can be significantly increased. Also, the neutron energy spectrum resulting from dense D-D plasma core fusion is much softer than D-T fusion neutron source, hence the probability of (n, p) (n, α) backward decay reaction paths will be smaller and the conversion efficiency will be elevated.
基金supported by the New Faculty Startup Fund from Seoul National University.The authors also acknowledge the financial support from the National Research Foundation of Korea(NRF)Grants funded by the Korean Government(MSIT)(2022R1A2C200356612,RS-2023-00218543,and RS-2023-00221987).
文摘The energy devices for generation,conversion,and storage of electricity are widely used across diverse aspects of human life and various industry.Three-dimensional(3D)printing has emerged as a promising technology for the fabrication of energy devices due to its unique capability of manufacturing complex shapes across different length scales.3D-printed energy devices can have intricate 3D structures for significant performance enhancement,which are otherwise impossible to achieve through conventional manufacturing methods.Furthermore,recent progress has witnessed that 3D-printed energy devices with micro-lattice structures surpass their bulk counterparts in terms of mechanical properties as well as electrical performances.While existing literature focuses mostly on specific aspects of individual printed energy devices,a brief overview collectively covering the wide landscape of energy applications is lacking.This review provides a concise summary of recent advancements of 3D-printed energy devices.We classify these devices into three functional categories;generation,conversion,and storage of energy,offering insight on the recent progress within each category.Furthermore,current challenges and future prospects associated with 3Dprinted energy devices are discussed,emphasizing their potential to advance sustainable energy solutions.
基金financial support from the China Scholarship Council(CSC grant.201808330389)。
文摘MoS_(2) is a highly promising material for application in lithium-ion battery anodes due to its high theoretical capacity and low cost.However,problems with a fast capacity decay over cycling,especially at the first cycles,and poor rate performance have deterred its practical implementation.Herein,electrodes comprised solely of few-layers 2D MoS_(2) nanosheets have been manufactured by scalable liquid-phase exfoliation and spray deposition methods.The long-standing controversy questioning the reversibility of conversion processes of MoS_(2)-based electrodes was addressed.Raman studies revealed that,in 2D MoS_(2) electrodes,conversion processes are indeed reversible,where nanostructure played a key role.Cycling of the electrodes at high current rates revealed an intriguing phenomenon consisting of a continuously increasing capacity after ca.100-200 cycles.This phenomenon was comprehensively addressed by a variety of electrochemical and microscopy methods that revealed underlying physical activation mechanisms that involved a range of profound electrode structural changes.Activation mechanisms delivered a capacitive electrode of a superior rate performance and cycling stability,as compared to the corresponding pristine electrodes,and to MoS_(2) electrodes previously reported.Herein,we have devised a methodology to overcome the problem of cycling stability of 2D MoS_(2) electrodes.Moreover,activation of electrodes constitutes a methodology that could be applied to enhance the energy storage performance of electrodes based on other 2D nanomaterials,or combinations thereof,strategically combining chemistries to engineer electrodes of superior energy storage properties.
基金The financial support from the National Natural Science Foundation of China (22178089)the Hunan Provincial Innovation Foundation for Postgraduate (CX20220392)。
文摘The synthesis of high value-added chemical products using CO_(2)and CH_(4)is a promising CO_(2)conversion technology that can reduce greenhouse gas emissions while also alleviating the energy crisis.However,problems such as high energy consumption and strict reaction conditions in reforming process hinder the further development of the technology.In this work,carbon-nitrogen based composites were prepared for the first time according to the design principle from morphology to heterojunction,which is innovatively applied in the process of photocatalytic CH4reforming.Firstly,C_(3)N_(4)materials with different dimensions(D) are prepared and applied to a CO_(2)-CH_(4)photocatalytic system.Additionally,the 2D/2D TiO_(2)/g-C_(3)N_(4)heterostructure is constructed with the ultrasonic impregnation method to further improve charge generation,transfer,and separation efficiency.It is worth noting that the yield of CO reaches173.80 μmol g^(-1),and the catalytic performance is improved by 1546% compared to bulk C_(3)N_(4).Moreover,the physical and chemical properties of 2D/2D TiO_(2)/g-C_(3)N_(4)materials are studied using a variety of cha racterization methods.Furthermore,the work fu nction and adsorption energy of different C3N4/TiO_(2)models for CO_(2)adsorption are calculated by density functional theory(DFT).Then,a possible catalytic mechanism for photocatalytic CO_(2)and CH_(4) conversion is proposed based on DFT calculations and experimental results.This work provides a new technical route for the rapid conversion of CO_(2)and CH_(4) at room temperature,as well as a new research concept for achieving carbon neutrality.