期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Mechanism,prevention,and control of mining-induced dynamic disasters in underground metal mines in China:Challenges and solutions
1
作者 LI Peng CAI Mei-feng +3 位作者 MIAO Sheng-jun REN Fen-hua GORJIAN Mostafa PENG Chao 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第8期2549-2606,共58页
Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological ... Metal mineral resources play an indispensable role in the development of the national economy.Dynamic disasters in underground metal mines seriously threaten mining safety,which are major scientific and technological problems to be solved urgently.In this article,the occurrence status and grand challenges of some typical dynamic disasters involving roof falling,spalling,collapse,large deformation,rockburst,surface subsidence,and water inrush in metal mines in China are systematically presented,the characteristics of mining-induced dynamic disasters are analyzed,the examples of dynamic disasters occurring in some metal mines in China are summarized,the occurrence mechanism,monitoring and early warning methods,and prevention and control techniques of these disasters are highlighted,and some new opinions,suggestions,and solutions are proposed simultaneously.Moreover,some shortcomings in current disaster research are pointed out,and the direction of efforts to improve the prevention and control level of dynamic disasters in China’s metal mines in the future is prospected.The integration of forward-looking key innovative theories and technologies in the abovementioned aspects will greatly enhance the cognitive level of disaster prevention and mitigation in China’s metal mining industry and achieve a significant shift from passive disaster relief to active disaster prevention. 展开更多
关键词 underground metal mines dynamic disasters MECHANISM monitoring and early warning prevention and control
下载PDF
Microseismic monitoring and forecasting of dynamic disasters in underground hydropower projects in southwest China:A review 被引量:4
2
作者 Biao Li Nuwen Xu +4 位作者 Peiwei Xiao Yong Xia Xiang Zhou Gongkai Gu Xingguo Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第8期2158-2177,共20页
The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collap... The underground hydropower projects in Southwest China is characterized by large excavation sizes,high geostresses,complicated geological conditions and multiple construction processes.Various disasters such as collapses,large deformations,rockbursts are frequently encountered,resulting in serious casualties and huge economic losses.This review mainly presents some representative results on microseismic(MS)monitoring and forecasting for disasters in hydropower underground engineering.First,a set of new denoising,spectral analysis,and location methods were developed for better identification and location of MS signals.Then,the tempo-spatial characteristics of MS events were analyzed to understand the relationship between field construction and damages of surrounding rocks.Combined with field construction,geological data,numerical simulation and parametric analysis of MS sources,the focal mechanism of MS events was revealed.A damage constitutive model considering MS fracturing size was put forward and feedback analysis considering the MS damage of underground surrounding rocks was conducted.Next,an MS multi-parameter based risk assessment and early warning method for dynamic disasters were proposed.The technology for control of the damage and deformation of underground surrounding rocks was proposed for underground caverns.Finally,two typical underground powerhouses were selected as case studies.These achievements can provide significant references for prevention and control of dynamic disasters for underground engineering with similar complicated geological conditions. 展开更多
关键词 MS monitoring Forecasting method Control technology dynamic disaster Underground engineering
下载PDF
Dynamic disaster control of backfill mining under thick magmatic rock in one side goaf:A case study 被引量:5
3
作者 XUE Yan-chao XU Tao +2 位作者 WASANTHA P L P YANG Tian-hong FU Teng-fei 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第10期3103-3117,共15页
In order to explore the control effect of backfill mining on dynamic disasters under special geological mining conditions of overlying thick magmatic rock(TMR),a three-dimensional numerical model of a panel of one sid... In order to explore the control effect of backfill mining on dynamic disasters under special geological mining conditions of overlying thick magmatic rock(TMR),a three-dimensional numerical model of a panel of one side goaf in Yangliu coal mine with double-yield backfill material constitutive model was developed.The simulation results were then compared with field monitoring data.The dynamic disaster control effect of both caving and backfill mining was analyzed in three different aspects,i.e.,displacement field,stress field and energy field.The results show that in comparison to the full caving mining method,the bearing capacity of the goaf after backfilling was enhanced,the backfill mining can effectively reduce the stress and energy accumulated in the coal/rock body,and the backfill mining eliminates the further moving space of TMR and prevents its sudden rupture.Before TMR fracture,the subsidence displacement of TMR was reduced by 65.3%,the front abutment stress of panel decreased by 9.4%on average and the high energy concentration zone around panel was also significantly reduced.Overall,the results of this study provide deeper insights into the control of dynamic disasters by backfill mining in mines. 展开更多
关键词 backfill mining thick magmatic rock one side goaf dynamic disaster numerical simulation
下载PDF
Early warning of coal dynamic disaster by precursor of AE and EMR"quiet period" 被引量:3
4
作者 Shengquan He Mengli Qin +2 位作者 Liming Qiu Dazhao Song Xiufeng Zhang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第3期106-119,共14页
Efcient and accurate monitoring and early warning of coal dynamic disaster and other disasters can provide guarantee for the efcient operation of mine transportation system.However,the traditional threshold early warn... Efcient and accurate monitoring and early warning of coal dynamic disaster and other disasters can provide guarantee for the efcient operation of mine transportation system.However,the traditional threshold early warning method often fails to warning some accidents.To address above issues,a new early warning method was proposed based on"quiet period"phenomenon of AE and EMR during fracture.It is found that,a"quiet period"of AE and EMR was present before the load reaches the peak stress,which could be used as one of the precursors to warn the imminent failure of coal and rock specimens.MS and AE signals increased abnormally followed by the phenomenon of"quiet period"before the occurrence of coal dynamic disaster on site,and the decrease of MS events in the"quiet period"is about 57%–88%compared with that in previous abnormal increase stage.During the damage evolution of coal and rock,"quiet period"phenomenon usually occurred at 85%–90%of the peak stress,where the slope of damage parameter curve is almost zero.The"quiet period"of the AE-EMR signals and the low change rate of damage parameter before failure provide a theoretical foundation for the coal dynamic disaster warning based on the"quiet period"precursor found in MS-AE-EMR monitoring system.These fndings will help reduce the number of under-reported events and improve early warning accuracy. 展开更多
关键词 Coal dynamic disaster Early warning AE and EMR Quiet period Precursor characteristics
下载PDF
F-structure model of overlying strata for dynamic disaster prevention in coal mine 被引量:8
5
作者 Mu Zonglong Dou Linming +1 位作者 He Hu Fan Jun 《International Journal of Mining Science and Technology》 SCIE EI 2013年第4期508-514,共7页
The rupture and movement scope of overlying strata upon the longwall mining face increased sharply as the exploitation scale and degree growing recently,and the spatial structure formed by fractured strata became much... The rupture and movement scope of overlying strata upon the longwall mining face increased sharply as the exploitation scale and degree growing recently,and the spatial structure formed by fractured strata became much more complex.The overlying strata above the working face and adjacent gobs would affect each other and move cooperatively because small pillar can hardly separate the connection of overlying strata between two workfaces,which leads to mining seismicity in the gob and induces rockburst disaster that named spatial structure instability rockburst in this paper.Based on the key stratum theory,the F-structure model was established to describe the overlying strata characteristic and rockburst mechanism of workface with one side of gob and the other side un-mined solid coal seam.The results show that F-structure in the gob will re-active and loss stability under the influence of neighboring mining,and fracture and shear slipping in the process of instability is the mechanism of the seismicity in the gob.The F-structure was divided into two categories that short-arm F and long-arm F structure based on the state of strata above the gob.We studied the underground pressure rules of different F-structure and instability mechanism,thus provide the guide for prevention and control of the F-structure spatial instability rockburst.The micro-seismic system is used for on-site monitoring and researching the distribution rules of seismic events,the results confrmed the existence and correct of F-spatial structure.At last specialized methods for prevention seismicity and rockburst induced by F-structure instability are proposed and applied in Huating Coal Mine. 展开更多
关键词 Overlying strata Spatial structure dynamic disaster Key strata Seismicity
下载PDF
High-low-blasting technology and its application in methane dynamic disaster prevention 被引量:1
6
作者 LI Xian-zhong LIN Bai-quan +2 位作者 YANG Wei NI Guan-hua LI Quan-gui 《Journal of Coal Science & Engineering(China)》 2011年第3期305-310,共6页
The gas cooperative control model combined local pressure-relief with regional pressure-reliet was estaonsnea, based on the theory of multi-parameters cooperative. For the status of high gas contents, high in-situ str... The gas cooperative control model combined local pressure-relief with regional pressure-reliet was estaonsnea, based on the theory of multi-parameters cooperative. For the status of high gas contents, high in-situ stress and low-permeability of Ji-15 seam of No.12 coal mine in Pingmei Group. The law of detonation wave propagation and ground-stress change distribution were simulated by means of the finite element analysis software. The technology of high-low-blasting, composed of high blasting(deep crossing hole controlled hydraulic blasting) and low blasting (special roadway deep hole controlled blasting) were developed. The research shows that around control hole produce maximum tension fracture failure, and result in directional and controlled Masting, when the distance between control hole and blasting hole is 1.2 m. The theory makes blasting force and hydraulic force advantage superimpose, which raises the effect of pressure relief and permeability enhancements compared with general blasting. High blasting influence radius and low blasting influence radius superimposed with each other, that prevents methane dynamic disaster. The result of type approval test shows that the technology can increase gas permeability as high as 22.7-36.2 ratio, decrease gas pressure from 2.85 MPa to 0.30 MPa, increase drilling influence radius to about 9 m. The technology realizes regional overall permeability improvement, that provides a new technical measure for methane dynamic disaster prevention. 展开更多
关键词 high-low-blasting multi-parameters cooperative numerical simulation methane dynamic disaster
下载PDF
The stress state of geological structure and mining dynamic disaster in Fuxin basin 被引量:1
7
作者 韩军 王海兵 +1 位作者 朱光宗 刘廷波 《Journal of Coal Science & Engineering(China)》 2008年第4期621-624,共4页
Further evidences show that most mining dynamic disasters are mainly oc- curred nearby NNE and near SN geological structures.In-situ stress measurement in Fuxin basin shows that the orientation of major compressed str... Further evidences show that most mining dynamic disasters are mainly oc- curred nearby NNE and near SN geological structures.In-situ stress measurement in Fuxin basin shows that the orientation of major compressed stress is near EW.At this stress field,geological structures with deferent strike have deferent stress state and dis- place mode.NNE and near SN geological structures are compressed to thrust and come into being high stress zone.NWW and NEE geological structures are tensile to separate and not prone to being low stress zone.NW structure is intervenient of them.So NEE and near SN structures are easy to occurre mining dynamic disasters and NWW and NEE structures is 'safety' comparatively.The mining dynamic disaster is controlled by stress state of geologic structure,which is determined by its strike. 展开更多
关键词 Fuxin basin geological structure mining dynamic disaster stress state
下载PDF
Dynamic behavior of outburst two-phase flow in a coal mine T-shaped roadway:The formation of impact airflow and its disaster-causing effect
8
作者 Liang Cheng Jiang Xu +4 位作者 Shoujian Peng Hailin Yang Feng Jiao Bin Zhou Fazhi Yan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1001-1017,共17页
The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway... The study of the dynamic disaster mechanism of coal and gas outburst two-phase flow is crucial for improving disaster reduction and rescue ability of coal mine outburst accidents.An outburst test in a T-shaped roadway was conducted using a self-developed large-scale outburst dynamic disaster test system.We investigated the release characteristics of main energy sources in coal seam,and obtained the dynamic characteristics of outburst two-phase flow in a roadway.Additionally,we established a formation model for outburst impact flow and a model for its flow in a bifurcated structure.The results indicate that the outburst process exhibits pulse characteristics,and the rapid destruction process of coal seam and the blocking state of gas flow are the main causes of the pulse phenomenon.The outburst energy is released in stages,and the elastic potential energy is released in the vertical direction before the horizontal direction.In a straight roadway,the impact force oscillates along the roadway.With an increase in the solid–gas ratio,the two-phase flow impact force gradually increases,and the disaster range extends from the middle of the roadway to the coal seam.In the area near the coal seam,the disaster caused by the two-phase flow impact is characterized by intermittent recovery.In a bifurcated roadway,the effect of impact airflow on impact dynamic disaster is much higher than that of two-phase flow,and the impact force tends to weaken with increasing solid-gas ratio.The impact force is asymmetrically distributed;it is higher on the left of the bifurcated roadway.With an increase in the solid-gas ratio,the static pressure rapidly decreases,and the bifurcated structure accelerates the attenuation of static pressure.Moreover,secondary acceleration is observed when the shock wave moves along the T-shaped roadway,indicating that the bifurcated structure increases the shock wave velocity. 展开更多
关键词 Multiphase flow Coal and gas outburst dynamic disaster Impact airflow T-shaped bifurcated roadway Coal seam
下载PDF
Coalbursts in China: Theory, practice and management 被引量:3
9
作者 Yishan Pan Yimin Song +1 位作者 Hao Luo Yonghui Xiao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期1-25,共25页
Coalburst is one of the most serious disasters that threaten the safe production of coal mines, and this disaster is particularly serious in China. This paper presents an overview of coalbursts in China since 1980s. F... Coalburst is one of the most serious disasters that threaten the safe production of coal mines, and this disaster is particularly serious in China. This paper presents an overview of coalbursts in China since 1980s. From the "stress and energy" and "regional and local" perspectives, the achievements in the theory, practice and management of coalbursts in China are systematically summarized. A theoretical system of coalbursts has been formed to reveal the deformational behavior of coalbursts and explain the mechanism of coalbursts. The occurrence conditions of coalbursts are put forward and the critical stress is obtained. The stress index method for risk evaluation of coalbursts before mining is proposed, and the deformation localization prediction method of coalbursts is put forward. The relationship between energy release and absorption in the process of coalbursts is found, and the prevention and control methods of coalbursts, including the regional method, the local method and support, are presented. The safety evaluation index of coalburst prevention and control is put forward. The integrated prevention and control method for coal and gas outbursts is proposed. The prevention and control technology and equipment of coalbursts have also been developed. Amongst them, the distribution law of the critical stress in China coalburst mines is discovered. The technology and equipment for monitoring, prevention and control of coalbursts, as well as for integrated prevention and control of combined coalbursts and other disasters, have been developed. The energy-absorbing and coalburst-preventing support technology for roadways is invented, and key engineering parameters of coalburst prevention and control are pointed out. In China, coalburst prevention and control laws and standards have been developed. Technical standards for coalbursts are formulated, statute and regulations for coal mines are established, and regulatory documents are promoted. 展开更多
关键词 Coalbursts Rockbursts dynamic disaster Energy-absorbing support Monitoring and early warning
下载PDF
Assessment and control of the mine tremor disaster induced by the energy accumulation and dispersion of thick-hard roofs
10
作者 Bin Yu Mingxian Peng +1 位作者 Yang Tai Shuai Guo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期925-941,共17页
In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foun... In order to solve the problem that current theory models cannot accurately describe thick-hard roof(THR)elastic energy and assess the mine tremor disasters,a theoretical method,a Timoshenko beam theory on Winkler foundation was adopted to establish the THR’s periodic breaking model.The superposition principle was used for this complex model to derive the calculation formulas of the elastic energy and impact load on hydraulic supports.Then,the influence of roof thickness h,cantilever length L_(1),and load q on THR’s elastic energy and impact load was analyzed.And,the effect of mine tremor disasters was assessed.Finally,it is revealed that:(1)The THR’s elastic energy U exhibits power-law variations,with the fitted relationships U=0.0096L_(1)^(3.5866^),U=5943.9h^(-1.935),and U=21.049q^(2).(2)The impact load on hydraulic supports F_(ZJ) increases linearly with an increase in the cantilever length,thickness,and applied load.The fitted relationships are F_(ZJ)=1067.3L_(1)+6361.1,F_(ZJ)=125.89h+15100,and F_(ZJ)=10420q+3912.6.(3)Ground hydraulic fracturing and liquid explosive deep-hole blasting techniques effectively reduce the THR’s cantilever length at periodic breakages,thus eliminating mine tremor disasters. 展开更多
关键词 dynamic disaster Energy Hard and thick roof Timoshenko beam
下载PDF
The study of acoustic emission (AE) forecasting coal and rock disaster technique 被引量:9
11
作者 ZOU Yin-hui 《Journal of Coal Science & Engineering(China)》 2009年第2期157-160,共4页
Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent ... Introduced the coal and rock AE propagation rule,wave guide fixing technics onAE sensors,and AE forecasting coal and rock disaster on the scene and so on,The coaland rock AE propagation rule that follows the exponent attenuation function on different AEfrequencies,different quality factors and different propagation distances were analyzedand deduced by theory,numerical simulation,and by actual experiment.Consequently,itwas deduced that the coal and rock AE propagation rule follows the exponent attenuationfunction.Based on the correlative theory of wave dynamics and AE sensor,the AE waveguide propagation mechanical model on the sensor fixing manner is found,and the relationsof displacement and speed and acceleration between the AE signal source and theAE signal receiving terminal are presented.The effect of the AE sensor fixing manners oncoal and rock surfaces,coal and rock bottoms and wave guides were studied by actualexperiment.For the results,the effect of the AE sensor fixing manner on wave guides isbetter than on coal and rock surfaces,and was equivalent to the fixing manner on coal androck bottoms.Based on the above study results,actual coal and rock dynamistic disasterswere successfully forecasted. 展开更多
关键词 acoustic emission coal and rock body propagation laws wave guide installation technique coal and rock dynamic disasters
下载PDF
Experimental study on the mechanical and failure behaviors of deep rock subjected to true triaxial stress:A review 被引量:33
12
作者 Heping Xie Jun Lu +2 位作者 Cunbao Li Minghui Li Mingzhong Gao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第5期915-950,共36页
It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_... It has become an inevitable trend of human development to seek resources from the deep underground.However,rock encountered in deep underground engineering is usually in an anisotropic stress state(σ_(1)>σ>σ_(3))due to the influences of geological structures and engineering disturbances.It is therefore essential to study the mechanical,seepage,and dynamic disaster behaviors of deep rock under true triaxial stress to ensure the safe operation of deep rock engineering and the efficient exploitation of deep resources.In recent years,experimental techniques and research on true triaxial rock mechanics have achieved fruitful results that have promoted the rapid development of deep rock mechanics;thus,it is necessary to systematically review and summarize these developments.This work first introduced several typical true triaxial testing apparatus and then reviewed the corresponding research progress on rock deformation,strength,failure mode,brittleness,and energy as well as the 3D volumetric fracturing(dynamic disaster)properties of deep rocks under true triaxial stress.Then,several commonly used true triaxial rock strength criteria and their applicability,the permeability characteristics and mathematical models of deep reservoir rocks,and the disaster-causing processes and mechanisms of disturbed volumetric fracturing(rockburst,compound dynamic disasters)in deep rock engineering were described.This work may provide an essential reference for addressing the true triaxial rock mechanics issues involved in deep rock engineering,especially regarding the stability of surrounding rock at depth,disaster prevention and control,and oil and gas exploitation. 展开更多
关键词 True triaxial stress Deep rock mass Mechanical properties Strength criterion Permeability characteristics dynamic disaster
下载PDF
Gas-solid coupling laws for deep high-gas coal seams 被引量:3
13
作者 Zhou Aitao Wang Kai +1 位作者 Fan Lingpeng T.A. Kiryaeva 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期675-679,共5页
A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical ... A better understanding of gas-solid coupling laws for deep, gassy coal seams is vital for preventing the compound dynamic disasters such as rock burst and gas outburst. In this paper, a gas-solid coupling theoretical model under the influence of ground stress, gas pressure, and mining depth is established and simulated by using COMSOL Multiphysics software. Research results indicate that under the influence of factors such as high ground stress and gas pressure, the mutual coupling interaction between coal and gas is much more significant, which leads to the emergence of new characteristics of gas compound dynamic disasters. Reducing the ground stress concentration in front of the working face can not only minimize the possibility of rock burst accidents, which are mainly caused by ground stress, but also can weaken the role of ground stress as a barrier to gas, thereby decreasing the number of outburst accidents whose dominant factor is gas. The results have a great theoretical and practical significance in terms of accident prevention, enhanced mine safety, disaster prevention system design, and improved accident emergency plans. 展开更多
关键词 Deep mining Gassy coal seam Gas-solid coupling dynamic disaster
下载PDF
Distribution pattern of front abutment pressure of fully-mechanized working face of soft coal isolated island 被引量:16
14
作者 Xu Wenquan Wang Enyua +2 位作者 Shen Rongxi Song Dazhao Zhang Jingmin 《International Journal of Mining Science and Technology》 2012年第2期279-284,共6页
The front abutment pressure of a fully-mechanized workface of 11061 soft coal isolated island of Liangbei Coal Mine was measured and studied using a self-developed mining-induced stress monitoring system associated wi... The front abutment pressure of a fully-mechanized workface of 11061 soft coal isolated island of Liangbei Coal Mine was measured and studied using a self-developed mining-induced stress monitoring system associated with electromagnetic radiation technology, and the effects of abutment pressure distribution on strata behavior we discussed. The results indicate that the miningdnduced influencing distance advanced at the fully-mechanized working face of soft coal isolated island is larger than that at the gen- eral working face at the isolated island, besides the fracture zone in front of working face was widened to some extent, and the influencing range caused by relaxations on both roadways became bigger with the advancing working face. Moreover, it can be indicated that mining has significant effect on strata behav- ior of fully-mechanized working face of soft coal isolated island, which is mostly distributed in the area of stress concentration. The research results have an important reference value for revealing the distribution pattern of the front abutment pressure of a fully-mechanized working face of soft coal isolated island, and controlling the coal-rock dynamic disaster occurrence under similar mining conditions. 展开更多
关键词 Soft coalIsolated islandFully-mechanized working faceAbutment pressureCoal-rock dynamic disaster
下载PDF
Removal of noises from electromagnetic radiation of coal or rock with EEMD-adaptive morphological filter 被引量:1
15
作者 CHEN Shi-hai WANG En-yuan 《Journal of Coal Science & Engineering(China)》 2012年第3期330-336,共7页
The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the ... The electromagnetic radiation (EMR) signal collected by monitoring system during coal or rock dynamic disaster may be interferred easily by electromagnetic noises in mines. The noises have a direct influence on the recognition and analysis of the EMR signal features during the disaster. With the aim of removing these noises, an ensemble empirical mode decomposition (EEMD) adaptive morphological filter was proposed. From the result of the simulation and the experiment, it is shown that the method can restrain the random noise and white Gaussian noise mixed with EMR signal effectively. The filter is highly useful for improving the robustness of the coal or rock dynamic disaster monitoring system. 展开更多
关键词 coal or rock dynamic disaster electromagnetic radiation EEMD morphological filter DENOISING
下载PDF
Coal and rock dynamic disaster prevention and control technology in the large mining face of a deep outburst mine
16
作者 Jianguo ZHANG Man WANG +4 位作者 Hongwei ZHOU Dongming ZHANG Beichen YU Chongyang WANG Yujie WANG 《Frontiers of Earth Science》 SCIE CSCD 2023年第3期701-712,共12页
In this study, we systematically studied the occurrence regularity of in situ stress in the Pingdingshan mine. The critical criterion model of coal-rock destabilization was established based on the theoretical framewo... In this study, we systematically studied the occurrence regularity of in situ stress in the Pingdingshan mine. The critical criterion model of coal-rock destabilization was established based on the theoretical framework of fracture mechanics. Furthermore, we analyzed the coupling destabilization mechanism of in situ stress and gas and studied the influence of the variation between original rock stress and mining-induced stress on the critical criterion. Through field experiments and applications, we established a three-dimensional gas drainage technology system for areas with a large mining height and long work face. Based on our research, a demonstration project was developed for deep mine dynamic disaster control. The technical system included the arrangement and optimization of pre-drainage holes along the coal seam, technology, and optimization of gas drainage through the bottom drainage tunnel and upper corner, gas drainage technology through sieve tubes, and a two plugging with one injection under pressure sealing technology. The implementation of the demonstration project effectively reduced the gas content and pressure of the coal seam in the deep mine, and the project increased the critical strength of the instability and failure of coal and rock. 展开更多
关键词 in-situ stress dynamic disaster critical criterion gas drainage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部