Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak sig...Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak signals, the coupling between all visible satellite signals is ignored in the absence of navigation state feedback, and thermal noise error and dynamic stress threshold are contradictory due to non-coherent discriminators. The vector delay/frequency locked loop (VDFLL) with navigation state feedback and the joint vector tracking loop (JVTL) with coherent discriminator which is a synchronization parameter tracking loop based on maximum likelihood estimation (MLE) are proposed to improve the tracking sensitivity of GNSS receiver in dynamic weak signal environments. A joint vector position tracking loop (JVPTL) directly tracking user position and velocity is proposed to further improve tracking sensitivity. The coherent navigation parameter discriminator of JVPTL, being able to ease the contradiction between thermal noise error and dynamic stress threshold, is based on MLE according to the navigation parameter based linear model of received baseband signals. Simulation results show that JVPTL, which combines the advantages of both VDFLL and JVTL, performs better than both VDFLL and JVTL in dynamic weak signal environments.展开更多
For a class of nonlinear systems with dynamic uncertainties, robust adaptive stabilization problem is considered in this paper. Firstly, by introducing an observer, an augmented system is obtained. Based on the system...For a class of nonlinear systems with dynamic uncertainties, robust adaptive stabilization problem is considered in this paper. Firstly, by introducing an observer, an augmented system is obtained. Based on the system, we construct an exp-ISpS Lyapunov function for the unmodeled dynamics, prove that the unmodeled dynamics is exp-ISpS, and then obtain a dynamic normalizing signal to counteract the dynamic disturbances. By the backstepping technique, an adaptive controller is given, it is proved that all the signals in the adaptive control system are globally uniformly ultimately bounded, and the output can be regulated to the origin with any prescribed accuracy. A simulation example further demonstrates the efficiency of the control scheme.展开更多
The transports of the dynamic biochemical signals in the non-reversing pulsatile flows in the mixing microchannel of a Y-shaped microfluidic device are ana- lyzed. The results show that the mixing micro-channel acts a...The transports of the dynamic biochemical signals in the non-reversing pulsatile flows in the mixing microchannel of a Y-shaped microfluidic device are ana- lyzed. The results show that the mixing micro-channel acts as a low-pass filter, and the biochemical signals are nonlinearly modulated by the pulsatile flows, which depend on the biochemical signal frequency, the flow signal frequency, and the biochemical signal transporting distance. It is concluded that, the transfer characteristics of the dynamic biochemical signals, which are transported in the time-varying flows, should be carefully considered for better loading biochemical signals on the cells cultured on the bottom of the microfluidic channel.展开更多
This paper presents an analysis of dispersion of dynamic biochemical signals in steady flow in a shallow Y-type microfluidic channel. A method is presented to control the flow widths of two steady flows in the Y-type ...This paper presents an analysis of dispersion of dynamic biochemical signals in steady flow in a shallow Y-type microfluidic channel. A method is presented to control the flow widths of two steady flows in the Y-type microchannel from two inlets.The transfer function for the Y-type microchannel is given by solving the governing equation for the Taylor-Aris dispersion in the microchannel. The amplitude-frequency and phase-frequency relations are provided which show that a shallow Y-type microchannel acts as a low-pass filter. The transports of different dynamic biochemical signals are investigated. In comparison with a fully mixing microfluidic channel, the magnitudes of the dynamic signals at the outlets in a Y-type microchannel are much smaller than those in a fully mixing microchannel, which demonstrates that the amplitude attenuation in a Y-type microchannel is larger than that of a fully mixing microchannel due to the transverse molecular diffusion. In order to control the desired signal in a microchannel, the solution of the inverse problem for the channel is also presented.展开更多
Objective The aim of this study was to investigate the application of mammography combined with breast dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) for the diagnosis of early breast cancer. Methods Ma...Objective The aim of this study was to investigate the application of mammography combined with breast dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) for the diagnosis of early breast cancer. Methods Mammography and DCE-MRI were performed for 120 patients with breast cancer(malignant, 102; benign; 18). Results The sensitivity of mammography for early diagnosis of breast cancer was 66.67%, specificity was 77.78%, and accuracy was 68.33%. The sensitivity of MRI for early diagnosis of breast cancer was 94.12%, specificity was 88.89%, and accuracy was 93.33%. However, the sensitivity of mammography combined with DCE-MRI volume imaging with enhanced water signal(VIEWS) scanning for early diagnosis of breast cancer was 97.06%, specificity was 94.44%, and accuracy was 96.67%. Conclusion Mammography combined with DCE-MRI increased the sensitivity, specificity, and accuracy of diagnosing early breast cancer.展开更多
In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Sto...In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Stokes(URANS)equations,the evolution process from an initially circumferentially-symmetric near-stall flow field to a stable stall condition is simulated without adding any artificial disturbance.At the near-stall operating point,periodic fluctuations are present in the overall flow of the rotor.Moreover,the blockage region in the channel periodically shifts from middle span to the tip.This fluctuating condition does not directly lead to stall,while the full-annulus calculation eventually evolves to stall.Interestingly,a kind of“early disturbance”feature appears in the dynamic signals,which propagates forward ahead of the rotor.展开更多
Thirty strong Madden–Julian Oscillation(MJO) events in boreal winter 1982–2001 are selected to investigate the triggering processes of MJO convection over the western equatorial Indian Ocean(IO).These MJO events...Thirty strong Madden–Julian Oscillation(MJO) events in boreal winter 1982–2001 are selected to investigate the triggering processes of MJO convection over the western equatorial Indian Ocean(IO).These MJO events are classified into three types,according to their dynamic and thermodynamic precursor signals in situ.In Type I,a remarkable increase in low-level moisture occurs,on average,7 days prior to the convection initiation.This low-level moistening is mainly due to the advection of the background mean moisture by easterly wind anomalies over the equatorial IO.In Type II,lower-tropospheric ascending motion anomalies develop,on average,4 days prior to the initiation.The cause of this ascending motion anomaly is attributed to the anomalous warm advection,set up by a suppressed MJO phase in the equatorial IO.In Type III,there are no clear dynamic and thermodynamic precursor signals in situ.The convection might be triggered by energy accumulation in the upper layer associated with Rossby wave activity fluxes originated from the midlatitudes.展开更多
Biological processes and behaviors of endothelial cells on the inner surfaces of blood vessels are regulated by the stimulation from biochemical signals contained in the blood.In this paper,the transportation of dynam...Biological processes and behaviors of endothelial cells on the inner surfaces of blood vessels are regulated by the stimulation from biochemical signals contained in the blood.In this paper,the transportation of dynamic biochemical signals in non-reversing oscillatory flows in blood vessels is analyzed by numerically solving a nonlinear governing equation for the time-dependent Taylor-Aris dispersion.Results show that the nonlinear frequency-amplitude modulation of the transportation of biochemical signals is more(less) significant when the frequency of an oscillatory flow is close to(higher than) that of an oscillatory signal.Under steady flow,the transfer function for the signal transmission system is obtained,showing that the system is a low-pass filter.Lower inner radius or higher center-line velocity of a blood vessel increases the cutoff frequency of the transportation system.These results suggest the possibility and condition for the 'remote' transmission of low-frequency dynamic biochemical signals in pulsatile blood flows.展开更多
Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based ...Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.展开更多
In wireless mobile communications and wireless local area networks (WLAN), advanced InGaP HBT with power amplifiers are key components. In this paper, the microwave large signal dynamic waveform characteristics of a...In wireless mobile communications and wireless local area networks (WLAN), advanced InGaP HBT with power amplifiers are key components. In this paper, the microwave large signal dynamic waveform characteristics of an advanced InGaP HBT are investigated experimentally for 5.8 GHz power amplifier applications. The microwave large signal waveform distortions at various input power levels, especially at large signal level, are investigated and the reasons are analyzed. The output power saturation is also explained. These analyses will be useful for power amplifier designs.展开更多
The microwave dynamic load line characteristics of an advanced InGaP HBT are investigated experimentally and analyzed at small signal level and at large signal level for microwave power amplification. Investigation re...The microwave dynamic load line characteristics of an advanced InGaP HBT are investigated experimentally and analyzed at small signal level and at large signal level for microwave power amplification. Investigation results show that the dynamic load curves are not always like an elliptic curve, and the current extreme points do not locate at voltage extreme points. The dynamic load curve current extreme point lines sit at the small signal load line up to the P-3dB point, and the lines show a constant slope from a small signal up to the saturation power point. A method to calculate the realistically delivered power to load is presented which fits the test result well.展开更多
Online estimation of the double nugget diameters was performed by means of a back propagation neural network.The double nugget diameters were obtained using actual welding experiment and numerical simulation,according...Online estimation of the double nugget diameters was performed by means of a back propagation neural network.The double nugget diameters were obtained using actual welding experiment and numerical simulation,according to different characteristics of aluminum nugget and steel nugget.The input of the neural network was some key characteristic parameters extracted from dynamic power signal,which were peak point,knee point and their variation rate over time,as well as heat energy delivered into the welding system.The architecture of the neural network was confirmed by confirming the number of neurons in hidden layer through a series of calculations.The key parameters of the neural network were obtained by means of training 81 arrays of data set.Then,the neural network was used to test the remaining 20 arrays of verifying data set,and the results showed that both of the mean errors for the two nugget diameters were below 3%.In addition,corresponding analyses showed that the accuracy of two nugget diameters was higher than that of tensile-shear strength.展开更多
A novel architecture of a pipelined redundant-signed-digit analog to digital converter(RSD-ADC) is presented featuring a high signal to noise ratio(SNR), spurious free dynamic range(SFDR) and signal to noise plu...A novel architecture of a pipelined redundant-signed-digit analog to digital converter(RSD-ADC) is presented featuring a high signal to noise ratio(SNR), spurious free dynamic range(SFDR) and signal to noise plus distortion(SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC(residue amplification circuit)stages. With the proposed architecture of ADC, SNDR obtained is 85.89 d B, SNR is 85.9 d B and SFDR obtained is 102.8 d B at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.展开更多
基金supported by the National Natural Science Foundation for Young Scientists of China(61201190)
文摘Vehicle positioning with the global navigation satellite system (GNSS) in urban environments faces two problems which are attenuation and dynamic. For traditional GNSS receivers hardly able to track dynamic weak signals, the coupling between all visible satellite signals is ignored in the absence of navigation state feedback, and thermal noise error and dynamic stress threshold are contradictory due to non-coherent discriminators. The vector delay/frequency locked loop (VDFLL) with navigation state feedback and the joint vector tracking loop (JVTL) with coherent discriminator which is a synchronization parameter tracking loop based on maximum likelihood estimation (MLE) are proposed to improve the tracking sensitivity of GNSS receiver in dynamic weak signal environments. A joint vector position tracking loop (JVPTL) directly tracking user position and velocity is proposed to further improve tracking sensitivity. The coherent navigation parameter discriminator of JVPTL, being able to ease the contradiction between thermal noise error and dynamic stress threshold, is based on MLE according to the navigation parameter based linear model of received baseband signals. Simulation results show that JVPTL, which combines the advantages of both VDFLL and JVTL, performs better than both VDFLL and JVTL in dynamic weak signal environments.
基金This work was supported by the National Natural Science Foundation of China (No. 60304003)Program for New Century Excellent Talents in University (No. NCET-05-0607).
文摘For a class of nonlinear systems with dynamic uncertainties, robust adaptive stabilization problem is considered in this paper. Firstly, by introducing an observer, an augmented system is obtained. Based on the system, we construct an exp-ISpS Lyapunov function for the unmodeled dynamics, prove that the unmodeled dynamics is exp-ISpS, and then obtain a dynamic normalizing signal to counteract the dynamic disturbances. By the backstepping technique, an adaptive controller is given, it is proved that all the signals in the adaptive control system are globally uniformly ultimately bounded, and the output can be regulated to the origin with any prescribed accuracy. A simulation example further demonstrates the efficiency of the control scheme.
基金Project supported by the National Natural Science Foundation of China(Nos.11172060 and11672065)
文摘The transports of the dynamic biochemical signals in the non-reversing pulsatile flows in the mixing microchannel of a Y-shaped microfluidic device are ana- lyzed. The results show that the mixing micro-channel acts as a low-pass filter, and the biochemical signals are nonlinearly modulated by the pulsatile flows, which depend on the biochemical signal frequency, the flow signal frequency, and the biochemical signal transporting distance. It is concluded that, the transfer characteristics of the dynamic biochemical signals, which are transported in the time-varying flows, should be carefully considered for better loading biochemical signals on the cells cultured on the bottom of the microfluidic channel.
基金National Natural Science Foundation of Chinagrant number:11172060the Fundamental Research Funds for the Central Universities in China
文摘This paper presents an analysis of dispersion of dynamic biochemical signals in steady flow in a shallow Y-type microfluidic channel. A method is presented to control the flow widths of two steady flows in the Y-type microchannel from two inlets.The transfer function for the Y-type microchannel is given by solving the governing equation for the Taylor-Aris dispersion in the microchannel. The amplitude-frequency and phase-frequency relations are provided which show that a shallow Y-type microchannel acts as a low-pass filter. The transports of different dynamic biochemical signals are investigated. In comparison with a fully mixing microfluidic channel, the magnitudes of the dynamic signals at the outlets in a Y-type microchannel are much smaller than those in a fully mixing microchannel, which demonstrates that the amplitude attenuation in a Y-type microchannel is larger than that of a fully mixing microchannel due to the transverse molecular diffusion. In order to control the desired signal in a microchannel, the solution of the inverse problem for the channel is also presented.
文摘Objective The aim of this study was to investigate the application of mammography combined with breast dynamic contrast-enhanced magnetic resonance imaging(DCE-MRI) for the diagnosis of early breast cancer. Methods Mammography and DCE-MRI were performed for 120 patients with breast cancer(malignant, 102; benign; 18). Results The sensitivity of mammography for early diagnosis of breast cancer was 66.67%, specificity was 77.78%, and accuracy was 68.33%. The sensitivity of MRI for early diagnosis of breast cancer was 94.12%, specificity was 88.89%, and accuracy was 93.33%. However, the sensitivity of mammography combined with DCE-MRI volume imaging with enhanced water signal(VIEWS) scanning for early diagnosis of breast cancer was 97.06%, specificity was 94.44%, and accuracy was 96.67%. Conclusion Mammography combined with DCE-MRI increased the sensitivity, specificity, and accuracy of diagnosing early breast cancer.
基金This work was supported by the National Natural Science Foundation of China(No.51976139)the Shandong Provincial Natural Science Foundation,China(No.ZR2019QA018).
文摘In this paper,a numerical investigation into a spike-type rotating stall process is carried out considering a transonic compressor rotor(the NASA Rotor 37).Through solution of the Unsteady Reynolds-Averaged Navier-Stokes(URANS)equations,the evolution process from an initially circumferentially-symmetric near-stall flow field to a stable stall condition is simulated without adding any artificial disturbance.At the near-stall operating point,periodic fluctuations are present in the overall flow of the rotor.Moreover,the blockage region in the channel periodically shifts from middle span to the tip.This fluctuating condition does not directly lead to stall,while the full-annulus calculation eventually evolves to stall.Interestingly,a kind of“early disturbance”feature appears in the dynamic signals,which propagates forward ahead of the rotor.
基金supported by the China National 973 Project Grant No.2015CB453200)the National Natural Science Foundation of China Grant Nos.41475084 and 41230527+1 种基金the Office of Naval Research Grant No.N000141210450the International Pacific Research Center(IPRC) sponsored by the Japan Agency for Marine-Earth Science and Technology
文摘Thirty strong Madden–Julian Oscillation(MJO) events in boreal winter 1982–2001 are selected to investigate the triggering processes of MJO convection over the western equatorial Indian Ocean(IO).These MJO events are classified into three types,according to their dynamic and thermodynamic precursor signals in situ.In Type I,a remarkable increase in low-level moisture occurs,on average,7 days prior to the convection initiation.This low-level moistening is mainly due to the advection of the background mean moisture by easterly wind anomalies over the equatorial IO.In Type II,lower-tropospheric ascending motion anomalies develop,on average,4 days prior to the initiation.The cause of this ascending motion anomaly is attributed to the anomalous warm advection,set up by a suppressed MJO phase in the equatorial IO.In Type III,there are no clear dynamic and thermodynamic precursor signals in situ.The convection might be triggered by energy accumulation in the upper layer associated with Rossby wave activity fluxes originated from the midlatitudes.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11172060 and 10972139)the Fundamental Research Funds for the Central Universities in China (Grant No. DUT12JB11)
文摘Biological processes and behaviors of endothelial cells on the inner surfaces of blood vessels are regulated by the stimulation from biochemical signals contained in the blood.In this paper,the transportation of dynamic biochemical signals in non-reversing oscillatory flows in blood vessels is analyzed by numerically solving a nonlinear governing equation for the time-dependent Taylor-Aris dispersion.Results show that the nonlinear frequency-amplitude modulation of the transportation of biochemical signals is more(less) significant when the frequency of an oscillatory flow is close to(higher than) that of an oscillatory signal.Under steady flow,the transfer function for the signal transmission system is obtained,showing that the system is a low-pass filter.Lower inner radius or higher center-line velocity of a blood vessel increases the cutoff frequency of the transportation system.These results suggest the possibility and condition for the 'remote' transmission of low-frequency dynamic biochemical signals in pulsatile blood flows.
基金supported by the National Natural Science Foundation of China (Grants 11172060 and 31370948)
文摘Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier.The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system.It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.
文摘In wireless mobile communications and wireless local area networks (WLAN), advanced InGaP HBT with power amplifiers are key components. In this paper, the microwave large signal dynamic waveform characteristics of an advanced InGaP HBT are investigated experimentally for 5.8 GHz power amplifier applications. The microwave large signal waveform distortions at various input power levels, especially at large signal level, are investigated and the reasons are analyzed. The output power saturation is also explained. These analyses will be useful for power amplifier designs.
基金supported by the National Natural Science Foundation of China(No.2010CB327500).
文摘The microwave dynamic load line characteristics of an advanced InGaP HBT are investigated experimentally and analyzed at small signal level and at large signal level for microwave power amplification. Investigation results show that the dynamic load curves are not always like an elliptic curve, and the current extreme points do not locate at voltage extreme points. The dynamic load curve current extreme point lines sit at the small signal load line up to the P-3dB point, and the lines show a constant slope from a small signal up to the saturation power point. A method to calculate the realistically delivered power to load is presented which fits the test result well.
基金This work was supported by the National Natural Science Foundation of China(No.51605103).
文摘Online estimation of the double nugget diameters was performed by means of a back propagation neural network.The double nugget diameters were obtained using actual welding experiment and numerical simulation,according to different characteristics of aluminum nugget and steel nugget.The input of the neural network was some key characteristic parameters extracted from dynamic power signal,which were peak point,knee point and their variation rate over time,as well as heat energy delivered into the welding system.The architecture of the neural network was confirmed by confirming the number of neurons in hidden layer through a series of calculations.The key parameters of the neural network were obtained by means of training 81 arrays of data set.Then,the neural network was used to test the remaining 20 arrays of verifying data set,and the results showed that both of the mean errors for the two nugget diameters were below 3%.In addition,corresponding analyses showed that the accuracy of two nugget diameters was higher than that of tensile-shear strength.
文摘A novel architecture of a pipelined redundant-signed-digit analog to digital converter(RSD-ADC) is presented featuring a high signal to noise ratio(SNR), spurious free dynamic range(SFDR) and signal to noise plus distortion(SNDR) with efficient background correction logic. The proposed ADC architecture shows high accuracy with a high speed circuit and efficient utilization of the hardware. This paper demonstrates the functionality of the digital correction logic of 14-bit pipelined ADC at each 1.5 bit/stage. This prototype of ADC architecture accounts for capacitor mismatch, comparator offset and finite Op-Amp gain error in the MDAC(residue amplification circuit)stages. With the proposed architecture of ADC, SNDR obtained is 85.89 d B, SNR is 85.9 d B and SFDR obtained is 102.8 d B at the sample rate of 100 MHz. This novel architecture of digital correction logic is transparent to the overall system, which is demonstrated by using 14-bit pipelined ADC. After a latency of 14 clocks, digital output will be available at every clock pulse. To describe the circuit behavior of the ADC, VHDL and MATLAB programs are used. The proposed architecture is also capable of reducing the digital hardware. Silicon area is also the complexity of the design.