期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
DYNAMICS MODEL AND SIMULATION OF FLAT VALVE SYSTEM OF INTERNAL COMBUSTION WATER PUMP 被引量:39
1
作者 Zhang Hongxin Zhang Tiezhu +2 位作者 Wang Yushun Zhao Hong Huo Wei 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第3期411-414,共4页
The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase s... The dynamics differential equations are constructed, and the initial conditions are also given. Simulation shows the following conclusions: The water pressure in cylinder has great instantaneous pulsation and phase step when outlet valve or inlet valve opens, but is more gently in other time; The volume efficiency is influenced by the output pressure slightly, and decreases as the working rotational speed increases; When the inherent frequency of the valves is integer multiple of the working frequency, the volume efficiency of system will decrease evidently. 展开更多
关键词 Check valve simulation dynamics model Internal combustion water pump(ICWP)
下载PDF
Numerical Simulation and Dynamical Analysis for Low Salinity Water Lens in the Expansion Area of the Changjiang Diluted Water 被引量:2
2
作者 张文静 朱首贤 +3 位作者 李训强 阮鲲 管卫兵 彭剑 《China Ocean Engineering》 SCIE EI CSCD 2014年第6期777-790,共14页
The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather co... The low salinity water lenses(LSWLes) in the expansion area of the Changjiang diluted water(CDW) exist in a certain period of time in some years. The impact of realistic river runoff, ocean currents and weather conditions need to be taken into account in the dynamical analysis of LSWL, which is in need of research. In this paper, the POM-σ-z model is used to set up the numerical model for the expansion of the CDW. Then LSWL in summer 1977 is simulated, and its dynamic mechanism driven by wind, tide, river runoff and the Taiwan Warm Current is also analyzed. The simulated results indicate that the isolated LSWL detaches itself from the CDW near the river mouth, and then moves towards the northeast region outside the Changjiang Estuary. Its maintaining period is from July 26 to August 11. Its formation and development is mainly driven by two factors. One is the strong southeasterly wind lasting for ten days. The other is the vertical tidal mixing during the transition from neap tide to spring tide. 展开更多
关键词 Changjiang diluted water low salinity water lens numerical simulation dynamic mechanism
下载PDF
MOLECULAR DYNAMICS SIMULATIONS OF FILLED AND EMPTY CAGE-LIKE WATER CLUSTERS IN LIQUID WATER AND THEIR SIGNIFICANCE TO GAS HYDRATE FORMATION MECHANISMS
3
作者 GUO Guangjun,ZHANG Yigang and ZHAO Yajuan Institute of Geology and Geophysics,Chinese Academy of sciences Beijing 100029,Chinese 《化工学报》 EI CAS CSCD 北大核心 2003年第z1期62-66,共5页
Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetime... Molecular dynamics simulations are performed to observe the evolutions of 512 and 51262 cage-like water clusters filled with or without a methane molecule immersed in bulk liquid water at 250 K and 230 K. The lifetimes of these clusters are calculated according to their Lindemann index δ (t) using the criteria of δ≥0.07. For both the filled and empty clusters, we find the dynamics of bulk water determines the lifetimes of cage-like water clusters, and that the lifetime of 512 62 cage-like cluster is the same as that of 512 cage-like cluster. Although the methane molecule indeed makes the filled cage-like cluster more stable than the empty one, the empty cage-like cluster still has chance to be long-lived compared with the filled clusters. These observations support the labile cluster hypothesis on the formation mechanisms of gas hydrates. 展开更多
关键词 like in time that were MOLECULAR dynamicS simulationS OF FILLED AND EMPTY CAGE-LIKE water CLUSTERS IN LIQUID water AND THEIR SIGNIFICANCE TO GAS HYDRATE FORMATION MECHANISMS of cage GAS
下载PDF
Asymmetry of the water flux induced by the deformation of a nanotube 被引量:1
4
作者 何俊霞 陆杭军 +4 位作者 刘扬 吴锋民 聂雪川 周晓艳 陈艳燕 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第5期372-377,共6页
The behavior of nano-confined water is expected to be fundamentally different from the behavior of bulk water.At the nanoscale,it is still unclear whether water flows more easily along the convergent direction or the ... The behavior of nano-confined water is expected to be fundamentally different from the behavior of bulk water.At the nanoscale,it is still unclear whether water flows more easily along the convergent direction or the divergent one,and whether a hourglass shape is more convenient than a funnel shape for water molecules to pass through a nanotube.Here,we present an approach to explore these questions by changing the deformation position of a carbon nanotube.The results of our molecular dynamics simulation indicate that the water flux through the nanotube changes significantly when the deformation position moves away from the middle region of the tube.Different from the macroscopic level,we find water flux asymmetry(water flows more easily along the convergent direction than along the divergent one),which plays a key role in a nano water pump driven by a ratchet-like mechanism.We explore the mechanism and calculate the water flux by means of the Fokker-Planck equation and find that our theoretical results are well consistent with the simulation results.Furthermore,the simulation results demonstrate that the effect of deformation location on the water flux will be reduced when the diameter of the nanochannel increases.These findings are helpful for devising water transporters or filters based on carbon nanotubes and understanding the molecular mechanism of biological channels. 展开更多
关键词 single-walled carbon nanotube deformation position molecular dynamics simulation water flux
下载PDF
Towards full predictions of temperature dynamics in McNary Dam forebay using OpenFOAM 被引量:1
5
作者 Yu-Shi WANG Marcela POLITANO Ryan LAUGHERY 《Water Science and Engineering》 EI CAS CSCD 2013年第3期317-330,共14页
Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to... Hydroelectric facilities impact water temperature; low velocities in a reservoir increase residence time and enhance heat exchange in surface layers. In this study, an unsteady three-dimensional model was developed to predict the temperatm'e dynamics in the McNary Dam forebay. The model is based on the open-source code OpenFOAM. RANS equations with the Boussinesq approximation were used to solve the flow field. A: realizable k-ε model that accounts for the production of wind turbulence was developed. Solar radiation and convective heat transfer at the free surface were included. The result of the model was compared with the field data collected on August 18, 2004. Changes in diurnal stratification were adequately predicted by the model. Observed vertical and lateral temperature distributions were accurately captured. Results indicate that the model can be used as a numerical tool to assess structural and operational alternatives to reduce the forebay temperature. 展开更多
关键词 three-dimensional numerical simulation water temperature reservoir thermal dynamics OPENFOAM McNary Dam forebay
下载PDF
Dynamic simulation of urban water metabolism under water environmental carrying capacity restrictions 被引量:8
6
作者 Weihua ZENG Bo WU Ying CHAI 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第1期114-128,共15页
A revised concept for urban water metabolism (UWM) is presented in this study to address the inadequacies in current research on UWM and the problems associated with the traditional urban water metabolic process. Fe... A revised concept for urban water metabolism (UWM) is presented in this study to address the inadequacies in current research on UWM and the problems associated with the traditional urban water metabolic process. Feedback loops can be analyzed to increase the water environmental carrying capacity (WECC) of the new urban water metabolism system (UWMS) over that of a traditional UWMS. An analysis of the feedback loops of an UWMS was used to construct a system dynamics (SD) model for the system under a WECC restriction. Water metabolic processes were simulated for different scenarios using the Tongzhou District in Beijing as an example. The results for the newly developed UWM case showed that a water environment of Tongzhou District could support a population of 1.1926 × 106, an irrigation area of 375.521 km2, a livestock of 0.7732 × 106, and an industrial value added of ¥193.14 × 109 (i.e. about US$28.285 × 109) in 2020. A sensitivity analysis showed that the WECC could be improved to some extent by constructing new sewage treatment facilities or by expanding the current sewage treatment facilities, using reclaimed water and improving the water circulation system. 展开更多
关键词 urban water metabolism system (UWMS) system dynamic simulation water environmental carryingcapacity (WECC) feedback loops bilateral control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部