Pd was electrochemically deposited on gold-coated quartz crystals at nanogram-level. The coulombic efficiency and initial nucleation and growth mechanism of potentiostatic Pd deposition were investigated via in situ e...Pd was electrochemically deposited on gold-coated quartz crystals at nanogram-level. The coulombic efficiency and initial nucleation and growth mechanism of potentiostatic Pd deposition were investigated via in situ electrochemical quartz crystal microbalance(EQCM). The coulombic efficieneies are 84%, 93% and 95% for Pd deposition at 0.3, 0.2 and 0.1 V(vs. SCE), respectively. The results of chronoamperometric measurements show that the Pd deposition proceeded by an instantaneous nucleation(at 0.3 V) or progressive nucleation(at 0.2 and 0.1 V) in a three-dimensional(3D) growth mode. The catalytic activity of Pd-based electrocatalyst for ethanol oxidation was characterized in an alkaline solution. It was found that the highest mass activity for ethanol oxidation on Pd-based electrocatalyst is 1.8× 10^4 A/(g Pd) deposited at 0.3 V for 5 s.展开更多
The in situ electrochemical quartz crystal microbalance(EQCM) technique was used to investigate the ion transport of immobilized heteropolyanions at a self-assembled monolayer(SAM) modified gold electrode during e...The in situ electrochemical quartz crystal microbalance(EQCM) technique was used to investigate the ion transport of immobilized heteropolyanions at a self-assembled monolayer(SAM) modified gold electrode during electrochemical redox process.A mixed transfer method was presented to analyse the abnormal change of resonant frequency based on the simultaneous insertion/extraction of different ions.The results indicate that the migration of HSO4-anions was indispensable in the redox process of the heteropolyanions in a 1 mol/L H2SO4 solution and played a key role in the abnormal change of the resonant frequency.Such a change was attributed to different packing densities derived by means of differently immobilized methods.展开更多
N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to...N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to characterize.Limited understanding of doping-derived EDL structure hinders insight into the structure-performance relations and the rational design of high-performance materials.Thus,we analyzed the mass and chemical composition variation of EDL within electrochemical operation by electrochemical quartz crystal microbalance,in-situ X-ray photoelectron spectroscopy,and time-offlight secondary ion mass spectrometry.We found that N-doping triggers specifically adsorbed propylene carbonate solvent in the inner Helmholtz plane(IHP),which prevents ion rearrangement and enhances the migration of cations.However,this specific adsorption accelerated solvent decomposition,rendering rapid performance degradation in practical devices.This work reveals that the surface chemistry of electrodes can cause specific adsorption of solvents and change the EDL structure,which complements the classical EDL theory and provide guidance for practical applications.展开更多
Piezoelectric transmission spectroelectrochemistry (PTSEC), i.e., the combination of electrochemistry and spectroelectrochemistry (SEC) with electrochemical quartz crystal microbalance (EQCM) technique is reported by ...Piezoelectric transmission spectroelectrochemistry (PTSEC), i.e., the combination of electrochemistry and spectroelectrochemistry (SEC) with electrochemical quartz crystal microbalance (EQCM) technique is reported by using a normal piezoelectric quartz crystal (PQC) as an optically-transparent electrode (OTE). A theoretical relationship between the PQC response and the spectroelectrochemical response is derived and used to estimate the apparent molar absorptivity of the absorbing species deposited on the OTE on the PQC surface. The complex of copper with aspartic acid is used to test this new PQC-SEC technique. Results show that the combination of three such diverse techniques provides a very useful methodology for studying electrode processes and electrode surface characteristics in situ.展开更多
基金Supported by the Guangdong Science and Technology Key Projects, China(Nos.2007A010700001, 2007B090400032)Guangzhou Science and Technology Key Projects, China(Nos.2007Z1-D0051, SKT[2007]17-11) the Scientific Research Foundation for Young Teachers of the Sun Yat-Sen University, China(No.2006-31000-1131214)
文摘Pd was electrochemically deposited on gold-coated quartz crystals at nanogram-level. The coulombic efficiency and initial nucleation and growth mechanism of potentiostatic Pd deposition were investigated via in situ electrochemical quartz crystal microbalance(EQCM). The coulombic efficieneies are 84%, 93% and 95% for Pd deposition at 0.3, 0.2 and 0.1 V(vs. SCE), respectively. The results of chronoamperometric measurements show that the Pd deposition proceeded by an instantaneous nucleation(at 0.3 V) or progressive nucleation(at 0.2 and 0.1 V) in a three-dimensional(3D) growth mode. The catalytic activity of Pd-based electrocatalyst for ethanol oxidation was characterized in an alkaline solution. It was found that the highest mass activity for ethanol oxidation on Pd-based electrocatalyst is 1.8× 10^4 A/(g Pd) deposited at 0.3 V for 5 s.
基金Supported by the Science Foundation for Young Teachers of Northeast Normal University,China(No.20081001)
文摘The in situ electrochemical quartz crystal microbalance(EQCM) technique was used to investigate the ion transport of immobilized heteropolyanions at a self-assembled monolayer(SAM) modified gold electrode during electrochemical redox process.A mixed transfer method was presented to analyse the abnormal change of resonant frequency based on the simultaneous insertion/extraction of different ions.The results indicate that the migration of HSO4-anions was indispensable in the redox process of the heteropolyanions in a 1 mol/L H2SO4 solution and played a key role in the abnormal change of the resonant frequency.Such a change was attributed to different packing densities derived by means of differently immobilized methods.
基金the National Science Foundation for Excellent Young Scholars of China(21922815)the National Natural Science Foundation of China(22179139)+2 种基金the National Key Research and Development Program of China(2020YFB1505800)the Youth Innovation Promotion Association of CAS(2019178)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the CAS(XDA21000000)。
文摘N-doped porous carbon has been extensively investigated for broad electrochemical applications.The performance is significantly impacted by the electrochemical double layer(EDL),which is material dependent and hard to characterize.Limited understanding of doping-derived EDL structure hinders insight into the structure-performance relations and the rational design of high-performance materials.Thus,we analyzed the mass and chemical composition variation of EDL within electrochemical operation by electrochemical quartz crystal microbalance,in-situ X-ray photoelectron spectroscopy,and time-offlight secondary ion mass spectrometry.We found that N-doping triggers specifically adsorbed propylene carbonate solvent in the inner Helmholtz plane(IHP),which prevents ion rearrangement and enhances the migration of cations.However,this specific adsorption accelerated solvent decomposition,rendering rapid performance degradation in practical devices.This work reveals that the surface chemistry of electrodes can cause specific adsorption of solvents and change the EDL structure,which complements the classical EDL theory and provide guidance for practical applications.
基金Project supported by the National Natural Science Foundation of China and the Education commission Foundation of China.
文摘Piezoelectric transmission spectroelectrochemistry (PTSEC), i.e., the combination of electrochemistry and spectroelectrochemistry (SEC) with electrochemical quartz crystal microbalance (EQCM) technique is reported by using a normal piezoelectric quartz crystal (PQC) as an optically-transparent electrode (OTE). A theoretical relationship between the PQC response and the spectroelectrochemical response is derived and used to estimate the apparent molar absorptivity of the absorbing species deposited on the OTE on the PQC surface. The complex of copper with aspartic acid is used to test this new PQC-SEC technique. Results show that the combination of three such diverse techniques provides a very useful methodology for studying electrode processes and electrode surface characteristics in situ.