Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of cr...Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.展开更多
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di...In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set.展开更多
The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)...The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes.展开更多
在flash cs6的默认情况下,Flash cs6只支持flv和f4v格式的视频.如果不是这种格式的视频,我们可以使用Flash cs6自带的视频转换组件Adobe Media Encoder将其他视频格式转换成FLV和F4V格式.本文主要讲解如何使用flash自带的Adobe Media En...在flash cs6的默认情况下,Flash cs6只支持flv和f4v格式的视频.如果不是这种格式的视频,我们可以使用Flash cs6自带的视频转换组件Adobe Media Encoder将其他视频格式转换成FLV和F4V格式.本文主要讲解如何使用flash自带的Adobe Media Encoder组件进行视频文件的转换,导入和使用.展开更多
In a satellite laser ranging telescope system, well-aligned encoders of the elevation and azimuth axes are essential for tracking objects. However, it is very difficult and time-consuming to correct the bias between t...In a satellite laser ranging telescope system, well-aligned encoders of the elevation and azimuth axes are essential for tracking objects. However, it is very difficult and time-consuming to correct the bias between the absolute-position indices of the encoders and the astronomical coordinates, especially in the absence of a finder scope for our system. To solve this problem, a method is presented based on the phenomenon that all stars move anti-clockwise around Polaris in the northern hemisphere. Tests of the proposed adjustment procedure in a satellite laser ranging (SLR)system demonstrated the effectiveness and the time saved by using the approach, which greatly facilitates the optimization of a trackin~ svstem.展开更多
The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance g...The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance gap between the aerial-view and the street-view images brings a huge challenge against this task.In this paper,we propose a novel multiscale attention encoder to capture the multiscale contextual information of the aerial/street-view images.To bridge the domain gap between these two view images,we first use an inverse polar transform to make the street-view images approximately aligned with the aerial-view images.Then,the explored multiscale attention encoder is applied to convert the image into feature representation with the guidance of the learnt multiscale information.Finally,we propose a novel global mining strategy to enable the network to pay more attention to hard negative exemplars.Experiments on standard benchmark datasets show that our approach obtains 81.39%top-1 recall rate on the CVUSA dataset and 71.52%on the CVACT dataset,achieving the state-of-the-art performance and outperforming most of the existing methods significantly.展开更多
Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of ...Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of a rotary encoder disk read by a group of even spread reading heads to provide a unique codeword for every angular position and features such that every two adjacent words differ in exactly one component, thus avoiding coarse error. The existing construction or combination methods are helpful but not sufficient in determining the period of the STCGC of large word length and the theoretical approach needs further development to extend the word length. Three principles, such as the seed combination, short code removal and ergodicity examination were put forward that suffice determination of the optimal period for such absolute rotary encoders using STCGC with even spread heads. The optimal periods of STCGC in 3 through 29 bit length were determined and listed.展开更多
Considerable studies have been carried out on fault diagnosis of gears, with most of them concentrated on conventional vibration analysis. However, besides the complexity of gear dynamics, the diagnosis results in ter...Considerable studies have been carried out on fault diagnosis of gears, with most of them concentrated on conventional vibration analysis. However, besides the complexity of gear dynamics, the diagnosis results in terms of vibration signal are easily misjudged owing to the interference of sensor position or other components. In this paper, an alternative gearbox fault detection method based on the instantaneous rotational speed is proposed because of its advantages over vibration analysis. Depending on the timer/counter-based method for the pulse signal of the optical encoder, the varying rotational speed can be obtained e ectively. Owing to the coupling and meshing of gears in transmission, the excitations are the same for the instantaneous rotational speed of the input and output shafts. Thus, the di erential signal of instantaneous rotational speeds can be adopted to eliminate the e ect of the interference excitations and extract the associated feature of the localized fault e ectively. With the experiments on multistage gearbox test system, the di erential signal of instantaneous speeds is compared with other signals. It is proved that localized faults in the gearbox generate small angular speed fluctuations, which are measurable with an optical encoder. Using the di erential signal of instantaneous speeds, the fault characteristics are extracted in the spectrum where the deterministic frequency component and its harmonics corresponding to crack fault characteristics are displayed clearly.展开更多
The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlat...The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders.However,it is challenging to access considerable amounts of brain functional network data,which hinders the widespread application of data-driven models in dementia diagnosis.In this study,a novel distribution-regularized adversarial graph auto-Encoder(DAGAE)with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset,improving the dementia diagnosis accuracy of data-driven models.Specifically,the label distribution is estimated to regularize the latent space learned by the graph encoder,which canmake the learning process stable and the learned representation robust.Also,the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions.The typical topological properties and discriminative features can be preserved entirely.Furthermore,the generated brain functional networks improve the prediction performance using different classifiers,which can be applied to analyze other cognitive diseases.Attempts on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that the proposed model can generate good brain functional networks.The classification results show adding generated data can achieve the best accuracy value of 85.33%,sensitivity value of 84.00%,specificity value of 86.67%.The proposed model also achieves superior performance compared with other related augmentedmodels.Overall,the proposedmodel effectively improves cognitive disease diagnosis by generating diverse brain functional networks.展开更多
We developed a novel absolute multi-pole encoder structure to improve the resolution of the multi-pole encoder, realize absolute output and reduce the manufacturing cost of the encoder. The structure includes two ring...We developed a novel absolute multi-pole encoder structure to improve the resolution of the multi-pole encoder, realize absolute output and reduce the manufacturing cost of the encoder. The structure includes two ring alnicos defined as index track and sub-division track, respectively. The index track is magnetized based on the improved gray code, with linear halls placed around the track evenly. The outputs of linear halls show the region the rotor belongs to. The sub-division track is magnetized to N-S-N-S (north-south-north-south), and the number of N-S pole pairs is determined by the index track. Three linear hall sensors with an air-gap of 2 mm are used to translate the magnetic filed to voltage signals. The relative offset in a single N-S is obtained through look-up. The magnetic encoder is calibrated using a higher-resolution incremental optical encoder. The pulse output from the optical encoder and hall signals from the magnetic encoder are sampled at the same time and transmitted to a computer, and the relation between them is calculated, and stored in the FLASH of MCU (micro controller unit) for look-up. In the working state, the absolute angle is derived by looking-up with hall signals. The structure is simple and the manufacturing cost is very low and suitable for mass production.展开更多
A low density parity check(LDPC)encoder with the codes of(8176,7154)and encoding rate of 7/8 under CCSDS standard for near space communication is designed.Based on LDPC encoding theory,the FPGA-based coding algorithm ...A low density parity check(LDPC)encoder with the codes of(8176,7154)and encoding rate of 7/8 under CCSDS standard for near space communication is designed.Based on LDPC encoding theory,the FPGA-based coding algorithm is designed.Based on the characteristics of LDPC generating matrix,the cyclic shift register is introduced as the core of the encoding circuit,and the shift-register-Adder-Accumulator(SRAA)structure is adopted to realize the fast calculation of matrix multiplication,so as to construct the encoding module with partial parallel encoding circuit as the core.In addition,the serial port input and output module,RAM storage module and control module are also designed,which together constitute the encoder system.The design scheme is implemented by FPGA hardware and verified by simulation and experiment.The results show that the test results of the designed LDPC encoder are consistent with the theoretical results.Therefore,the coding system is practical,and the design method is simple and efficient.展开更多
Given the substantially increasing complexity of embedded systems, the use of relatively detailed clock cycle-accurate simulators for the design-space exploration is impractical in the early design stages. Raising the...Given the substantially increasing complexity of embedded systems, the use of relatively detailed clock cycle-accurate simulators for the design-space exploration is impractical in the early design stages. Raising the abstraction level is nowadays widely seen as a solution to bridge the gap between the increasing system complexity and the low design productivity. For this, several system-level design tools and methodologies have been introduced to efficiently explore the design space of heterogeneous signal processing systems. In this paper, we demonstrate the effectiveness and the flexibility of the Sesame/Artemis system-level modeling and simulation methodology for efficient peformance evaluation and rapid architectural exploration of the increasing complexity heterogeneous embedded media systems. For this purpose, we have selected a system level design of a very high complexity media application;a H.264/AVC (Advanced Video Codec) video encoder. The encoding performances will be evaluated using system-level simulations targeting multiple heterogeneous multiprocessors platforms.展开更多
Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the hea...Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion.展开更多
Due to the advanced development in the multimedia-on-demandtraffic in different forms of audio, video, and images, has extremely movedon the vision of the Internet of Things (IoT) from scalar to Internet ofMultimedia ...Due to the advanced development in the multimedia-on-demandtraffic in different forms of audio, video, and images, has extremely movedon the vision of the Internet of Things (IoT) from scalar to Internet ofMultimedia Things (IoMT). Since Unmanned Aerial Vehicles (UAVs) generates a massive quantity of the multimedia data, it becomes a part of IoMT,which are commonly employed in diverse application areas, especially forcapturing remote sensing (RS) images. At the same time, the interpretationof the captured RS image also plays a crucial issue, which can be addressedby the multi-label classification and Computational Linguistics based imagecaptioning techniques. To achieve this, this paper presents an efficient lowcomplexity encoding technique with multi-label classification and image captioning for UAV based RS images. The presented model primarily involves thelow complexity encoder using the Neighborhood Correlation Sequence (NCS)with a burrows wheeler transform (BWT) technique called LCE-BWT forencoding the RS images captured by the UAV. The application of NCS greatlyreduces the computation complexity and requires fewer resources for imagetransmission. Secondly, deep learning (DL) based shallow convolutional neural network for RS image classification (SCNN-RSIC) technique is presentedto determine the multiple class labels of the RS image, shows the novelty ofthe work. Finally, the Computational Linguistics based Bidirectional EncoderRepresentations from Transformers (BERT) technique is applied for imagecaptioning, to provide a proficient textual description of the RS image. Theperformance of the presented technique is tested using the UCM dataset. Thesimulation outcome implied that the presented model has obtained effectivecompression performance, reconstructed image quality, classification results,and image captioning outcome.展开更多
On the basis of considering the present condition of China and referring the methods of the West, a real time video encoder of digital HDTV based on the MPEG 2 Standard is developed. In this paper, the division and ...On the basis of considering the present condition of China and referring the methods of the West, a real time video encoder of digital HDTV based on the MPEG 2 Standard is developed. In this paper, the division and the realization of every function unit of HDTV are discussed, and the test results of this system are given.展开更多
The encoding/decoding scheme based on Fiber Bragg Grating (FBG) for Optical Code Division Multiple Access (OCDMA) system is analyzed and the whole process from transmitting end to receiving end is researched in detail...The encoding/decoding scheme based on Fiber Bragg Grating (FBG) for Optical Code Division Multiple Access (OCDMA) system is analyzed and the whole process from transmitting end to receiving end is researched in detail. The mathematical mode including signal transmission, summing, receiving and recovering are established respectively. One of the main sources of Bit Error Rate (BER) of OCDMA system based on FBGs is the unevenness of signal power spectrum, which leads to the chip powers unequal with each other. The Signal to Interfere Ratio (SIR) and BER performance of the system are studied and simulated at the case with uneven distribution of chips' powers.展开更多
In this paper, the operation principle of laser rotary encoders is expounded and the optical quadruple frequency technology used in laser rotary encoders is explained, and the design idea of optical system in φ66 mm ...In this paper, the operation principle of laser rotary encoders is expounded and the optical quadruple frequency technology used in laser rotary encoders is explained, and the design idea of optical system in φ66 mm laser rotary encoder is mainly introduced, as well as the choice of principal devices.展开更多
基金supported by the National Natural Science Foundation of China(No.62176034)the Science and Technology Research Program of Chongqing Municipal Education Commission(No.KJZD-M202300604)the Natural Science Foundation of Chongqing(Nos.cstc2021jcyj-msxmX0518,2023NSCQ-MSX1781).
文摘Automatic crack detection of cement pavement chiefly benefits from the rapid development of deep learning,with convolutional neural networks(CNN)playing an important role in this field.However,as the performance of crack detection in cement pavement improves,the depth and width of the network structure are significantly increased,which necessitates more computing power and storage space.This limitation hampers the practical implementation of crack detection models on various platforms,particularly portable devices like small mobile devices.To solve these problems,we propose a dual-encoder-based network architecture that focuses on extracting more comprehensive fracture feature information and combines cross-fusion modules and coordinated attention mechanisms formore efficient feature fusion.Firstly,we use small channel convolution to construct shallow feature extractionmodule(SFEM)to extract low-level feature information of cracks in cement pavement images,in order to obtainmore information about cracks in the shallowfeatures of images.In addition,we construct large kernel atrous convolution(LKAC)to enhance crack information,which incorporates coordination attention mechanism for non-crack information filtering,and large kernel atrous convolution with different cores,using different receptive fields to extract more detailed edge and context information.Finally,the three-stage feature map outputs from the shallow feature extraction module is cross-fused with the two-stage feature map outputs from the large kernel atrous convolution module,and the shallow feature and detailed edge feature are fully fused to obtain the final crack prediction map.We evaluate our method on three public crack datasets:DeepCrack,CFD,and Crack500.Experimental results on theDeepCrack dataset demonstrate the effectiveness of our proposed method compared to state-of-the-art crack detection methods,which achieves Precision(P)87.2%,Recall(R)87.7%,and F-score(F1)87.4%.Thanks to our lightweight crack detectionmodel,the parameter count of the model in real-world detection scenarios has been significantly reduced to less than 2M.This advancement also facilitates technical support for portable scene detection.
文摘In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set.
基金supported by financial support from Universiti Sains Malaysia(USM)under FRGS Grant Number FRGS/1/2020/TK03/USM/02/1the School of Computer Sciences USM for their support.
文摘The detection of brain disease is an essential issue in medical and research areas.Deep learning techniques have shown promising results in detecting and diagnosing brain diseases using magnetic resonance imaging(MRI)images.These techniques involve training neural networks on large datasets of MRI images,allowing the networks to learn patterns and features indicative of different brain diseases.However,several challenges and limitations still need to be addressed further to improve the accuracy and effectiveness of these techniques.This paper implements a Feature Enhanced Stacked Auto Encoder(FESAE)model to detect brain diseases.The standard stack auto encoder’s results are trivial and not robust enough to boost the system’s accuracy.Therefore,the standard Stack Auto Encoder(SAE)is replaced with a Stacked Feature Enhanced Auto Encoder with a feature enhancement function to efficiently and effectively get non-trivial features with less activation energy froman image.The proposed model consists of four stages.First,pre-processing is performed to remove noise,and the greyscale image is converted to Red,Green,and Blue(RGB)to enhance feature details for discriminative feature extraction.Second,feature Extraction is performed to extract significant features for classification using DiscreteWavelet Transform(DWT)and Channelization.Third,classification is performed to classify MRI images into four major classes:Normal,Tumor,Brain Stroke,and Alzheimer’s.Finally,the FESAE model outperforms the state-of-theart,machine learning,and deep learning methods such as Artificial Neural Network(ANN),SAE,Random Forest(RF),and Logistic Regression(LR)by achieving a high accuracy of 98.61% on a dataset of 2000 MRI images.The proposed model has significant potential for assisting radiologists in diagnosing brain diseases more accurately and improving patient outcomes.
文摘在flash cs6的默认情况下,Flash cs6只支持flv和f4v格式的视频.如果不是这种格式的视频,我们可以使用Flash cs6自带的视频转换组件Adobe Media Encoder将其他视频格式转换成FLV和F4V格式.本文主要讲解如何使用flash自带的Adobe Media Encoder组件进行视频文件的转换,导入和使用.
基金supported by the National Natural Science Foundation of China(41274189)
文摘In a satellite laser ranging telescope system, well-aligned encoders of the elevation and azimuth axes are essential for tracking objects. However, it is very difficult and time-consuming to correct the bias between the absolute-position indices of the encoders and the astronomical coordinates, especially in the absence of a finder scope for our system. To solve this problem, a method is presented based on the phenomenon that all stars move anti-clockwise around Polaris in the northern hemisphere. Tests of the proposed adjustment procedure in a satellite laser ranging (SLR)system demonstrated the effectiveness and the time saved by using the approach, which greatly facilitates the optimization of a trackin~ svstem.
基金National Natural Science Foundation of China,Grant/Award Number:62106177supported by the Central University Basic Research Fund of China(No.2042020KF0016)supported by the supercomputing system in the Supercomputing Center of Wuhan University.
文摘The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance gap between the aerial-view and the street-view images brings a huge challenge against this task.In this paper,we propose a novel multiscale attention encoder to capture the multiscale contextual information of the aerial/street-view images.To bridge the domain gap between these two view images,we first use an inverse polar transform to make the street-view images approximately aligned with the aerial-view images.Then,the explored multiscale attention encoder is applied to convert the image into feature representation with the guidance of the learnt multiscale information.Finally,we propose a novel global mining strategy to enable the network to pay more attention to hard negative exemplars.Experiments on standard benchmark datasets show that our approach obtains 81.39%top-1 recall rate on the CVUSA dataset and 71.52%on the CVACT dataset,achieving the state-of-the-art performance and outperforming most of the existing methods significantly.
基金Project(JX2004J0170) supported by the Foundation of Beijing Jiaotong University, China
文摘Low cost and miniaturized rotary encoders are important in automatic and precise production. Presented here is a code called Single Track Cyclic Gray Code (STCGC) that is an image etched on a single circular track of a rotary encoder disk read by a group of even spread reading heads to provide a unique codeword for every angular position and features such that every two adjacent words differ in exactly one component, thus avoiding coarse error. The existing construction or combination methods are helpful but not sufficient in determining the period of the STCGC of large word length and the theoretical approach needs further development to extend the word length. Three principles, such as the seed combination, short code removal and ergodicity examination were put forward that suffice determination of the optimal period for such absolute rotary encoders using STCGC with even spread heads. The optimal periods of STCGC in 3 through 29 bit length were determined and listed.
基金Supported by National Natural Science Foundation of China(Grant No.51575438)China Postdoctoral Science Foundation(Grant Nos.2017M623159,2018T111046)Shaanxi Provincial Postdoctoral Science Foundation of China(Grant No.2017BSHEDZZ68)
文摘Considerable studies have been carried out on fault diagnosis of gears, with most of them concentrated on conventional vibration analysis. However, besides the complexity of gear dynamics, the diagnosis results in terms of vibration signal are easily misjudged owing to the interference of sensor position or other components. In this paper, an alternative gearbox fault detection method based on the instantaneous rotational speed is proposed because of its advantages over vibration analysis. Depending on the timer/counter-based method for the pulse signal of the optical encoder, the varying rotational speed can be obtained e ectively. Owing to the coupling and meshing of gears in transmission, the excitations are the same for the instantaneous rotational speed of the input and output shafts. Thus, the di erential signal of instantaneous rotational speeds can be adopted to eliminate the e ect of the interference excitations and extract the associated feature of the localized fault e ectively. With the experiments on multistage gearbox test system, the di erential signal of instantaneous speeds is compared with other signals. It is proved that localized faults in the gearbox generate small angular speed fluctuations, which are measurable with an optical encoder. Using the di erential signal of instantaneous speeds, the fault characteristics are extracted in the spectrum where the deterministic frequency component and its harmonics corresponding to crack fault characteristics are displayed clearly.
基金This paper is partially supported by the British Heart Foundation Accelerator Award,UK(AA\18\3\34220)Royal Society International Exchanges Cost Share Award,UK(RP202G0230)+9 种基金Hope Foundation for Cancer Research,UK(RM60G0680)Medical Research Council Confidence in Concept Award,UK(MC_PC_17171)Sino-UK Industrial Fund,UK(RP202G0289)Global Challenges Research Fund(GCRF),UK(P202PF11)LIAS Pioneering Partnerships Award,UK(P202ED10)Data Science Enhancement Fund,UK(P202RE237)Fight for Sight,UK(24NN201)Sino-UK Education Fund,UK(OP202006)Biotechnology and Biological Sciences Research Council,UK(RM32G0178B8)LIAS Seed Corn,UK(P202RE969).
文摘The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders.However,it is challenging to access considerable amounts of brain functional network data,which hinders the widespread application of data-driven models in dementia diagnosis.In this study,a novel distribution-regularized adversarial graph auto-Encoder(DAGAE)with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset,improving the dementia diagnosis accuracy of data-driven models.Specifically,the label distribution is estimated to regularize the latent space learned by the graph encoder,which canmake the learning process stable and the learned representation robust.Also,the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions.The typical topological properties and discriminative features can be preserved entirely.Furthermore,the generated brain functional networks improve the prediction performance using different classifiers,which can be applied to analyze other cognitive diseases.Attempts on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that the proposed model can generate good brain functional networks.The classification results show adding generated data can achieve the best accuracy value of 85.33%,sensitivity value of 84.00%,specificity value of 86.67%.The proposed model also achieves superior performance compared with other related augmentedmodels.Overall,the proposedmodel effectively improves cognitive disease diagnosis by generating diverse brain functional networks.
基金Funded partly by Heilongjiang Province Financial Fund for Researchers Returning from Abroad
文摘We developed a novel absolute multi-pole encoder structure to improve the resolution of the multi-pole encoder, realize absolute output and reduce the manufacturing cost of the encoder. The structure includes two ring alnicos defined as index track and sub-division track, respectively. The index track is magnetized based on the improved gray code, with linear halls placed around the track evenly. The outputs of linear halls show the region the rotor belongs to. The sub-division track is magnetized to N-S-N-S (north-south-north-south), and the number of N-S pole pairs is determined by the index track. Three linear hall sensors with an air-gap of 2 mm are used to translate the magnetic filed to voltage signals. The relative offset in a single N-S is obtained through look-up. The magnetic encoder is calibrated using a higher-resolution incremental optical encoder. The pulse output from the optical encoder and hall signals from the magnetic encoder are sampled at the same time and transmitted to a computer, and the relation between them is calculated, and stored in the FLASH of MCU (micro controller unit) for look-up. In the working state, the absolute angle is derived by looking-up with hall signals. The structure is simple and the manufacturing cost is very low and suitable for mass production.
文摘A low density parity check(LDPC)encoder with the codes of(8176,7154)and encoding rate of 7/8 under CCSDS standard for near space communication is designed.Based on LDPC encoding theory,the FPGA-based coding algorithm is designed.Based on the characteristics of LDPC generating matrix,the cyclic shift register is introduced as the core of the encoding circuit,and the shift-register-Adder-Accumulator(SRAA)structure is adopted to realize the fast calculation of matrix multiplication,so as to construct the encoding module with partial parallel encoding circuit as the core.In addition,the serial port input and output module,RAM storage module and control module are also designed,which together constitute the encoder system.The design scheme is implemented by FPGA hardware and verified by simulation and experiment.The results show that the test results of the designed LDPC encoder are consistent with the theoretical results.Therefore,the coding system is practical,and the design method is simple and efficient.
文摘Given the substantially increasing complexity of embedded systems, the use of relatively detailed clock cycle-accurate simulators for the design-space exploration is impractical in the early design stages. Raising the abstraction level is nowadays widely seen as a solution to bridge the gap between the increasing system complexity and the low design productivity. For this, several system-level design tools and methodologies have been introduced to efficiently explore the design space of heterogeneous signal processing systems. In this paper, we demonstrate the effectiveness and the flexibility of the Sesame/Artemis system-level modeling and simulation methodology for efficient peformance evaluation and rapid architectural exploration of the increasing complexity heterogeneous embedded media systems. For this purpose, we have selected a system level design of a very high complexity media application;a H.264/AVC (Advanced Video Codec) video encoder. The encoding performances will be evaluated using system-level simulations targeting multiple heterogeneous multiprocessors platforms.
文摘Damage detection in structures is performed via vibra-tion based structural identification. Modal information, such as fre-quencies and mode shapes, are widely used for structural dama-ge detection to indicate the health conditions of civil structures.The deep learning algorithm that works on a multiple layer neuralnetwork model termed as deep autoencoder is proposed to learnthe relationship between the modal information and structural stiff-ness parameters. This is achieved via dimension reduction of themodal information feature and a non-linear regression against thestructural stiffness parameters. Numerical tests on a symmetri-cal steel frame model are conducted to generate the data for thetraining and validation, and to demonstrate the efficiency of theproposed approach for vibration based structural damage detec-tion.
基金The authors extend their appreciation to the Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IFPIP-941-137-1442)and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Due to the advanced development in the multimedia-on-demandtraffic in different forms of audio, video, and images, has extremely movedon the vision of the Internet of Things (IoT) from scalar to Internet ofMultimedia Things (IoMT). Since Unmanned Aerial Vehicles (UAVs) generates a massive quantity of the multimedia data, it becomes a part of IoMT,which are commonly employed in diverse application areas, especially forcapturing remote sensing (RS) images. At the same time, the interpretationof the captured RS image also plays a crucial issue, which can be addressedby the multi-label classification and Computational Linguistics based imagecaptioning techniques. To achieve this, this paper presents an efficient lowcomplexity encoding technique with multi-label classification and image captioning for UAV based RS images. The presented model primarily involves thelow complexity encoder using the Neighborhood Correlation Sequence (NCS)with a burrows wheeler transform (BWT) technique called LCE-BWT forencoding the RS images captured by the UAV. The application of NCS greatlyreduces the computation complexity and requires fewer resources for imagetransmission. Secondly, deep learning (DL) based shallow convolutional neural network for RS image classification (SCNN-RSIC) technique is presentedto determine the multiple class labels of the RS image, shows the novelty ofthe work. Finally, the Computational Linguistics based Bidirectional EncoderRepresentations from Transformers (BERT) technique is applied for imagecaptioning, to provide a proficient textual description of the RS image. Theperformance of the presented technique is tested using the UCM dataset. Thesimulation outcome implied that the presented model has obtained effectivecompression performance, reconstructed image quality, classification results,and image captioning outcome.
文摘On the basis of considering the present condition of China and referring the methods of the West, a real time video encoder of digital HDTV based on the MPEG 2 Standard is developed. In this paper, the division and the realization of every function unit of HDTV are discussed, and the test results of this system are given.
基金Supported by the Natural Science Research Foundation of Jiangsu Higher-Learning Insti-tution (No.04jkb510057).
文摘The encoding/decoding scheme based on Fiber Bragg Grating (FBG) for Optical Code Division Multiple Access (OCDMA) system is analyzed and the whole process from transmitting end to receiving end is researched in detail. The mathematical mode including signal transmission, summing, receiving and recovering are established respectively. One of the main sources of Bit Error Rate (BER) of OCDMA system based on FBGs is the unevenness of signal power spectrum, which leads to the chip powers unequal with each other. The Signal to Interfere Ratio (SIR) and BER performance of the system are studied and simulated at the case with uneven distribution of chips' powers.
文摘In this paper, the operation principle of laser rotary encoders is expounded and the optical quadruple frequency technology used in laser rotary encoders is explained, and the design idea of optical system in φ66 mm laser rotary encoder is mainly introduced, as well as the choice of principal devices.