期刊文献+
共找到221篇文章
< 1 2 12 >
每页显示 20 50 100
Enhancing Cancer Classification through a Hybrid Bio-Inspired Evolutionary Algorithm for Biomarker Gene Selection 被引量:1
1
作者 Hala AlShamlan Halah AlMazrua 《Computers, Materials & Continua》 SCIE EI 2024年第4期675-694,共20页
In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selec... In this study,our aim is to address the problem of gene selection by proposing a hybrid bio-inspired evolutionary algorithm that combines Grey Wolf Optimization(GWO)with Harris Hawks Optimization(HHO)for feature selection.Themotivation for utilizingGWOandHHOstems fromtheir bio-inspired nature and their demonstrated success in optimization problems.We aimto leverage the strengths of these algorithms to enhance the effectiveness of feature selection in microarray-based cancer classification.We selected leave-one-out cross-validation(LOOCV)to evaluate the performance of both two widely used classifiers,k-nearest neighbors(KNN)and support vector machine(SVM),on high-dimensional cancer microarray data.The proposed method is extensively tested on six publicly available cancer microarray datasets,and a comprehensive comparison with recently published methods is conducted.Our hybrid algorithm demonstrates its effectiveness in improving classification performance,Surpassing alternative approaches in terms of precision.The outcomes confirm the capability of our method to substantially improve both the precision and efficiency of cancer classification,thereby advancing the development ofmore efficient treatment strategies.The proposed hybridmethod offers a promising solution to the gene selection problem in microarray-based cancer classification.It improves the accuracy and efficiency of cancer diagnosis and treatment,and its superior performance compared to other methods highlights its potential applicability in realworld cancer classification tasks.By harnessing the complementary search mechanisms of GWO and HHO,we leverage their bio-inspired behavior to identify informative genes relevant to cancer diagnosis and treatment. 展开更多
关键词 Bio-inspired algorithms BIOINFORMATICS cancer classification evolutionary algorithm feature selection gene expression grey wolf optimizer harris hawks optimization k-nearest neighbor support vector machine
下载PDF
Optimizing Deep Learning for Computer-Aided Diagnosis of Lung Diseases: An Automated Method Combining Evolutionary Algorithm, Transfer Learning, and Model Compression
2
作者 Hassen Louati Ali Louati +1 位作者 Elham Kariri Slim Bechikh 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2519-2547,共29页
Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,w... Recent developments in Computer Vision have presented novel opportunities to tackle complex healthcare issues,particularly in the field of lung disease diagnosis.One promising avenue involves the use of chest X-Rays,which are commonly utilized in radiology.To fully exploit their potential,researchers have suggested utilizing deep learning methods to construct computer-aided diagnostic systems.However,constructing and compressing these systems presents a significant challenge,as it relies heavily on the expertise of data scientists.To tackle this issue,we propose an automated approach that utilizes an evolutionary algorithm(EA)to optimize the design and compression of a convolutional neural network(CNN)for X-Ray image classification.Our approach accurately classifies radiography images and detects potential chest abnormalities and infections,including COVID-19.Furthermore,our approach incorporates transfer learning,where a pre-trainedCNNmodel on a vast dataset of chest X-Ray images is fine-tuned for the specific task of detecting COVID-19.This method can help reduce the amount of labeled data required for the task and enhance the overall performance of the model.We have validated our method via a series of experiments against state-of-the-art architectures. 展开更多
关键词 Computer-aided diagnosis deep learning evolutionary algorithms deep compression transfer learning
下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
3
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
4
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
Dose reconstruction with Compton camera during proton therapy via subset-driven origin ensemble and double evolutionary algorithm 被引量:2
5
作者 Zhi-Yang Yao Yong-Shun Xiao Ji-Zhong Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期135-148,共14页
Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstru... Compton camera-based prompt gamma(PG) imaging has been proposed for range verification during proton therapy. However, a deviation between the PG and dose distributions, as well as the difference between the reconstructed PG and exact values, limit the effectiveness of the approach in accurate range monitoring during clinical applications. The aim of the study was to realize a PG-based dose reconstruction with a Compton camera, thereby further improving the prediction accuracy of in vivo range verification and providing a novel method for beam monitoring during proton therapy. In this paper, we present an approach based on a subset-driven origin ensemble with resolution recovery and a double evolutionary algorithm to reconstruct the dose depth profile(DDP) from the gamma events obtained by a cadmium-zinc-telluride Compton camera with limited position and energy resolution. Simulations of proton pencil beams with clinical particle rate irradiating phantoms made of different materials and the CT-based thoracic phantom were used to evaluate the feasibility of the proposed method. The results show that for the monoenergetic proton pencil beam irradiating homogeneous-material box phantom,the accuracy of the reconstructed DDP was within 0.3 mm for range prediction and within 5.2% for dose prediction. In particular, for 1.6-Gy irradiation in the therapy simulation of thoracic tumors, the range deviation of the reconstructed spreadout Bragg peak was within 0.8 mm, and the relative dose deviation in the peak area was less than 7% compared to the exact values. The results demonstrate the potential and feasibility of the proposed method in future Compton-based accurate dose reconstruction and range verification during proton therapy. 展开更多
关键词 Prompt gamma imaging Dose reconstruction Range verification Origin ensemble Compton camera evolutionary algorithm
下载PDF
Tourism Route Recommendation Based on A Multi-Objective Evolutionary Algorithm Using Two-Stage Decomposition and Pareto Layering 被引量:1
6
作者 Xiaoyao Zheng Baoting Han Zhen Ni 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第2期486-500,共15页
Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions ... Tourism route planning is widely applied in the smart tourism field.The Pareto-optimal front obtained by the traditional multi-objective evolutionary algorithm exhibits long tails,sharp peaks and disconnected regions problems,which leads to uneven distribution and weak diversity of optimization solutions of tourism routes.Inspired by these limitations,we propose a multi-objective evolutionary algorithm for tourism route recommendation(MOTRR)with two-stage and Pareto layering based on decomposition.The method decomposes the multiobjective problem into several subproblems,and improves the distribution of solutions through a two-stage method.The crowding degree mechanism between extreme and intermediate populations is used in the two-stage method.The neighborhood is determined according to the weight of the subproblem for crossover mutation.Finally,Pareto layering is used to improve the updating efficiency and population diversity of the solution.The two-stage method is combined with the Pareto layering structure,which not only maintains the distribution and diversity of the algorithm,but also avoids the same solutions.Compared with several classical benchmark algorithms,the experimental results demonstrate competitive advantages on five test functions,hypervolume(HV)and inverted generational distance(IGD)metrics.Using the experimental results of real scenic spot datasets from two famous tourism social networking sites with vast amounts of users and large-scale online comments in Beijing,our proposed algorithm shows better distribution.It proves that the tourism routes recommended by our proposed algorithm have better distribution and diversity,so that the recommended routes can better meet the personalized needs of tourists. 展开更多
关键词 evolutionary algorithm multi-objective optimization Pareto optimization tourism route recommendation two-stage decomposition
下载PDF
Design and optimization of diffraction-limited storage ring lattices based on many-objective evolutionary algorithms 被引量:1
7
作者 He-Xing Yin Jia-Bao Guan +1 位作者 Shun-Qiang Tian Ji-Ke Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第10期20-35,共16页
Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate wh... Multi-objective evolutionary algorithms(MOEAs) are typically used to optimize two or three objectives in the accelerator field and perform well. However, the performance of these algorithms may severely deteriorate when the optimization objectives for an accelerator are equal to or greater than four. Recently, many-objective evolutionary algorithms(MaOEAs)that can solve problems with four or more optimization objectives have received extensive attention. In this study, two diffraction-limited storage ring(DLSR) lattices of the Extremely Brilliant Source(ESRF-EBS) type with different energies were designed and optimized using three MaOEAs and a widely used MOEA. The initial population was found to have a significant impact on the performance of the algorithms and was carefully studied. The performances of the four algorithms were compared, and the results demonstrated that the grid-based evolutionary algorithm(GrEA) had the best performance.Ma OEAs were applied in many-objective optimization of DLSR lattices for the first time, and lattices with natural emittances of 116 and 23 pm·rad were obtained at energies of 2 and 6 GeV, respectively, both with reasonable dynamic aperture and local momentum aperture(LMA). This work provides a valuable reference for future many-objective optimization of DLSRs. 展开更多
关键词 Storage ring lattices Many-objective evolutionary algorithms GrEA algorithm NSGA
下载PDF
Biometric Finger Vein Recognition Using Evolutionary Algorithm with Deep Learning
8
作者 Mohammad Yamin Tom Gedeon +1 位作者 Saleh Bajaba Mona M.Abusurrah 《Computers, Materials & Continua》 SCIE EI 2023年第6期5659-5674,共16页
In recent years,the demand for biometric-based human recog-nition methods has drastically increased to meet the privacy and security requirements.Palm prints,palm veins,finger veins,fingerprints,hand veins and other a... In recent years,the demand for biometric-based human recog-nition methods has drastically increased to meet the privacy and security requirements.Palm prints,palm veins,finger veins,fingerprints,hand veins and other anatomic and behavioral features are utilized in the development of different biometric recognition techniques.Amongst the available biometric recognition techniques,Finger Vein Recognition(FVR)is a general technique that analyzes the patterns of finger veins to authenticate the individuals.Deep Learning(DL)-based techniques have gained immense attention in the recent years,since it accomplishes excellent outcomes in various challenging domains such as computer vision,speech detection and Natural Language Processing(NLP).This technique is a natural fit to overcome the ever-increasing biomet-ric detection problems and cell phone authentication issues in airport security techniques.The current study presents an Automated Biometric Finger Vein Recognition using Evolutionary Algorithm with Deep Learning(ABFVR-EADL)model.The presented ABFVR-EADL model aims to accomplish bio-metric recognition using the patterns of the finger veins.Initially,the presented ABFVR-EADL model employs the histogram equalization technique to pre-process the input images.For feature extraction,the Salp Swarm Algorithm(SSA)with Densely-connected Networks(DenseNet-201)model is exploited,showing the proposed method’s novelty.Finally,the Deep-Stacked Denoising Autoencoder(DSAE)is utilized for biometric recognition.The proposed ABFVR-EADL method was experimentally validated using the benchmark databases,and the outcomes confirmed the productive performance of the proposed ABFVR-EADL model over other DL models. 展开更多
关键词 Biometric authentication finger vein recognition deep learning evolutionary algorithm SECURITY PRIVACY
下载PDF
MaOEA/I:Many-objective Evolutionary Algorithm Based on Indicator I_(ε+)
9
作者 Sifeng Zhu Chengrui Yang Jiaming Hu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第5期52-64,共13页
Balancing the diversity and convergence of the population is challenging in multi-objective optimization. The work proposed a many-objective evolutionary algorithm based on indicator I_(ε+)(MaOEA/I) to solve the abov... Balancing the diversity and convergence of the population is challenging in multi-objective optimization. The work proposed a many-objective evolutionary algorithm based on indicator I_(ε+)(MaOEA/I) to solve the above problems. Indicator I_(ε+)(x,y) is used for environmental selection to ensure diversity and convergence of the population. I_(ε+)(x,y) can evaluate the quality of individual x compared with individual y instead of the whole population. If I_(ε+)(x,y) is less than 0, individual x dominates y. If I_(ε+)(x,y) is 0, individuals x and y are the same. If I_(ε+)(x,y) is greater than 0, no dominant relationship exists between individuals x and y. The smaller I_(ε+)(x,y), the closer the two individuals. The dominated individuals should be deleted in environmental selection because they do not contribute to convergence. If there is no dominant individual, the same individuals and similar individuals should be deleted because they do not contribute to diversity. Therefore, the environmental selection of MaOEA/I should consider the two individuals with the smallest I_(ε+)(x,y). If I_(ε+)(x,y) is not greater than 0, delete individual y;if I_(ε+)(x,y) is greater than 0, check the distance between individuals x, y, and the target point and delete the individual with a longer distance. MaOEA/I is compared with 6 algorithms until the population does not exceed the population size. Experimental results demonstrate that MaOEA/I can gain highly competitive performance when solving many-objective optimization problems. 展开更多
关键词 many-objective evolutionary algorithm INDICATOR DIVERSITY CONVERGENCE
下载PDF
Optimal Design of Tapered Roller Bearings Based on Multi⁃Physics Objectives Using Evolutionary Algorithms
10
作者 Rajiv Tiwari Rahul M.P.Chandran 《Journal of Harbin Institute of Technology(New Series)》 CAS 2023年第1期73-84,共12页
Rolling element bearing is the most common machine element in rotating machinery.An extended life is among the foremost imperative standards in the optimal design of rolling element bearings,which confide on the fatig... Rolling element bearing is the most common machine element in rotating machinery.An extended life is among the foremost imperative standards in the optimal design of rolling element bearings,which confide on the fatigue failure,wear,and thermal conditions of bearings.To fill the gap,in the current work,all three objectives of a tapered roller bearing have been innovatively considered respectively,which are the dynamic capacity,elasto-hydrodynamic lubrication(EHL)minimum film⁃thickness,and maximum bearing temperature.These objective function formulations are presented,associated design variables are identified,and constraints are discussed.To solve complex non⁃linear constrained optimization formulations,a best⁃practice design procedure was investigated using the Artificial Bee Colony(ABC)algorithms.A sensitivity analysis of several geometric design variables was conducted to observe the difference in all three objectives.An excellent enhancement was found in the bearing designs that have been optimized as compared with bearing standards and previously published works.The present study will definitely add to the present experience based design followed in bearing industries to save time and obtain assessment of bearing performance before manufacturing.To verify the improvement,an experimental investigation is worthwhile conducting. 展开更多
关键词 dynamic capacity evolutionary algorithm optimum design tapered roller bearings TEMPERATURE tolerance analysis
下载PDF
Design of Evolutionary Algorithm Based Energy Efficient Clustering Approach for Vehicular Adhoc Networks
11
作者 VDinesh SSrinivasan +1 位作者 Gyanendra Prasad Joshi Woong Cho 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期687-699,共13页
In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections... In a vehicular ad hoc network(VANET),a massive quantity of data needs to be transmitted on a large scale in shorter time durations.At the same time,vehicles exhibit high velocity,leading to more vehicle disconnections.Both of these characteristics result in unreliable data communication in VANET.A vehicle clustering algorithm clusters the vehicles in groups employed in VANET to enhance network scalability and connection reliability.Clustering is considered one of the possible solutions for attaining effectual interaction in VANETs.But one such difficulty was reducing the cluster number under increasing transmitting nodes.This article introduces an Evolutionary Hide Objects Game Optimization based Distance Aware Clustering(EHOGO-DAC)Scheme for VANET.The major intention of the EHOGO-DAC technique is to portion the VANET into distinct sets of clusters by grouping vehicles.In addition,the DHOGO-EAC technique is mainly based on the HOGO algorithm,which is stimulated by old games,and the searching agent tries to identify hidden objects in a given space.The DHOGO-EAC technique derives a fitness function for the clustering process,including the total number of clusters and Euclidean distance.The experimental assessment of the DHOGO-EAC technique was carried out under distinct aspects.The comparison outcome stated the enhanced outcomes of the DHOGO-EAC technique compared to recent approaches. 展开更多
关键词 Vehicular networks CLUSTERING evolutionary algorithm fitness function distance metric
下载PDF
Evolution Performance of Symbolic Radial Basis Function Neural Network by Using Evolutionary Algorithms
12
作者 Shehab Abdulhabib Alzaeemi Kim Gaik Tay +2 位作者 Audrey Huong Saratha Sathasivam Majid Khan bin Majahar Ali 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1163-1184,共22页
Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algor... Radial Basis Function Neural Network(RBFNN)ensembles have long suffered from non-efficient training,where incorrect parameter settings can be computationally disastrous.This paper examines different evolutionary algorithms for training the Symbolic Radial Basis Function Neural Network(SRBFNN)through the behavior’s integration of satisfiability programming.Inspired by evolutionary algorithms,which can iteratively find the nearoptimal solution,different Evolutionary Algorithms(EAs)were designed to optimize the producer output weight of the SRBFNN that corresponds to the embedded logic programming 2Satisfiability representation(SRBFNN-2SAT).The SRBFNN’s objective function that corresponds to Satisfiability logic programming can be minimized by different algorithms,including Genetic Algorithm(GA),Evolution Strategy Algorithm(ES),Differential Evolution Algorithm(DE),and Evolutionary Programming Algorithm(EP).Each of these methods is presented in the steps in the flowchart form which can be used for its straightforward implementation in any programming language.With the use of SRBFNN-2SAT,a training method based on these algorithms has been presented,then training has been compared among algorithms,which were applied in Microsoft Visual C++software using multiple metrics of performance,including Mean Absolute Relative Error(MARE),Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),Mean Bias Error(MBE),Systematic Error(SD),Schwarz Bayesian Criterion(SBC),and Central Process Unit time(CPU time).Based on the results,the EP algorithm achieved a higher training rate and simple structure compared with the rest of the algorithms.It has been confirmed that the EP algorithm is quite effective in training and obtaining the best output weight,accompanied by the slightest iteration error,which minimizes the objective function of SRBFNN-2SAT. 展开更多
关键词 Satisfiability logic programming symbolic radial basis function neural network evolutionary programming algorithm genetic algorithm evolution strategy algorithm differential evolution algorithm
下载PDF
Hybrid evolutionary algorithm for no-wait flow shops to minimize makespan and total flowtime 被引量:2
13
作者 廖小平 刘有根 李小平 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期450-454,共5页
The NP-hard no-wait flow shop scheduling problems with makespan and total flowtime minimization are considered. Objective increment properties of the problems are analyzed. A non-dominated classification method is int... The NP-hard no-wait flow shop scheduling problems with makespan and total flowtime minimization are considered. Objective increment properties of the problems are analyzed. A non-dominated classification method is introduced to class population individuals into Pareto fronts to improve searching efficiency. Besides investigating the crowding distance and the elitist solution strategy, two effective bi-criteria local search procedures based on objective increments are presented to improve searching effectiveness. Based on the properties and methods, a hybrid evolutionary algorithm is proposed for the considered problems and compared with the best existing algorithms. Experimental results show that the proposed algorithm is effective with high efficiency. 展开更多
关键词 no-wait flow shop objective increment MAKESPAN total flowtime evolutionary algorithm
下载PDF
Lake Eutrophic Evaluation Based on Bee Immune Evolutionary Algorithm 被引量:1
14
作者 党媛 李祚泳 邹艳玲 《Agricultural Science & Technology》 CAS 2010年第4期156-158,188,共4页
In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluat... In order to establish the lake eutrophic evaluation model for multiple indices,based on the gauge transformation,an index formula in the form of a logarithmic power function was proposed to design an eutrophic evaluation model for the " normalized values" of multi-indexes.The parameters in the formula were also optimized by bee immune evolutionary algorithm(BEIEA).The universal index formula was suitable to multiindices items for eutrophic evaluation.At the same time,the formula was applied to practical eutrophic evaluations in 10 regions of Dong Lake.The evaluation results were coincident with those obtained from the power function of weighted sums and also with actual conditions.It was shown that the bee immune evolutionary algorithm was suitable to the parameter optimization in the eutrophic evaluation model. 展开更多
关键词 LAKE Eutrophic evaluation Bee algorithm Bee immune evolutionary algorithm Parameter optimization
下载PDF
A new improved Alopex-based evolutionary algorithm and its application to parameter estimation 被引量:1
15
作者 桑志祥 李绍军 董跃华 《Journal of Central South University》 SCIE EI CAS 2013年第1期123-133,共11页
In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irratio... In this work, focusing on the demerit of AEA (Alopex-based evolutionary algorithm) algorithm, an improved AEA algorithm (AEA-C) which was fused AEA with clonal selection algorithm was proposed. Considering the irrationality of the method that generated candidate solutions at each iteration of AEA, clonal selection algorithm could be applied to improve the method. The performance of the proposed new algorithm was studied by using 22 benchmark functions and was compared with original AEA given the same conditions. The experimental results show that the AEA-C clearly outperforms the original AEA for almost all the 22 benchmark functions with 10, 30, 50 dimensions in success rates, solution quality and stability. Furthermore, AEA-C was applied to estimate 6 kinetics parameters of the fermentation dynamics models. The standard deviation of the objective function calculated by the AEA-C is 41.46 and is far less than that of other literatures' results, and the fitting curves obtained by AEA-C are more in line with the actual fermentation process curves. 展开更多
关键词 ALOPEX evolutionary algorithm Alopex-based evolutionary algorithm clone selection parameter estimation
下载PDF
Managing Software Testing Technical Debt Using Evolutionary Algorithms 被引量:1
16
作者 Muhammad Abid Jamil Mohamed K.Nour 《Computers, Materials & Continua》 SCIE EI 2022年第10期735-747,共13页
Technical debt(TD)happens when project teams carry out technical decisions in favor of a short-term goal(s)in their projects,whether deliberately or unknowingly.TD must be properly managed to guarantee that its negati... Technical debt(TD)happens when project teams carry out technical decisions in favor of a short-term goal(s)in their projects,whether deliberately or unknowingly.TD must be properly managed to guarantee that its negative implications do not outweigh its advantages.A lot of research has been conducted to show that TD has evolved into a common problem with considerable financial burden.Test technical debt is the technical debt aspect of testing(or test debt).Test debt is a relatively new concept that has piqued the curiosity of the software industry in recent years.In this article,we assume that the organization selects the testing artifacts at the start of every sprint.Implementing the latest features in consideration of expected business value and repaying technical debt are among candidate tasks in terms of the testing process(test cases increments).To gain the maximum benefit for the organization in terms of software testing optimization,there is a need to select the artifacts(i.e.,test cases)with maximum feature coverage within the available resources.The management of testing optimization for large projects is complicated and can also be treated as a multi-objective problem that entails a trade-off between the agile software’s short-term and long-term value.In this article,we implement a multi-objective indicatorbased evolutionary algorithm(IBEA)for fixing such optimization issues.The capability of the algorithm is evidenced by adding it to a real case study of a university registration process. 展开更多
关键词 Technical debt software testing optimization large scale agile projects evolutionary algorithms multiobjective optimization indicatorbased evolutionary algorithm(IBEA) pareto front
下载PDF
Cell Evolutionary Algorithm: a New Optimization Method on Ground-State Energy of the Atomic
17
作者 Liu Lian-jun, Xu Jing-wen, Mao You-dong, Li Yuan-xiang Department of Physics, Wuhan University, Wuhan 430072,China State Key Laboratory of Software Engineering,Wuhan University, Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 EI CAS 2000年第4期425-430,共6页
The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solut... The purpose of this paper is to present a new general approach to solve ground-state energies of the double-electron systems in a uniform magnetic field, in which the basic element of evolution is the set in the solution space, rather than the point. The paper defines the Cell Evolutionary Algorithm, which implements such a view of the evolution mechanism. First, the optimal set in which the optimal solution may be obtained. Then this approach applies the embedded search method to get the optimal solution. We tested this approach on the atomic structure, and the results show that it can improve not only the efficiency but also the accuracy of the calculations as it relates to this specific problem. 展开更多
关键词 Key words double electron systems GROUND state energy variational principle cell evolutionary algorithm evolutionary algorithm
下载PDF
Fuzzy traffic signal control with DNA evolutionary algorithm 被引量:2
18
作者 毕云蕊 路小波 +1 位作者 孙哲 曾唯理 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期207-210,共4页
In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation character... In order to optimize the signal control system, this paper proposes a method to design an optimized fuzzy logic controller (FLC) with the DNA evolutionary algorithm. Inspired by the DNA molecular operation characteristics, the DNA evolutionary algorithm modifies the corresponding genetic operators. Compared with the traditional genetic algorithm (GA), the DNA evolutionary algorithm can overcome weak local search capability and premature convergence. The parameters of membership functions are optimized by adopting the quaternary encoding method and performing corresponding DNA genetic operators. The relevant optimized parameters are combined with the FLC for single intersection traffic signal control. Simulation experiments shows the better performance of the FLC with the DNA evolutionary algorithm optimization. The experimental results demonstrate the efficiency of the nrotmsed method. 展开更多
关键词 DNA evolutionary algorithm genetic algorithm(GA) fuzzy control traffic signal control
下载PDF
A Survey of Evolutionary Algorithms for Multi-Objective Optimization Problems With Irregular Pareto Fronts 被引量:24
19
作者 Yicun Hua Qiqi Liu +1 位作者 Kuangrong Hao Yaochu Jin 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期303-318,I0001-I0004,共20页
Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remed... Evolutionary algorithms have been shown to be very successful in solving multi-objective optimization problems(MOPs).However,their performance often deteriorates when solving MOPs with irregular Pareto fronts.To remedy this issue,a large body of research has been performed in recent years and many new algorithms have been proposed.This paper provides a comprehensive survey of the research on MOPs with irregular Pareto fronts.We start with a brief introduction to the basic concepts,followed by a summary of the benchmark test problems with irregular problems,an analysis of the causes of the irregularity,and real-world optimization problems with irregular Pareto fronts.Then,a taxonomy of the existing methodologies for handling irregular problems is given and representative algorithms are reviewed with a discussion of their strengths and weaknesses.Finally,open challenges are pointed out and a few promising future directions are suggested. 展开更多
关键词 evolutionary algorithm machine learning multi-objective optimization problems(MOPs) irregular Pareto fronts
下载PDF
A New Evolutionary Algorithm for Function Optimization 被引量:37
20
作者 GUO Tao, KANG Li shan State Key Laboratory of Software Engineering, Wuhan University,Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 CAS 1999年第4期409-414,共6页
A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good... A new algorithm based on genetic algorithm(GA) is developed for solving function optimization problems with inequality constraints. This algorithm has been used to a series of standard test problems and exhibited good performance. The computation results show that its generality, precision, robustness, simplicity and performance are all satisfactory. 展开更多
关键词 Key words evolutionary algorithm function optimization problem inequality constraints
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部