Fungi play an important role in dying wastewater treatment.In this work,the mycelia of Lactarius deliciosus exhibited an excellent capacity in decolorizing coomassie brilliant blue(CBB).The results demonstrated that t...Fungi play an important role in dying wastewater treatment.In this work,the mycelia of Lactarius deliciosus exhibited an excellent capacity in decolorizing coomassie brilliant blue(CBB).The results demonstrated that the mycelia could treat CBB with high concentrations over a broad range of pH and temperature.The decolorization rate of 99.19%and the removal rate of 16.31 mg·L^(‒1)·h were realized.The mycelia could be recycled from decolorizing process for 19 times,indicating a good re-usability.It verified that the lignin peroxidase(121.65 U·L^(‒1))and manganese peroxidase(36.77 U·L^(‒1))were involved in the degradation and decolorization process of CBB.Toxicity assessments indicated the seed germination rate was up to 82.22%while inhibition to Escherichia coli decreased dramatically and no significant effect on Caenorhabditis elegans growth was found.The removal of CBB was a synergistic process accomplished by adsorption and biodegradation.The mycelia could be used for eco-friendly CBB treatment.展开更多
The extracellular enzyme activities of sclerotia-forming and nonsclerotia- forming single spore strains of Morchella conica and M. crasspies were determined and compared. The non sclerotia-forming strains of M. conica...The extracellular enzyme activities of sclerotia-forming and nonsclerotia- forming single spore strains of Morchella conica and M. crasspies were determined and compared. The non sclerotia-forming strains of M. conica exhibited higher aver- age activities of protease, catalase and xylanase but lower laccase activity than those of sclerotia-forming strains. However, the differences did not reach significance level. The soluble amylases activity of M. crasspies was significantly higher than that of M. conica, while the mean activity of other enzymes had differences between them, but the differences did not reach significance level.展开更多
AIMTo isolate and identify the molds involved in mycotic keratitis; to isolate corresponding species from soil samples; to compare the extracellular enzyme activity indices of the molds isolated from keratitis cases a...AIMTo isolate and identify the molds involved in mycotic keratitis; to isolate corresponding species from soil samples; to compare the extracellular enzyme activity indices of the molds isolated from keratitis cases and the corresponding soil isolates.展开更多
Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of differen...Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.展开更多
The nature of the interactions between microbes and roots of plants in a peaty soil were studied in a laboratory- based experiment by measuring activities ofβ-glucosidase,phosphatase,N-acetylglucosaminidase,and aryls...The nature of the interactions between microbes and roots of plants in a peaty soil were studied in a laboratory- based experiment by measuring activities ofβ-glucosidase,phosphatase,N-acetylglucosaminidase,and arylsulphatase.The experiment was based on control(autoclaved),bacteria-inoculated,and plant(transplanted with Dactylorhiza)treatments, and samples were collected over 4 sampling intervals.Higher enzyme activities were associated with the bacteria-inoculated treatment,suggesting that soil enzyme activities are mainly of microbial origin.For example,β-glucosidase activity varied between 25-30μmol g^(-1)min^(-1)in the bacteria-inoculated samples whilst the activity of the control ranged between 4-12μmol g^(-1)min^(-1)A similar pattern was found for all other enzymes. At the end of the incubation,the microcosms were destructively sampled and the enzyme activities determined in bulk soil,rhizospheric soil,and on the root surface.Detailed measurement in different fractions of the peat indicated that higher activities were found in rhizosphere.However,the higher activities ofβ-glucosidase,N-acetylglucosaminidase,and arylsulphatase appeared to be associated with bacterial proliferation on the root surface,whilst a larger proportion of phosphatase appeared to be released from root surface.展开更多
The effect of lanthanum on the growth and extracellular enzyme activity of Erwinia chrysanthemi(Ech) was studied. Lanthanum inhibited the growth of Ech in solid culture at the concentration of 50, 100, 150, 200, 250, ...The effect of lanthanum on the growth and extracellular enzyme activity of Erwinia chrysanthemi(Ech) was studied. Lanthanum inhibited the growth of Ech in solid culture at the concentration of 50, 100, 150, 200, 250, 300 and 350 mgL-1, and the inhibition increased with the increase of the RE concentration. The formation of colony delayed and the diameter of colony decreased. Lanthanum stimulated the growth of Ech within 24h when the lanthanum concentration was less than 200 mgL-1 in liquid medium, but significantly inhibited the growth of Ech with the increase of lanthanum concentration and culture time. When the concentration was higher than 350 mgL-1, the growth of Ech was inhibited completely both in solid and liquid culture. The extracellular enzyme acitivity of Ech was affected by lanthanum at 200 mgL-1. The activity of cellulose was promoted more than that of protease but the activity of pectinase was decreased. The maceration to potato tuber tissue decreased when the cell free filtrate was tr展开更多
Changbai Mountain,central in the distribution of Pinus koraiensis,supports a virgin Korean pine forest with vertical gradient distribution.Soil extracellular enzyme activity(EEA) and enzyme stoichiometry(ES) are relia...Changbai Mountain,central in the distribution of Pinus koraiensis,supports a virgin Korean pine forest with vertical gradient distribution.Soil extracellular enzyme activity(EEA) and enzyme stoichiometry(ES) are reliable indicators of the energy and nutrients utilized by microbial communities and of soil nutrient changes.We measured four representative soil EEAs(sucrase,cellulase,urease,acid phosphatase) at two soil layers(A:0-5 cm and B:5-10 cm)beneath Korean pine forest at five elevations on Changbai Mountain during growing season.The vertical and seasonal variations of EEAs were analyzed by soil enzyme stoichiometry to quantify the role of soil microorganism in the nutrient cycling process.The activities of four soil extracellular enzymes and the ratios of enzyme activity to soil microbial biomass carbon(EA/SMBC) did not vary with elevation.The first partition point of multiple regression trees was in September,and the second branch was split by elevation.Seasonal change had more influence on soil enzyme activity(A layer:75.6%;B layer:71.3%) than did change in elevation(A layer:7.8%;B layer:7.5%).Over one entire growing season,both vector length and vector angle were unchanged by elevation,but varied significantly by month.Among the soil physicochemical factors,available phosphorus and pH were the main factors affecting the four soil EE As.The ratio of basal area of the coniferous tree to broad-leaved tree species(S_(con)/S_(br)),soil microbial biomass carbon(MBC) and nitrogen(MBN) influenced the four soil EE As.The results of vector analysis revealed that C and N sources were generally sufficient,but P was limiting(vector angle> 45°).The vector angle for September was significantly higher than for other months.This result verified that phosphorus was the limiting factor affecting soil microorganism function in nutrient metabolism and cycling.Soil enzyme stoichiometry proved to be an efficient index for quantifying soil microorganismmediated nutrient cycling in the Korean pine ecosystem.展开更多
Although returning crop residue to fields is a recommended measure for improving soil carbon(C)stocks in agroecosystems,the response of newly formed soil C(NFC)to the integrated supply of residue and nutrients and the...Although returning crop residue to fields is a recommended measure for improving soil carbon(C)stocks in agroecosystems,the response of newly formed soil C(NFC)to the integrated supply of residue and nutrients and the microbial mechanisms involved in NFC are not fully understood.Therefore,an 84-day incubation experiment was conducted to ascertain the microbial mechanisms that underpin the NFC response to inputs of residue and nitrogen(N),phosphorus(P),and sulfur(S)in two black(Phaeozem)soils from experimental plots at Gongzhuling,Jilin Province and Hailun,Heilongjiang Province,China.The results showed that adding residue alone accelerated microbial nutrient mining,which was supported by decreases of 8^(-1)6%in the ratios of C:N and C:P enzyme activities,relative to soils with nutrient inputs.The NFC amounts increased from 1156 to 1722 mg kg^(−1) in Gongzhuling soil and from 725 to 1067 mg kg^(−1) in Hailun soil as the levels of nutrient supplementation increased.Boosted regression tree analysis suggested thatβ-glucosidase(BG),acid phosphatase(AP),microbial biomass C(MBC),and Acidobacteria accounted for 27.8,18.5,14.7,and 8.1%,respectively,of the NFC in Gongzhuling soil and for 25.9,29.5,10.1,and 13.9%,respectively,of the NFC in Hailun soil.Path analysis determined that Acidobacteria positively influenced NFC both directly and indirectly by regulating BG,AP,and MBC,in which MBC acquisition was regulated more by AP.The amount of NFC was lower in Hailun soil than in Gongzhuling soil and was directly affected by AP,indicating the importance of soil properties such as SOC and pH in determining NFC.Overall,our results reveal the response of NFC to supplementation by N,P,and S,which depends on Acidobacteria and Proteobacteria,and their investment in BG and AP in residue-amended soil.展开更多
BACKGROUND Extracellular matrix(ECM)remodeling and stiffening,which are correlated with tumor malignancy,drives tumor development.However,the relationship between ECM remodeling and rat experimental model of 1,2-dimet...BACKGROUND Extracellular matrix(ECM)remodeling and stiffening,which are correlated with tumor malignancy,drives tumor development.However,the relationship between ECM remodeling and rat experimental model of 1,2-dimethylhyrazine(DMH)-induced colorectal cancer(CRC)imposed by cold and capsaicin exposure remains unclear.AIM To explore the effects of cold exposure and capsaicin on ECM remodeling and ECM enzymes in DMH-induced CRC.METHODS For histopathological analysis,the sections of colon tissues were stained with hematoxylin and eosin,Masson’s trichrome,Picrosirius red,and Weigert’s Resorcin-Fuchsin to observe the remodeling of collagen and elastin.Additionally,the protein expression level of type I collagen(COL I),type 3 collagen(COL III0,elastin,matrix metalloproteinase(MMP)1,MMP2,MMP9,and tissue-specific matrix metalloproteinase 1(TIMP1)was assessed by immunohistochemistry.The messenger RNA(mRNA)levels of COL I,COL III,elastin,and lysyl oxidase-like-2(LOXL2)in the colon tissues of rats was measured by reverse-transcriptase quantitative polymerase chain reaction.RESULTS Although no differences were observed in the proportion of adenomas,a trend towards the increase of invasive tumors was observed in the cold and capsaicin group.The cold exposure group had a metastasis rate compared with the other groups.Additionally,abnormal accumulation of both collagen and elastin was observed in the cold exposure and capsaicin group.Specifically,collagen quantitative analysis showed increased length,width,angle,and straightness compared with the DMH group.Collagen deposition and straightness were significantly increased in the cold exposure group compared with the capsaicin group.Cold exposure and capsaicin significantly increased the protein levels of COL I,elastin,and LOXL2 along with increases in their mRNA levels in the colon tissues compared with the DMH group,while COL III did not show a significant difference.Furthermore,in immunohistochemical evaluations,MMP1,MMP2,MMP9,and TIMP1 staining increased in the cold exposure and capsaicin group compared with the DMH group.CONCLUSION These results suggest that chronic cold and capsaicin exposure further increased the deposition of collagen and elastin in the colonic tissue.Increased COL I and elastin mRNA and protein levels expression may account for the enhanced ECM remodel and stiffness variations of colon tissue.The upregulated expression of the LOXL2 and physiological imbalance between MMP/TIMP activation and deactivation could contribute to the progression of the CRC resulting from cold and capsaicin exposure.展开更多
The high water content of municipal solid waste(MSW)will reduce the effciency of mechanical sorting,consequently unfavorable for beneficial utilization.In this study,a combined hydrolytic-aerobic biodrying technology ...The high water content of municipal solid waste(MSW)will reduce the effciency of mechanical sorting,consequently unfavorable for beneficial utilization.In this study,a combined hydrolytic-aerobic biodrying technology was introduced to remove water from MSW.The total water removals were proved to depend on the ventilation frequency and the temporal span in the hydrolytic stage. The ventilation frequency of 6 times/d was preferable in the hydrolytic stage.The hydrolytic span should not be prolonged more than ...展开更多
Mangroves are one of the most ecologically sensitive ecosystems to global climate change,which have cascading impacts on soil carbon(C),nitrogen(N)and phosphorus(P)cycling.Moreover,mangroves are experiencing increasin...Mangroves are one of the most ecologically sensitive ecosystems to global climate change,which have cascading impacts on soil carbon(C),nitrogen(N)and phosphorus(P)cycling.Moreover,mangroves are experiencing increasing N and P loadings and reduced oxygen availability due to intensified climate change and human activities.However,both direct and interactive effects of these perturbations on microbially mediated soil C,N and P cycling are poorly understood.Here,we simultaneously investigated the effects of N and P loadings and reduced oxygen on microbial biomass,microbial respiration,and extracellular enzyme activities(EEAs)in mangrove soils.We calculated the microbial metabolic quotient(qCO_(2)),which is regarded as a useful inverse metric of microbial C use efficiency(CUE).Our results show that reduced oxygen significantly increases both qCO_(2) and microbial specific EEAs(enzyme activity per unit of microbial biomass)for C-,N-and P-acquisition regardless of N or P loadings.Furthermore,we found that qCO_(2) positively correlated with microbial specific EEAs under reduced oxygen,whereas no clear relationship was detected under ambient oxygen.These results suggest that reduced oxygen increases microbial specific EEAs at the expense of increasing microbial respiration per unit biomass,indicating higher energy cost per unit enzyme production.展开更多
[Objective]This study aimed to screen toxin mutant of Dickeya zeae(Erwinia chrysanthemi pv.zeae)and investigate its biological characters.[Method]We obtained a toxin mutant strain D.zeae Ech7-3-42 by using acridine or...[Objective]This study aimed to screen toxin mutant of Dickeya zeae(Erwinia chrysanthemi pv.zeae)and investigate its biological characters.[Method]We obtained a toxin mutant strain D.zeae Ech7-3-42 by using acridine orange as a mutagenic agent and compared their biological characteristics and virulence between the toxin mutant and wild strain.[Result]There was no significant difference in pectin lyase,protease,cellulase and the production of extracellular polysaccharide and lipopolysaccharide,but significant difference in toxin biological activities and virulence.Ech7-3-42 mutant did not produce toxin,as well as the loss of virulence on rice and HR on tobacco,but did not lose the ability to soft rot on potato.Mutant strain Ech7-3-42 can infect rice root and then enriched in the root neck and stalk,but it could not cause rice foot rot.Dickeya zeae(wild and mutant strain)could be detected by PCR in the root neck and below the 1-2 cm long stem area,but could not be detected in the leaves.[Conclusion]We believed that toxin may be one of the important factors for D.zeae virulence on rice.展开更多
Climate change has increased drought frequency and duration that are exacerbated by increased temperatures globally.This effect has,and will continue,to increase fire occurrence across many regions of North America.In...Climate change has increased drought frequency and duration that are exacerbated by increased temperatures globally.This effect has,and will continue,to increase fire occurrence across many regions of North America.In the southern Appalachian Mountains,wildfires with high burn severity occurred in 2016due to increased drought and human activity.To investigate the effects of burn severity on soil physicochemical properties,microbial extracellular enzyme production,and microbial abundances in a temperate region,surface soils(0-15 cm)were collected from two sites(the Great Smoky Mountains National Park in Tennessee and the Nantahala National Forest in North Carolina,USA)spanning lightly,moderately,and severely burned areas,accompanied by adjacent unburned locations that act as controls.The soil samples were collected at three time points between 2017 and 2019(i.e.,0.5,1,and 2.5 years post-fire)among burn severity plots.Total hydrolytic enzyme production varied over time,with severe burn plots having significantly lower enzyme production at 2.5years post-fire.Individual enzymes varied among burn severities and across time post-fire.Light burn plots showed greater carbon-specific(β-glucosidase andβ-xylosidase)and phosphorus-specific(acid phosphatase)enzyme activities at 0.5 years post-fire,but this effect was transient.At 2.5 years post-fire,theβ-xylosidase and acid phosphatase activities were lower in severe or moderate burn plots relative to the controls.In contrast,the activity of nitrogen-specific enzyme leucyl aminopeptidase was the lowest in severe burn plots at 0.5 years post-fire,but was the lowest in light burn plots at 2.5 years post-fire.The fungi:bacteria ratio declined with burn severity,indicating that fungi are sensitive or less resilient to high burn severity during recovery.These results suggest that wildfires alter trajectories for soil microbial structure and function within a 2.5-year timeframe,which potentially has long-term impacts on biogeochemical cycling.展开更多
Screening was done for the isolation of effective lignin degraders from the forest soil samples, by providing lignin as a carbon source through the enrichment method, which leads to the isolation of 8 effective fungal...Screening was done for the isolation of effective lignin degraders from the forest soil samples, by providing lignin as a carbon source through the enrichment method, which leads to the isolation of 8 effective fungal isolates among 14 isolates. Submerged fermentation was done for the production of ligninolytic enzymes with the effective microorganisms by providing Guiaicol as a carbon source. The assay of laccase, lignin peroxidise activity and specific activity was done after the incubation intervals of 2, 4, 6, 7, 8, 10 and 12 days at 27±2℃ under shake culture condition. Partially purified protein content was estimated by using Lowry's method. Pleurotus sp. and Phanerochaetae chrysosporium are more effective at the 2nd and 7th days of incubation for the production of laccase and lignin peroxidases among the effective isolates.展开更多
Background Ecoenzymatic stoichiometry models(EEST)are often used to evaluate microbial nutrient use efficiency,but the validity of these models under exogenous nitrogen(N)input has never been clarified.Here,we investi...Background Ecoenzymatic stoichiometry models(EEST)are often used to evaluate microbial nutrient use efficiency,but the validity of these models under exogenous nitrogen(N)input has never been clarified.Here,we investigated the effects of long-term N addition(as urea)on microbial N use efficiency(NUE),compared EEST and^(18)O-labeling methods for determining NUE,and evaluated EEST’s theoretical assumption that the ratios of standard ecoenzymatic activities balance resource availability with microbial demand.Results We found that NUE estimated by EEST ranged from 0.94 to 0.98.In contrast,estimates of NUE by the^(18)O-labeling method ranged from 0.07 to 0.30.The large differences in NUE values estimated by the two methods may be because the sum ofβ-N-acetylglucosaminidase and leucine aminopeptidase activities in the EEST model was not limited to microbial N acquisition under exogenous N inputs,resulting in an overestimation of microbial NUE by EEST.In addition,the acquisition of carbon by N-acquiring enzymes also likely interferes with the evaluation of NUE by EEST.Conclusions Our results demonstrate that caution must be exercised when using EEST to evaluate NUE under exogenous N inputs that may skew standard enzyme assays.展开更多
The proportion of organic matter and mineral composition are important factors determining the formation and type of non-extractable residues(NERs) of pesticides in soil. In this study, we investigated the enantiosele...The proportion of organic matter and mineral composition are important factors determining the formation and type of non-extractable residues(NERs) of pesticides in soil. In this study, we investigated the enantioselectivity in degradation and NER formation of the chiral fungicide metalaxyl in soil particle size fractions(silt and clay). Microbial and extracellular enzyme activities during these processes were monitored in incubation of silt and clay samples isolated from sterilized and non-sterilized soil samples collected from a long-term agricultural field experimental site in Ultuna, Sweden. The temporal influence on the fate of the fungicide was noted by short-term(10-d) and long-term(92-d) incubations. Besides the acquisition of quantitative data with gas chromatography-mass spectrometry(GC/MS), stereoselective analyses were performed with chiral GC/MS. Quantitative results pointed to a higher metabolism rate of the pesticide through microbial activity than through extracellular enzyme activity. This was also confirmed by the enantioselective depletion of R-metalaxyl and the subsequent formation of R-metalaxyl acid in microbially active samples from non-sterilized soil. The silt fraction containing a high amount of organic matter exhibited a significant hydrolyzable proportion of metalaxyl NERs that was releasable under alkaline conditions. On the contrary, the clay fraction showed an enhanced affinity for covalently bound residues. Based on our results, we recommend differentiating between reversibly and irreversibly bound proportions of pesticides in persistence and environmental risk assessment because the reversible fraction contained potentially bioavailable amounts of residues that may be released under natural conditions.展开更多
Wallemia comprises air-and food-borne,mycotoxigenic contaminants including the halophilic W.ichthyophaga,xerotolerant W.sebi and xerophilic W.muriae.Wallemia isolates are easily overlooked and only a comparably small ...Wallemia comprises air-and food-borne,mycotoxigenic contaminants including the halophilic W.ichthyophaga,xerotolerant W.sebi and xerophilic W.muriae.Wallemia isolates are easily overlooked and only a comparably small number of strains have been deposited in culture collections so far.In order to better understand the natural distribution of Wallemia spp.and to encounter their natural habitats,we tested more than 300 low-water-activity substrates and 30 air samples from a wide geographical coverage.We isolated more than 150 new Wallemia strains.Wallemia sebi and W.muriae were isolated mostly from hypersaline water,low-water-activity foods,plant materials and indoor.Wallemia muriae is the dominant Wallemia species in the air of natural and human influenced environments in Europe.New isolates of W.ichthyophaga were obtained from hypersaline environments such as brine,salt crystals,salty foods and MgCl_(2)-rich bitterns,and from the air of hay barns in Denmark.Five halotolerant strains were recognised as a hitherto un-described species Wallemia hederae,the phylogenetic sister of the halophilic W.ichthyophaga.Wallemia spp.show in-vitro growth on media that contain the chaotropic salt MgCl_(2).Wallemia ichthyophaga can grow in liquid medium enriched with 2 M MgCl_(2).Never before has a microorganism been grown on comparably high MgCl_(2) concentrations.Tests of the activity of a wide range of extracellular enzymes in the presence of NaCl also suggested that Wallemia iswell-adapted to substrates with a reduced water activity.展开更多
Background Recent studies have proved that brain-derived neurotrophic factor (BDNF) possesses angiogenic activity in vitro and in vivo. However, the proangiogenic mechanism of BDNF has not yet been provided with eno...Background Recent studies have proved that brain-derived neurotrophic factor (BDNF) possesses angiogenic activity in vitro and in vivo. However, the proangiogenic mechanism of BDNF has not yet been provided with enough information. To explore the proangiogenic mechanism of BDNF, we investigated the effects of BDNF on extracellular proteolytic enzymes, including matrix metalloproteinases (MMPs) and serine proteases, particularly the urokinase-type plasminogen activator (uPA)-plasmin system in human umbilical vein endothelial cells (HUVECs) model.Methods Tube formation assay was performed in vitro to evaluate the effects of BDNF on angiogenesis. The HUVECs were treated with various concentrations of BDNF (25-400 ng/ml) for different (6-48 hours), reverse transcriptase-polymerase chain reaction (RT-PCR) was used to assay MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA in HUVECs, and the conditioned medium was analyzed for MMP and uPA activity by gelatin zymography and fibrin zymography, respectively, uPA, plasminogen activator inhibitor (PAI)-1, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-2 were quantified by western blotting analysis.Results BDNF elicited robust and elongated angiogeneis in two-dimensional cultures of HUVECs in comparison with control. The stimulation of serum-starved HUVECs with BDNF caused obvious increase in MMP-2 and MMP-9 mRNA expression and induced the pro-MMP-2 and pro-MMP-9 activation without significant differences in proliferation. However, BDNF had no effect on TIMP-1 and TIMP-2 production. BDNF increased uPA and PAI-1 production in a dose-dependent manner. Maximal activation of uPA and PAI-1 expression in HUVECs was induced by 100 ng/ml BDNF, while effects of 200 ng/ml and 400 ng/ml BDNF were slightly reduced in comparison with with those of 100 ng/ml. Protease activity for uPA was also increased by BDNF in a dose-dependent manner. BDNF also stimulated uPA and PAI-1 production beyond that in control cultures in a time-dependent manner from 12 hours to 48 hours after BDNF treatment.Conclusions BDNF stimulates MMP and uPA/PAI-1 proteolytic network in HUVECs, which may be important to the acquisition of proangiogenic potential.展开更多
Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies hav...Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs.展开更多
Aims Plants generally respond to nitrogen(N)fertilization with increased growth,but N addition can also suppress rhizosphere effects,which consequently alters soil processes.We quantified the influence of N addition o...Aims Plants generally respond to nitrogen(N)fertilization with increased growth,but N addition can also suppress rhizosphere effects,which consequently alters soil processes.We quantified the influence of N addition on rhizosphere effects of two C4 grasses:smooth crabgrass(Digitaria ischaemum)and bermudagrass(Cynodon dactylon).Methods Plants were grown in nutrient-poor soil for 80 days with either 20 or 120μg NH4No3-N g dry soil−1.N mineralization rates,microbial biomass,extracellular enzyme activities and bacterial community structure were measured on both rhizosphere and bulk(unplanted)soils after plant harvest.Important Findings Fertilization showed nominal differences in net N mineralization,extracellular enzyme activity and microbial biomass between the rhizosphere and bulk soils,indicating minimal influence of N on rhizosphere effects.Instead,the presence of plant roots showed the strongest impact(up to 80%)on rates of net N mineralization and activities of three soil enzymes indicative of N release from organic matter.Principal component analysis of terminal restriction fragment length polymorphism(t-rFlP)also reflected these trends by highlighting the importance of plant roots in structuring the soil bacterial community,followed by plant species and N fertilization(to a minor extent).overall,the results indicate minor contributions of short-term N fertilization to changes in the magnitude of rhizos-phere effects for both grass species.展开更多
基金This work was supported by the Anhui Provincial Program on Key Research and Development Project(Grant No.202004a06020021)the National Natural Science Foundation of China(Grant No.21606002)+1 种基金the Natural Science Foundation of Anhui Province(CN)(Grant No.1708085QC64)the Undergraduate Research Training Programs for Innovation(Grant Nos.201910357069,S201910357427).
文摘Fungi play an important role in dying wastewater treatment.In this work,the mycelia of Lactarius deliciosus exhibited an excellent capacity in decolorizing coomassie brilliant blue(CBB).The results demonstrated that the mycelia could treat CBB with high concentrations over a broad range of pH and temperature.The decolorization rate of 99.19%and the removal rate of 16.31 mg·L^(‒1)·h were realized.The mycelia could be recycled from decolorizing process for 19 times,indicating a good re-usability.It verified that the lignin peroxidase(121.65 U·L^(‒1))and manganese peroxidase(36.77 U·L^(‒1))were involved in the degradation and decolorization process of CBB.Toxicity assessments indicated the seed germination rate was up to 82.22%while inhibition to Escherichia coli decreased dramatically and no significant effect on Caenorhabditis elegans growth was found.The removal of CBB was a synergistic process accomplished by adsorption and biodegradation.The mycelia could be used for eco-friendly CBB treatment.
基金Supported by China Agriculture Research System(CARS24)National High Technology Research and Development Program of China(863 Program,2007AA021506)~~
文摘The extracellular enzyme activities of sclerotia-forming and nonsclerotia- forming single spore strains of Morchella conica and M. crasspies were determined and compared. The non sclerotia-forming strains of M. conica exhibited higher aver- age activities of protease, catalase and xylanase but lower laccase activity than those of sclerotia-forming strains. However, the differences did not reach significance level. The soluble amylases activity of M. crasspies was significantly higher than that of M. conica, while the mean activity of other enzymes had differences between them, but the differences did not reach significance level.
基金Partially supported by the University Grants Commission(UGC),Bahadur Shah Zafar Marg,New Delhi-110 002,India[F.No.42-469/2013(SR)]
文摘AIMTo isolate and identify the molds involved in mycotic keratitis; to isolate corresponding species from soil samples; to compare the extracellular enzyme activity indices of the molds isolated from keratitis cases and the corresponding soil isolates.
基金supported by the earmarked fund for China Agriculture Research System(CARS-23-B04)the National Key Research and Development Program of China(2016YFD0201001)HAAFS Science and Technology Innovation Special Project,China(2022KJCXZX-ZHS-2).
文摘Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.
基金Project supported by the Advanced Environmental Biotechnology Research Center(AEBRC),Koreathe Korea Science and Engineering Foundationthe Ecotopia 21 of Ministry of Environment,Korea.
文摘The nature of the interactions between microbes and roots of plants in a peaty soil were studied in a laboratory- based experiment by measuring activities ofβ-glucosidase,phosphatase,N-acetylglucosaminidase,and arylsulphatase.The experiment was based on control(autoclaved),bacteria-inoculated,and plant(transplanted with Dactylorhiza)treatments, and samples were collected over 4 sampling intervals.Higher enzyme activities were associated with the bacteria-inoculated treatment,suggesting that soil enzyme activities are mainly of microbial origin.For example,β-glucosidase activity varied between 25-30μmol g^(-1)min^(-1)in the bacteria-inoculated samples whilst the activity of the control ranged between 4-12μmol g^(-1)min^(-1)A similar pattern was found for all other enzymes. At the end of the incubation,the microcosms were destructively sampled and the enzyme activities determined in bulk soil,rhizospheric soil,and on the root surface.Detailed measurement in different fractions of the peat indicated that higher activities were found in rhizosphere.However,the higher activities ofβ-glucosidase,N-acetylglucosaminidase,and arylsulphatase appeared to be associated with bacterial proliferation on the root surface,whilst a larger proportion of phosphatase appeared to be released from root surface.
文摘The effect of lanthanum on the growth and extracellular enzyme activity of Erwinia chrysanthemi(Ech) was studied. Lanthanum inhibited the growth of Ech in solid culture at the concentration of 50, 100, 150, 200, 250, 300 and 350 mgL-1, and the inhibition increased with the increase of the RE concentration. The formation of colony delayed and the diameter of colony decreased. Lanthanum stimulated the growth of Ech within 24h when the lanthanum concentration was less than 200 mgL-1 in liquid medium, but significantly inhibited the growth of Ech with the increase of lanthanum concentration and culture time. When the concentration was higher than 350 mgL-1, the growth of Ech was inhibited completely both in solid and liquid culture. The extracellular enzyme acitivity of Ech was affected by lanthanum at 200 mgL-1. The activity of cellulose was promoted more than that of protease but the activity of pectinase was decreased. The maceration to potato tuber tissue decreased when the cell free filtrate was tr
基金supported by the National Natural Science Foundation of China (No.31670496)。
文摘Changbai Mountain,central in the distribution of Pinus koraiensis,supports a virgin Korean pine forest with vertical gradient distribution.Soil extracellular enzyme activity(EEA) and enzyme stoichiometry(ES) are reliable indicators of the energy and nutrients utilized by microbial communities and of soil nutrient changes.We measured four representative soil EEAs(sucrase,cellulase,urease,acid phosphatase) at two soil layers(A:0-5 cm and B:5-10 cm)beneath Korean pine forest at five elevations on Changbai Mountain during growing season.The vertical and seasonal variations of EEAs were analyzed by soil enzyme stoichiometry to quantify the role of soil microorganism in the nutrient cycling process.The activities of four soil extracellular enzymes and the ratios of enzyme activity to soil microbial biomass carbon(EA/SMBC) did not vary with elevation.The first partition point of multiple regression trees was in September,and the second branch was split by elevation.Seasonal change had more influence on soil enzyme activity(A layer:75.6%;B layer:71.3%) than did change in elevation(A layer:7.8%;B layer:7.5%).Over one entire growing season,both vector length and vector angle were unchanged by elevation,but varied significantly by month.Among the soil physicochemical factors,available phosphorus and pH were the main factors affecting the four soil EE As.The ratio of basal area of the coniferous tree to broad-leaved tree species(S_(con)/S_(br)),soil microbial biomass carbon(MBC) and nitrogen(MBN) influenced the four soil EE As.The results of vector analysis revealed that C and N sources were generally sufficient,but P was limiting(vector angle> 45°).The vector angle for September was significantly higher than for other months.This result verified that phosphorus was the limiting factor affecting soil microorganism function in nutrient metabolism and cycling.Soil enzyme stoichiometry proved to be an efficient index for quantifying soil microorganismmediated nutrient cycling in the Korean pine ecosystem.
基金financially supported by the Agro-scientific Research in the Public Interest of China (201503122)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAASXTCX2016008)the National Natural Science Foundation of China (41620104006)
文摘Although returning crop residue to fields is a recommended measure for improving soil carbon(C)stocks in agroecosystems,the response of newly formed soil C(NFC)to the integrated supply of residue and nutrients and the microbial mechanisms involved in NFC are not fully understood.Therefore,an 84-day incubation experiment was conducted to ascertain the microbial mechanisms that underpin the NFC response to inputs of residue and nitrogen(N),phosphorus(P),and sulfur(S)in two black(Phaeozem)soils from experimental plots at Gongzhuling,Jilin Province and Hailun,Heilongjiang Province,China.The results showed that adding residue alone accelerated microbial nutrient mining,which was supported by decreases of 8^(-1)6%in the ratios of C:N and C:P enzyme activities,relative to soils with nutrient inputs.The NFC amounts increased from 1156 to 1722 mg kg^(−1) in Gongzhuling soil and from 725 to 1067 mg kg^(−1) in Hailun soil as the levels of nutrient supplementation increased.Boosted regression tree analysis suggested thatβ-glucosidase(BG),acid phosphatase(AP),microbial biomass C(MBC),and Acidobacteria accounted for 27.8,18.5,14.7,and 8.1%,respectively,of the NFC in Gongzhuling soil and for 25.9,29.5,10.1,and 13.9%,respectively,of the NFC in Hailun soil.Path analysis determined that Acidobacteria positively influenced NFC both directly and indirectly by regulating BG,AP,and MBC,in which MBC acquisition was regulated more by AP.The amount of NFC was lower in Hailun soil than in Gongzhuling soil and was directly affected by AP,indicating the importance of soil properties such as SOC and pH in determining NFC.Overall,our results reveal the response of NFC to supplementation by N,P,and S,which depends on Acidobacteria and Proteobacteria,and their investment in BG and AP in residue-amended soil.
基金by National Natural Science Foundation of China,No.81673944.
文摘BACKGROUND Extracellular matrix(ECM)remodeling and stiffening,which are correlated with tumor malignancy,drives tumor development.However,the relationship between ECM remodeling and rat experimental model of 1,2-dimethylhyrazine(DMH)-induced colorectal cancer(CRC)imposed by cold and capsaicin exposure remains unclear.AIM To explore the effects of cold exposure and capsaicin on ECM remodeling and ECM enzymes in DMH-induced CRC.METHODS For histopathological analysis,the sections of colon tissues were stained with hematoxylin and eosin,Masson’s trichrome,Picrosirius red,and Weigert’s Resorcin-Fuchsin to observe the remodeling of collagen and elastin.Additionally,the protein expression level of type I collagen(COL I),type 3 collagen(COL III0,elastin,matrix metalloproteinase(MMP)1,MMP2,MMP9,and tissue-specific matrix metalloproteinase 1(TIMP1)was assessed by immunohistochemistry.The messenger RNA(mRNA)levels of COL I,COL III,elastin,and lysyl oxidase-like-2(LOXL2)in the colon tissues of rats was measured by reverse-transcriptase quantitative polymerase chain reaction.RESULTS Although no differences were observed in the proportion of adenomas,a trend towards the increase of invasive tumors was observed in the cold and capsaicin group.The cold exposure group had a metastasis rate compared with the other groups.Additionally,abnormal accumulation of both collagen and elastin was observed in the cold exposure and capsaicin group.Specifically,collagen quantitative analysis showed increased length,width,angle,and straightness compared with the DMH group.Collagen deposition and straightness were significantly increased in the cold exposure group compared with the capsaicin group.Cold exposure and capsaicin significantly increased the protein levels of COL I,elastin,and LOXL2 along with increases in their mRNA levels in the colon tissues compared with the DMH group,while COL III did not show a significant difference.Furthermore,in immunohistochemical evaluations,MMP1,MMP2,MMP9,and TIMP1 staining increased in the cold exposure and capsaicin group compared with the DMH group.CONCLUSION These results suggest that chronic cold and capsaicin exposure further increased the deposition of collagen and elastin in the colonic tissue.Increased COL I and elastin mRNA and protein levels expression may account for the enhanced ECM remodel and stiffness variations of colon tissue.The upregulated expression of the LOXL2 and physiological imbalance between MMP/TIMP activation and deactivation could contribute to the progression of the CRC resulting from cold and capsaicin exposure.
基金supported by the National Key Technolo-gy R&D Program(No.2006BAC06B04,2006BAC02A03)the Key Grant Project of Shanghai Committee of Science and Technology(No.06dz12308).
文摘The high water content of municipal solid waste(MSW)will reduce the effciency of mechanical sorting,consequently unfavorable for beneficial utilization.In this study,a combined hydrolytic-aerobic biodrying technology was introduced to remove water from MSW.The total water removals were proved to depend on the ventilation frequency and the temporal span in the hydrolytic stage. The ventilation frequency of 6 times/d was preferable in the hydrolytic stage.The hydrolytic span should not be prolonged more than ...
基金funding from EU H2020 Marie SkłodowskaCurie Actions(No.839806)Aarhus Universitets Forskningsfond(AUFF-E-2019-7-1)+3 种基金Danish Independent Research Foundation(1127-00015B)Nordic Committee of Agriculture and Food Researchsupported by Natural Environment Research Council(NERC)EAO Doctoral Training Partnership(NE/L002469/1)supported by a Ramon Areces Foundation research Fellowship and BBSRC Discovery Fellowship(BB/S010661/1).
文摘Mangroves are one of the most ecologically sensitive ecosystems to global climate change,which have cascading impacts on soil carbon(C),nitrogen(N)and phosphorus(P)cycling.Moreover,mangroves are experiencing increasing N and P loadings and reduced oxygen availability due to intensified climate change and human activities.However,both direct and interactive effects of these perturbations on microbially mediated soil C,N and P cycling are poorly understood.Here,we simultaneously investigated the effects of N and P loadings and reduced oxygen on microbial biomass,microbial respiration,and extracellular enzyme activities(EEAs)in mangrove soils.We calculated the microbial metabolic quotient(qCO_(2)),which is regarded as a useful inverse metric of microbial C use efficiency(CUE).Our results show that reduced oxygen significantly increases both qCO_(2) and microbial specific EEAs(enzyme activity per unit of microbial biomass)for C-,N-and P-acquisition regardless of N or P loadings.Furthermore,we found that qCO_(2) positively correlated with microbial specific EEAs under reduced oxygen,whereas no clear relationship was detected under ambient oxygen.These results suggest that reduced oxygen increases microbial specific EEAs at the expense of increasing microbial respiration per unit biomass,indicating higher energy cost per unit enzyme production.
基金Supported by the National Natural Science Foundation of China(31071658)
文摘[Objective]This study aimed to screen toxin mutant of Dickeya zeae(Erwinia chrysanthemi pv.zeae)and investigate its biological characters.[Method]We obtained a toxin mutant strain D.zeae Ech7-3-42 by using acridine orange as a mutagenic agent and compared their biological characteristics and virulence between the toxin mutant and wild strain.[Result]There was no significant difference in pectin lyase,protease,cellulase and the production of extracellular polysaccharide and lipopolysaccharide,but significant difference in toxin biological activities and virulence.Ech7-3-42 mutant did not produce toxin,as well as the loss of virulence on rice and HR on tobacco,but did not lose the ability to soft rot on potato.Mutant strain Ech7-3-42 can infect rice root and then enriched in the root neck and stalk,but it could not cause rice foot rot.Dickeya zeae(wild and mutant strain)could be detected by PCR in the root neck and below the 1-2 cm long stem area,but could not be detected in the leaves.[Conclusion]We believed that toxin may be one of the important factors for D.zeae virulence on rice.
基金funded by a 2017 Highlands Biological Station Grant-in-Aide,the University of Texas at San Antonio, and the University of Memphis
文摘Climate change has increased drought frequency and duration that are exacerbated by increased temperatures globally.This effect has,and will continue,to increase fire occurrence across many regions of North America.In the southern Appalachian Mountains,wildfires with high burn severity occurred in 2016due to increased drought and human activity.To investigate the effects of burn severity on soil physicochemical properties,microbial extracellular enzyme production,and microbial abundances in a temperate region,surface soils(0-15 cm)were collected from two sites(the Great Smoky Mountains National Park in Tennessee and the Nantahala National Forest in North Carolina,USA)spanning lightly,moderately,and severely burned areas,accompanied by adjacent unburned locations that act as controls.The soil samples were collected at three time points between 2017 and 2019(i.e.,0.5,1,and 2.5 years post-fire)among burn severity plots.Total hydrolytic enzyme production varied over time,with severe burn plots having significantly lower enzyme production at 2.5years post-fire.Individual enzymes varied among burn severities and across time post-fire.Light burn plots showed greater carbon-specific(β-glucosidase andβ-xylosidase)and phosphorus-specific(acid phosphatase)enzyme activities at 0.5 years post-fire,but this effect was transient.At 2.5 years post-fire,theβ-xylosidase and acid phosphatase activities were lower in severe or moderate burn plots relative to the controls.In contrast,the activity of nitrogen-specific enzyme leucyl aminopeptidase was the lowest in severe burn plots at 0.5 years post-fire,but was the lowest in light burn plots at 2.5 years post-fire.The fungi:bacteria ratio declined with burn severity,indicating that fungi are sensitive or less resilient to high burn severity during recovery.These results suggest that wildfires alter trajectories for soil microbial structure and function within a 2.5-year timeframe,which potentially has long-term impacts on biogeochemical cycling.
文摘Screening was done for the isolation of effective lignin degraders from the forest soil samples, by providing lignin as a carbon source through the enrichment method, which leads to the isolation of 8 effective fungal isolates among 14 isolates. Submerged fermentation was done for the production of ligninolytic enzymes with the effective microorganisms by providing Guiaicol as a carbon source. The assay of laccase, lignin peroxidise activity and specific activity was done after the incubation intervals of 2, 4, 6, 7, 8, 10 and 12 days at 27±2℃ under shake culture condition. Partially purified protein content was estimated by using Lowry's method. Pleurotus sp. and Phanerochaetae chrysosporium are more effective at the 2nd and 7th days of incubation for the production of laccase and lignin peroxidases among the effective isolates.
基金funded by the National Key Research and Development Program of China(2020YFA0608100)the National Natural Science Foundation of China(32001174 and 32101378)+2 种基金the Major Program of Institute of Applied Ecology,Chinese Academy of Sciences(IAEMP202201)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(ZDBS-LY-DQC019)Project funded by China Postdoctoral Science Foundation(2022M710004).
文摘Background Ecoenzymatic stoichiometry models(EEST)are often used to evaluate microbial nutrient use efficiency,but the validity of these models under exogenous nitrogen(N)input has never been clarified.Here,we investigated the effects of long-term N addition(as urea)on microbial N use efficiency(NUE),compared EEST and^(18)O-labeling methods for determining NUE,and evaluated EEST’s theoretical assumption that the ratios of standard ecoenzymatic activities balance resource availability with microbial demand.Results We found that NUE estimated by EEST ranged from 0.94 to 0.98.In contrast,estimates of NUE by the^(18)O-labeling method ranged from 0.07 to 0.30.The large differences in NUE values estimated by the two methods may be because the sum ofβ-N-acetylglucosaminidase and leucine aminopeptidase activities in the EEST model was not limited to microbial N acquisition under exogenous N inputs,resulting in an overestimation of microbial NUE by EEST.In addition,the acquisition of carbon by N-acquiring enzymes also likely interferes with the evaluation of NUE by EEST.Conclusions Our results demonstrate that caution must be exercised when using EEST to evaluate NUE under exogenous N inputs that may skew standard enzyme assays.
基金Financial support by the German Research Foundation (DFG) (SCHW750/9) in the frame of the Priority Program SPP 1315。
文摘The proportion of organic matter and mineral composition are important factors determining the formation and type of non-extractable residues(NERs) of pesticides in soil. In this study, we investigated the enantioselectivity in degradation and NER formation of the chiral fungicide metalaxyl in soil particle size fractions(silt and clay). Microbial and extracellular enzyme activities during these processes were monitored in incubation of silt and clay samples isolated from sterilized and non-sterilized soil samples collected from a long-term agricultural field experimental site in Ultuna, Sweden. The temporal influence on the fate of the fungicide was noted by short-term(10-d) and long-term(92-d) incubations. Besides the acquisition of quantitative data with gas chromatography-mass spectrometry(GC/MS), stereoselective analyses were performed with chiral GC/MS. Quantitative results pointed to a higher metabolism rate of the pesticide through microbial activity than through extracellular enzyme activity. This was also confirmed by the enantioselective depletion of R-metalaxyl and the subsequent formation of R-metalaxyl acid in microbially active samples from non-sterilized soil. The silt fraction containing a high amount of organic matter exhibited a significant hydrolyzable proportion of metalaxyl NERs that was releasable under alkaline conditions. On the contrary, the clay fraction showed an enhanced affinity for covalently bound residues. Based on our results, we recommend differentiating between reversibly and irreversibly bound proportions of pesticides in persistence and environmental risk assessment because the reversible fraction contained potentially bioavailable amounts of residues that may be released under natural conditions.
文摘Wallemia comprises air-and food-borne,mycotoxigenic contaminants including the halophilic W.ichthyophaga,xerotolerant W.sebi and xerophilic W.muriae.Wallemia isolates are easily overlooked and only a comparably small number of strains have been deposited in culture collections so far.In order to better understand the natural distribution of Wallemia spp.and to encounter their natural habitats,we tested more than 300 low-water-activity substrates and 30 air samples from a wide geographical coverage.We isolated more than 150 new Wallemia strains.Wallemia sebi and W.muriae were isolated mostly from hypersaline water,low-water-activity foods,plant materials and indoor.Wallemia muriae is the dominant Wallemia species in the air of natural and human influenced environments in Europe.New isolates of W.ichthyophaga were obtained from hypersaline environments such as brine,salt crystals,salty foods and MgCl_(2)-rich bitterns,and from the air of hay barns in Denmark.Five halotolerant strains were recognised as a hitherto un-described species Wallemia hederae,the phylogenetic sister of the halophilic W.ichthyophaga.Wallemia spp.show in-vitro growth on media that contain the chaotropic salt MgCl_(2).Wallemia ichthyophaga can grow in liquid medium enriched with 2 M MgCl_(2).Never before has a microorganism been grown on comparably high MgCl_(2) concentrations.Tests of the activity of a wide range of extracellular enzymes in the presence of NaCl also suggested that Wallemia iswell-adapted to substrates with a reduced water activity.
基金This study was supported by a grant from the Youth Talent Foundation of Hubei Province (No. 2003ABB017).
文摘Background Recent studies have proved that brain-derived neurotrophic factor (BDNF) possesses angiogenic activity in vitro and in vivo. However, the proangiogenic mechanism of BDNF has not yet been provided with enough information. To explore the proangiogenic mechanism of BDNF, we investigated the effects of BDNF on extracellular proteolytic enzymes, including matrix metalloproteinases (MMPs) and serine proteases, particularly the urokinase-type plasminogen activator (uPA)-plasmin system in human umbilical vein endothelial cells (HUVECs) model.Methods Tube formation assay was performed in vitro to evaluate the effects of BDNF on angiogenesis. The HUVECs were treated with various concentrations of BDNF (25-400 ng/ml) for different (6-48 hours), reverse transcriptase-polymerase chain reaction (RT-PCR) was used to assay MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA in HUVECs, and the conditioned medium was analyzed for MMP and uPA activity by gelatin zymography and fibrin zymography, respectively, uPA, plasminogen activator inhibitor (PAI)-1, tissue inhibitors of metalloproteinase (TIMP)-1, and TIMP-2 were quantified by western blotting analysis.Results BDNF elicited robust and elongated angiogeneis in two-dimensional cultures of HUVECs in comparison with control. The stimulation of serum-starved HUVECs with BDNF caused obvious increase in MMP-2 and MMP-9 mRNA expression and induced the pro-MMP-2 and pro-MMP-9 activation without significant differences in proliferation. However, BDNF had no effect on TIMP-1 and TIMP-2 production. BDNF increased uPA and PAI-1 production in a dose-dependent manner. Maximal activation of uPA and PAI-1 expression in HUVECs was induced by 100 ng/ml BDNF, while effects of 200 ng/ml and 400 ng/ml BDNF were slightly reduced in comparison with with those of 100 ng/ml. Protease activity for uPA was also increased by BDNF in a dose-dependent manner. BDNF also stimulated uPA and PAI-1 production beyond that in control cultures in a time-dependent manner from 12 hours to 48 hours after BDNF treatment.Conclusions BDNF stimulates MMP and uPA/PAI-1 proteolytic network in HUVECs, which may be important to the acquisition of proangiogenic potential.
基金This study was supported by projects of the National Natural Science Foundation of China(Nos.31972939,31630009 and 31670325)the National Basic Research Pro-gram of China(No.2016YFC0500701)+1 种基金the Research Fund of the State Key Laboratory of Soil and Sustainable Agri-culture,Nanjing Institute of Soil Science,Chinese Academy of Sciences(No.Y412201439)the University Con-struction Projects from the Central Authorities in Beiing of China.
文摘Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs.
基金United States Department of Agriculture National Institute of Food and Agriculture Hatch program(NYC-145403)the New York State Turfgrass Association and the US Department of Energy,Office of Science,Office of Biological and Environmental Research Terrestrial Ecosystem Science Program(DE-AC02-05CH11231).
文摘Aims Plants generally respond to nitrogen(N)fertilization with increased growth,but N addition can also suppress rhizosphere effects,which consequently alters soil processes.We quantified the influence of N addition on rhizosphere effects of two C4 grasses:smooth crabgrass(Digitaria ischaemum)and bermudagrass(Cynodon dactylon).Methods Plants were grown in nutrient-poor soil for 80 days with either 20 or 120μg NH4No3-N g dry soil−1.N mineralization rates,microbial biomass,extracellular enzyme activities and bacterial community structure were measured on both rhizosphere and bulk(unplanted)soils after plant harvest.Important Findings Fertilization showed nominal differences in net N mineralization,extracellular enzyme activity and microbial biomass between the rhizosphere and bulk soils,indicating minimal influence of N on rhizosphere effects.Instead,the presence of plant roots showed the strongest impact(up to 80%)on rates of net N mineralization and activities of three soil enzymes indicative of N release from organic matter.Principal component analysis of terminal restriction fragment length polymorphism(t-rFlP)also reflected these trends by highlighting the importance of plant roots in structuring the soil bacterial community,followed by plant species and N fertilization(to a minor extent).overall,the results indicate minor contributions of short-term N fertilization to changes in the magnitude of rhizos-phere effects for both grass species.