期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Highly efficient H-bonding charge-transfer complex for microsupercapacitors under extreme conditions of low temperatures
1
作者 Libin Wang Ting Shu +3 位作者 Songtao Guo Shi Chen Yingjun Jiang Xianluo Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第12期182-189,共8页
Owing to sluggish ionic mobility at low temperatures, supercapacitors, as well as other energy-storage devices, always suffer from severe capacity decay and even failure under extreme low-temperature circumstances. So... Owing to sluggish ionic mobility at low temperatures, supercapacitors, as well as other energy-storage devices, always suffer from severe capacity decay and even failure under extreme low-temperature circumstances. Solar-thermal-enabled self-heating promises an attractive approach to overcome this issue.Here, we report a unique H-bonding charge-transfer complex with a high photothermal conversion efficiency of 79.5% at 405 nm based on chloranilic acid and albendazole. Integrated with a microsupercapacitor, the chloranilic acid-albendazole complex(CAC) film prompts an apparent temperature increase of 22.7 °C under 1 sun illumination at-32.6 °C, effectively elevating the working temperature of devices.As a result, the rate capability of the microsupercapacitor has been significantly improved with a 17-fold increase in capacitance at a current density of 60 μA cm^(-2), leading to outstanding low-temperature performances. Importantly, the integrated device is capable of working at a low temperature of-30 °C in the open air, which demonstrates the potential of CAC in practical applications for low-temperature ultracapacitive energy-storage devices. 展开更多
关键词 Charge-transfer complexes Solar-thermal conversion extreme conditions Microsupercapacitors Low temperature
下载PDF
Raman scattering under extreme conditions
2
作者 Feng Jin Yang Yang +2 位作者 An-Min Zhang Jian-Ying Ji Qing-Ming Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第7期120-132,共13页
Raman scattering is a versatile and powerful technique and has been widely used in modern scientific research and vast industrial applications. It is one of the fundamental experimental techniques in condensed matter ... Raman scattering is a versatile and powerful technique and has been widely used in modern scientific research and vast industrial applications. It is one of the fundamental experimental techniques in condensed matter physics, since it can sensitively probe the basic elementary excitations in solids like electron, phonon, magnon, etc. The application of extreme conditions (low temperature, high magnetic field, high pressure, etc.) to Raman scattering, will push its capability up to an unprecedented level, because this enables us to look into new quantum phases driven by extreme conditions, trace the evolution of the excitations and their coupling, and hence uncover the underlying physics. This review contains two topics. In the first part, we will introduce the Raman facility under extreme conditions, belonging to the optical spectroscopy station of Synergetic Extreme Condition User Facilities (SECUF), with emphasis on the system design and the capability the facility can provide. Then in the second part we will focus on the applications of Raman scattering under extreme conditions to a variety of condensed matter systems such as superconductors, correlated electron systems, charge density waves (CDW) materials, etc. Finally, as a rapidly developing technique, time-resolved Raman scattering will be highlighted here. 展开更多
关键词 Raman scattering technique extreme conditions correlated electron systems time-resolved Ra-man scattering
下载PDF
Ultrafast synthetic strategies under extreme heating conditions toward single-atom catalysts 被引量:1
3
作者 Guanchao He Minmin Yan +2 位作者 Haisheng Gong Huilong Fei Shuangyin Wang 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第3期49-63,共15页
Dispersing atomic metals on substrates provides an ideal method to maximize metal utilization efficiency, which is important for the production of cost-effective catalysts and the atomic-level control of the electroni... Dispersing atomic metals on substrates provides an ideal method to maximize metal utilization efficiency, which is important for the production of cost-effective catalysts and the atomic-level control of the electronic structure. However, due to the high surface energy, individual single atoms tend to migrate and aggregate into nanoparticles during preparation and catalytic operation. In the past few years, various synthetic strategies based on ultrafast thermal activation toward the effective preparation of single-atom catalysts(SACs) have emerged, which could effectively solve the aggregation issue. Here, we highlight and summarize the latest developments in various ultrafast synthetic strategy with rapid energy input by heating shockwave and instant quenching for the synthesis of SACs, including Joule heating, microwave heating, solid-phase laser irradiation, flame-assisted method, arc-discharge method and so on,with special emphasis on how to achieve the uniform dispersion of single metal atoms at high metal loadings as well as the suitability for scalable production. Finally, we point out the advantages and disadvantages of the ultrafast heating strategies as well as the trends and challenges of future developments. 展开更多
关键词 ultrafast synthesis single atom catalysts extreme conditions Joule heating microwave heating laser irradiation
下载PDF
Failure Analysis of Power Electronic Devices and Their Applications under Extreme Conditions 被引量:2
4
作者 Yifei Luo Fei Xiao +1 位作者 Bo Wang Binli Liu 《Chinese Journal of Electrical Engineering》 2016年第1期91-100,共10页
Power electronic devices are the core components of modern power converters,not only for normal applications,but also for extreme conditions.Current design of power electronic devices require large redundancies for re... Power electronic devices are the core components of modern power converters,not only for normal applications,but also for extreme conditions.Current design of power electronic devices require large redundancies for reliability.This results in huge volume and weight for a large-capacity power converter,especially for some extreme applications.Therefore,to optimize the power density,the reliability of power devices needs to be investigated first in order to obtain the accurate operational margin of a power device.Although much research on device failure analysis has been reported,there still lacks efficient failure evaluation methods.This paper first summarizes the current failure research.Then,a three-step failure analysis method of power electronic devices is proposed as:failure information collection,failure identification and mechanism,and failure evaluation.The physics-based modeling method is emphasized since it has a strong relationship with the device fundamentals.After that,power electronic device applications under extreme conditions are introduced and a design method of device under extreme conditions is proposed based on the thermal equilibrium idea.Finally,the challenges and prospects to improve the power device reliability under extreme conditions are concluded. 展开更多
关键词 Power electronic device failure mechanism failure evaluation physics-based modeling extreme conditions thermal equilibrium
原文传递
Performance-driven design methodology for habitation shell design in extreme conditions on Mars
5
作者 Gokhan Dede 《Frontiers of Architectural Research》 CSCD 2022年第2期224-238,共15页
The research project illustrates how performance-driven design tools can be conducted as an architectural design methodology that suggests an innovative approach to design a habitation shell in extreme environmental c... The research project illustrates how performance-driven design tools can be conducted as an architectural design methodology that suggests an innovative approach to design a habitation shell in extreme environmental conditions without human assistance.This research study attempts to use environmental data revealed by NASA and its habitat design requirements to develop a conceptual design for an innovative habitation form and then simulate it with Mars conditions to analyze the habitation shell’s structural behavior according to finite element analysis.In this regard,research phases,including layout configuration,form-finding,and structural analysis,have been conducted to explore a habitation concept implemented with generative design tools as a decision-maker in extreme conditions.In conclusion,two generated typologies of proposed habitation forms will be compared in terms of their structural performance under extreme loads of the martian environment.Within this research project,due to the numerous extreme challenges of design and construction of habitation in extreme conditions using conventional approaches,a performance-driven design methodology will provide a rational and sustainable design methodology to tackle extreme barriers to Mars’s environment. 展开更多
关键词 Performance-driven shell design Finite element model In-situ material extreme conditions Mars habitation
原文传递
Molecular Dynamics Simulations of the Elastic Anisotropy of Pd at Extreme Conditions
6
作者 Xiu-Lu Zhang Yun-Xia Han +2 位作者 Hong Jia Nuo Qu Zhong-Li Liu 《Communications in Theoretical Physics》 SCIE CAS CSCD 2018年第6期735-740,共6页
It is very interesting to discover the elastic properties of engineering material palladium, especially its elastic anisotropy along Hugoniot states. We here investigate the evolution of its high pressure and temperat... It is very interesting to discover the elastic properties of engineering material palladium, especially its elastic anisotropy along Hugoniot states. We here investigate the evolution of its high pressure and temperature(PT) elastic ansotropy along Hugoniot using molecular dynamics simulations based on accurate classical interatomic potential. In order to testify the validity of the interatomic potential of Pd in describing the high PT elastic properties, we calculate its isothermal and adiabatic elastic moduli using molecular dynamics method. The obtained data are in good agreement with experimental data. From the isothermal elastic constants, we deduce the Hugoniot acoustic velocities and find that the resulting data are in good agreement with experimental acoustic velocity data. Based on the reliable elastic constants, we further investigate the spacial elastic ansotropy along Hugoniot PT states. It is found that the spacial elastic anisotropy of Pd increases along Hugoniot states. 展开更多
关键词 elastic anisotropy Hugoniot states extreme conditions
原文传递
Dynamic Response of Offshore Wind Turbine on 3×3 Barge Array Floating Platform under Extreme Sea Conditions 被引量:5
7
作者 LIU Qing-song MIAO Wei-pao +3 位作者 YUE Min-nan LI Chun WANG Bo DING Qingwei 《China Ocean Engineering》 SCIE EI CSCD 2021年第2期186-200,共15页
Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and instal... Offshore wind farm construction is nowadays state of the art in the wind power generation technology.However,deep water areas with huge amount of wind energy require innovative floating platforms to arrange and install wind turbines in order to harness wind energy and generate electricity.The conventional floating offshore wind turbine system is typically in the state of force imbalance due to the unique sway characteristics caused by the unfixed foundation and the high center of gravity of the platform.Therefore,a floating wind farm for 3×3 barge array platforms with shared mooring system is presented here to increase stability for floating platform.The NREL 5 MW wind turbine and ITI Energy barge reference model is taken as a basis for this work.Furthermore,the unsteady aerodynamic load solution model of the floating wind turbine is established considering the tip loss,hub loss and dynamic stall correction based on the blade element momentum(BEM)theory.The second development of AQWA is realized by FORTRAN programming language,and aerodynamic-hydrodynamic-Mooring coupled dynamics model is established to realize the algorithm solution of the model.Finally,the 6 degrees of freedom(DOF)dynamic response of single barge platform and barge array under extreme sea condition considering the coupling effect of wind and wave were observed and investigated in detail.The research results validate the feasibility of establishing barge array floating wind farm,and provide theoretical basis for further research on new floating wind farm. 展开更多
关键词 BARGE floating platform extreme sea conditions dynamic response STABILITY
下载PDF
Numerical Investigations on the Transient Behavior of Sand Waves in Beibu Gulf Under Normal and Extreme Sea Conditions
8
作者 ZANG Zhi-peng XIE Bo-tao +2 位作者 CHENG Liang HE Fang ZOU Xing 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期232-246,共15页
In this study, a morphodynamic numerical model is established with the Regional Ocean Modeling System(ROMS)to investigate the transient behavior of sand waves under realistic sea conditions. The simulation of sand wav... In this study, a morphodynamic numerical model is established with the Regional Ocean Modeling System(ROMS)to investigate the transient behavior of sand waves under realistic sea conditions. The simulation of sand wave evolution comprises two steps: 1) a regional-scale model is configured first to simulate the ocean hydrodynamics, i.e., tides and tidal currents, and 2) the transient behavior of sand waves is simulated in a small computational domain under the time-variant currents extracted from the large model. The evolution of sand waves on the continental shelf in the Beibu Gulf is specifically investigated. The numerical results of the two-year evolution of sand waves under normal sea conditions compare well with the field survey data. The transient behavior of sand waves in individual months shows that the sand waves are more stable in April and October than that in other months, which can be selected as the windows for seabed operations. The effects of sediment properties, including settling velocity, critical shear stress and surface erosion rate, on sand wave evolution are also analyzed. Then, the typhoon-induced currents are further superimposed on the tidal currents as the extreme weather conditions. Sand waves with the average wavelength generally have more active behavior than smaller or larger sand waves. The characteristics of the evolution of sand waves in an individual typhoon process are quite different for different hydrodynamic combinations. For the storm conditions, i.e., the real combination and maximum combination cases, the sand waves experience a significant migration together with a damping in height due to the dominant suspended sediment transport. For the mild conditions, i.e., the pure tidal current and minimum combination cases, the sand waves migrate less, but the heights continue growing due to the dominant bedload transport. 展开更多
关键词 sand waves morphodynamic numerical model normal sea condition extreme sea conditions transient behaviors
下载PDF
Surrounding rock deformation regularity of roadway under extremely complicated geological conditions in deep mine and its control
9
作者 刘长友 何卓军 万志军 《Journal of Coal Science & Engineering(China)》 2003年第1期12-16,共5页
By combining the practices of deep mine mining in Changguang Mine field and using the Universal Distinct Element Code 3 0(UDEC3 0) numerical computing method, the distribution characteristics of deformation field and ... By combining the practices of deep mine mining in Changguang Mine field and using the Universal Distinct Element Code 3 0(UDEC3 0) numerical computing method, the distribution characteristics of deformation field and stress field as well as the surrounding rock deformation regularity of soft rock roadway are analyzed under extremely complicated geological conditions, a technical principle of bolting to control the surrounding rock of roadway is put forward. And also using a dynamic control for surrounding rocks designing method, the supporting parameters and implement plan are rationally determined. The experimental tests have obtained a good controlling result of surrounding rock. 展开更多
关键词 deep mine extremely complicated geological condition surrounding rock deformation dynamic controlling design
下载PDF
A review of extreme condition effects on solder joint reliability:Understanding failure mechanisms
10
作者 Norliza Ismail Wan Yusmawati Wan Yusoff +2 位作者 Azuraida Amat Nor Azlian Abdul Manaf Nurazlin Ahmad 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期134-158,共25页
Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties w... Solder joint,crucial component in electronic systems,face significant challenges when exposed to extreme conditions during applications.The solder joint reliability involving microstructure and mechanical properties will be affected by extreme conditions.Understanding the behaviour of solder joints under extreme conditions is vital to determine the durability and reliability of solder joint.This review paper aims to comprehensively explore the underlying failure mechanism affecting solder joint reliability under extreme conditions.This study covers an in-depth analysis of effect extreme temperature,mechanical stress,and radiation conditions towards solder joint.Impact of each condition to the microstructure including solder matrix and intermetallic compound layer,and mechanical properties such as fatigue,shear strength,creep,and hardness was thoroughly discussed.The failure mechanisms were illustrated in graphical diagrams to ensure clarity and understanding.Furthermore,the paper highlighted mitigation strategies that enhancing solder joint reliability under challenging operating conditions.The findings offer valuable guidance for researchers,engineers,and practitioners involved in electronics,engineering,and related fields,fostering advancements in solder joint reliability and performance. 展开更多
关键词 Solder joint extreme condition Failure mechanism Defence and military RELIABILITY
下载PDF
Using Extreme Value Theory Approaches to Estimate High Quantiles for Stroke Data
11
作者 Justin Ushize Rutikanga Aliou Diop Charline Uwilingiyimana 《Open Journal of Statistics》 2024年第1期150-162,共13页
This paper aims to explore the application of Extreme Value Theory (EVT) in estimating the conditional extreme quantile for time-to-event outcomes by examining the functional relationship between ambulatory blood pres... This paper aims to explore the application of Extreme Value Theory (EVT) in estimating the conditional extreme quantile for time-to-event outcomes by examining the functional relationship between ambulatory blood pressure trajectories and clinical outcomes in stroke patients. The study utilizes EVT to analyze the functional connection between ambulatory blood pressure trajectories and clinical outcomes in a sample of 297 stroke patients. The 24-hour ambulatory blood pressure measurement curves for every 15 minutes are considered, acknowledging a censored rate of 40%. The findings reveal that the sample mean excess function exhibits a positive gradient above a specific threshold, confirming the heavy-tailed distribution of data in stroke patients with a positive extreme value index. Consequently, the estimated conditional extreme quantile indicates that stroke patients with higher blood pressure measurements face an elevated risk of recurrent stroke occurrence at an early stage. This research contributes to the understanding of the relationship between ambulatory blood pressure and recurrent stroke, providing valuable insights for clinical considerations and potential interventions in stroke management. 展开更多
关键词 Censored Data Conditional extreme Quantile Kernel Estimator Weibull Tail Coefficient
下载PDF
Crop yields and soil organic carbon dynamics in a long-term fertilization experiment in an extremely arid region of northern Xinjiang, China 被引量:1
12
作者 LYU Jinling LIU Hua +3 位作者 WANG Xihe Rodrigo OLAVE TIAN Changyan LIU Xuejun 《Journal of Arid Land》 SCIE CSCD 2017年第3期345-354,共10页
A long-term fertilization experiment was set up in northern Xinjiang, China to evaluate the dynamics of crop production and soil organic carbon (SOC) from 1990 to 2012 with seven fertilization treatments. The seven ... A long-term fertilization experiment was set up in northern Xinjiang, China to evaluate the dynamics of crop production and soil organic carbon (SOC) from 1990 to 2012 with seven fertilization treatments. The seven treatments included an unfertilized control (CK) and six different combinations of phosphorus (P), potassium (K), nitrogen (N), straw (S) and animal manure (M). The balanced fertilization treatments had significantly (P〈0.05) higher average yields than the unbalanced ones. The treatment with 2/3 N from potassium sulfate (NPK) and 1/3 N from farmyard manure (NPKM) had a higher average yield than the other treatments. The average yields (over the 23 years) in the treatments of NPK, and urea, calcium superphosphate (NP) did not differ significantly (P〉0.05) but were higher than that in the treatment with urea and potassium sulfate (NK; P〈0.05). The results also show that the highest increases in SOC (P〈0.05) occurred in NPKM with a potential increase of 1.2 t C/(hm2.a). The increase in SOC was only 0.31, 0.30 and 0.12 t C/(hm2.a) for NPKS (9/10 N from NPK and 1/10 N from straw), NPK and NP, respectively; and the SOC in the NP, NK and CK treatments were approaching equilibrium and so did not rise or fall significantly over the 23-year experiment. A complete NPK plus manure fertilization program is recommended for this extremely arid region to maximize both yields and carbon sequestration. 展开更多
关键词 long-term fertilization experiment extremely arid conditions soil organic carbon organic C inputs XINJIANG
下载PDF
IoT-based green-smart photovoltaic system under extreme climatic conditions for sustainable energy development
13
作者 Yufei Wang Jia-Wei Zhang +7 位作者 Kaiji Qiang Runze Han Xing Zhou Chen Song Bin Zhang Chatchai Putson Fouad Belhora Hajjaji Abdelowahed 《Global Energy Interconnection》 EI 2024年第6期836-856,共21页
To realize carbon neutrality,there is an urgent need to develop sustainable,green energy systems(especially solar energy systems)owing to the environmental friendliness of solar energy,given the substantial greenhouse... To realize carbon neutrality,there is an urgent need to develop sustainable,green energy systems(especially solar energy systems)owing to the environmental friendliness of solar energy,given the substantial greenhouse gas emissions from fossil fuel-based power sources.When it comes to the evolution of intelligent green energy systems,Internet of Things(IoT)-based green-smart photovoltaic(PV)systems have been brought into the spotlight owing to their cutting-edge sensing and data-processing technologies.This review is focused on three critical segments of IoT-based green-smart PV systems.First,the climatic parameters and sensing technologies for IoT-based PV systems under extreme weather conditions are presented.Second,the methods for processing data from smart sensors are discussed,in order to realize health monitoring of PV systems under extreme environmental conditions.Third,the smart materials applied to sensors and the insulation materials used in PV backsheets are susceptible to aging,and these materials and their aging phenomena are highlighted in this review.This review also offers new perspectives for optimizing the current international standards for green energy systems using big data from IoT-based smart sensors. 展开更多
关键词 Photovoltaic systems extreme climatic conditions Data processing Condition monitoring Smart materials
下载PDF
Functional Kernel Estimation of the Conditional Extreme Quantile under Random Right Censoring
14
作者 Justin Ushize Rutikanga Aliou Diop 《Open Journal of Statistics》 2021年第1期162-177,共16页
The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many... The study of estimation of conditional extreme quantile in incomplete data frameworks is of growing interest. Specially, the estimation of the extreme value index in a censorship framework has been the purpose of many inves<span style="font-family:Verdana;">tigations when finite dimension covariate information has been considered. In this paper, the estimation of the conditional extreme quantile of a </span><span style="font-family:Verdana;">heavy-tailed distribution is discussed when some functional random covariate (</span><i><span style="font-family:Verdana;">i.e.</span></i><span style="font-family:Verdana;"> valued in some infinite-dimensional space) information is available and the scalar response variable is right-censored. A Weissman-type estimator of conditional extreme quantiles is proposed and its asymptotic normality is established under mild assumptions. A simulation study is conducted to assess the finite-sample behavior of the proposed estimator and a comparison with two simple estimations strategies is provided.</span> 展开更多
关键词 Kernel Estimator Functional Data Censored Data Conditional extreme Quantile Heavy-Tailed Distributions
下载PDF
PERFECT SPLINES WITH BOUNDARY CONDITIONS AND THEIR APPLICATION TO CERTAIN EXTREMAL PROBLEMS
15
作者 Chrisina Draganova 《Analysis in Theory and Applications》 1998年第2期44-55,共12页
In this paper we consider two problems. The first is connected with the optimal recovery of functions satisfyiog boundary conditions. The second is the characterization of the unique func- tion whose r-th derivative h... In this paper we consider two problems. The first is connected with the optimal recovery of functions satisfyiog boundary conditions. The second is the characterization of the unique func- tion whose r-th derivative has minimum L_∞-norm, taking given values of alternating signs and satis fying boundary conditions. 展开更多
关键词 PERFECT SPLINES WITH BOUNDARY conditions AND THEIR APPLICATION TO CERTAIN EXTREMAL PROBLEMS APPI
下载PDF
Surface modification and functionalization by electrical discharge coating:a comprehensive review 被引量:1
16
作者 Pay Jun Liew Ching Yee Yap +2 位作者 Jingsi Wang Tianfeng Zhou Jiwang Yan 《International Journal of Extreme Manufacturing》 2020年第1期68-99,共32页
Hard coatings are extensively required in industry for protecting mechanical/structural parts that withstand extremely high temperature,stress,chemical corrosion,and other hostile environments.Electrical discharge coa... Hard coatings are extensively required in industry for protecting mechanical/structural parts that withstand extremely high temperature,stress,chemical corrosion,and other hostile environments.Electrical discharge coating(EDC)is an emerging surface modification technology to produce such hard coatings by using electrical discharges to coat a layer of material on workpiece surface to modify and enhance the surface characteristics or create new surface functions.This paper presents a comprehensive overview of EDC technologies for various materials,and summarises the types and key parameters of EDC processes as well as the characteristics of resulting coatings.It provides a systematic summary of the fundamentals and key features of the EDC processes,as well as its applications and future trends. 展开更多
关键词 electrical discharge coating(EDC) surface modification material characteristics mechanical properties extreme conditions
下载PDF
Real‑Time Predictive Control of Path Following to Stabilize Autonomous Electric Vehicles Under Extreme Drive Conditions 被引量:6
17
作者 Ningyuan Guo Xudong Zhang Yuan Zou 《Automotive Innovation》 EI CSCD 2022年第4期453-470,共18页
A novel real-time predictive control strategy is proposed for path following(PF)and vehicle stability of autonomous electric vehicles under extreme drive conditions.The investigated vehicle configuration is a distribu... A novel real-time predictive control strategy is proposed for path following(PF)and vehicle stability of autonomous electric vehicles under extreme drive conditions.The investigated vehicle configuration is a distributed drive electric vehicle,which allows to independently control the torques of each in-wheel motor(IWM)for superior stability,but bringing control com-plexities.The control-oriented model is established by the Magic Formula tire function and the single-track vehicle model.For PF and direct yaw moment control,the nonlinear model predictive control(NMPC)strategy is developed to minimize PF tracking error and stabilize vehicle,outputting front tires’lateral force and external yaw moment.To mitigate the calcu-lation burdens,the continuation/general minimal residual algorithm is proposed for real-time optimization in NMPC.The relaxation function method is adopted to handle the inequality constraints.To prevent vehicle instability and improve steering capacity,the lateral velocity differential of the vehicle is considered in phase plane analysis,and the novel stable bounds of lateral forces are developed and online applied in the proposed NMPC controller.Additionally,the Lyapunov-based constraint is proposed to guarantee the closed-loop stability for the PF issue,and sufficient conditions regarding recursive feasibility and closed-loop stability are provided analytically.The target lateral force is transformed as front steering angle command by the inversive tire model,and the external yaw moment and total traction torque are distributed as the torque commands of IWMs by optimization.The validations prove the effectiveness of the proposed strategy in improved steering capacity,desirable PF effects,vehicle stabilization,and real-time applicability. 展开更多
关键词 Closed-loop stability extreme drive conditions Fast optimization Nonlinear model predictive control Path following Vehicle stability bounds
原文传递
Experimental study on energy characteristics and ignition performance of recessed multichannel plasma igniter 被引量:3
18
作者 Bang-Huang Cai Hui-Min Song +3 位作者 Min Jia Yun Wu Wei Cui Sheng-Fang Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期339-348,共10页
In the extreme conditions of high altitude,low temperature,low pressure,and high speed,the aircraft engine is prone to flameout and difficult to start secondary ignition,which makes reliable ignition of combustion cha... In the extreme conditions of high altitude,low temperature,low pressure,and high speed,the aircraft engine is prone to flameout and difficult to start secondary ignition,which makes reliable ignition of combustion chamber at high altitude become a worldwide problem.To solve this problem,a kind of multichannel plasma igniter with round cavity is proposed in this paper,the three-channel and five-channel igniters are compared with the traditional ones.The discharge energy of the three igniters was compared based on the electric energy test and the thermal energy test,and ignition experiments was conducted in the simulated high-altitude environment of the component combustion chamber.The results show that the recessed multichannel plasma igniter has higher discharge energy than the conventional spark igniter,which can increase the conversion efficiency of electric energy from 26%to 43%,and the conversion efficiency of thermal energy from 25%to 73%.The recessed multichannel plasma igniter can achieve greater spark penetration depth and excitation area,which both increase with the increase of height.At the same height,the inlet flow helps to increase the penetration depth of the spark.The recessed multichannel plasma igniter can widen the lean ignition boundary,and the maximum enrichment percentage of lean ignition boundary can reach 31%. 展开更多
关键词 high altitude extreme condition recessed multichannel plasma igniter discharge energy lean ignition boundary
下载PDF
Hydrodynamic modelling of flow impact on structures under extreme flow conditions 被引量:3
19
作者 Qiuhua LIANG 陈恺翠 +3 位作者 Jingming HOU 熊焱 王岗 羌娟 《Journal of Hydrodynamics》 SCIE EI CSCD 2016年第2期267-274,共8页
Apart from the direct threat to human lives, the flood waves as a result of the rapid catchment response to intense rainfall, breaches of flood defences, tsunamis or storm surges may induce huge impact forces on struc... Apart from the direct threat to human lives, the flood waves as a result of the rapid catchment response to intense rainfall, breaches of flood defences, tsunamis or storm surges may induce huge impact forces on structures, causing structural damage or even failures. Most existing design codes do not properly account for these impact forces due to the limited understanding of the underlying physical processes and the lack of reliable empirical formulae or numerical approaches to quantifying them. This paper presents laboratory experiments to better understand the interaction between the extreme flow hydrodynamics and the hydraulic structures and uses the measured data to validate a numerical model. The model solves the two-dimensional shallow water equations using a finite volume Godunov-type scheme for the reliable simulation of complex flow hydrodynamics. New model components are developed for estimating the hydrostatic and hydrodynamic pressure to quantify the flow impact on structures. The model is applied to reproduce two selected experiment tests with different settings and satisfactory numerical results are obtained, which confirms its predictive capability. The model will therefore provide a potential tool for wider and more flexible field-scale applications. 展开更多
关键词 wave-structure interaction extreme flow conditions flood hazards shallow flow model laboratory experiments
原文传递
Structural eigenvalue analysis under the constraint of a fuzzy convex set model 被引量:1
20
作者 Wencai Sun Zichun Yang Guobing Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2018年第4期653-666,共14页
In small-sample problems, determining and controlling the errors of ordinary rigid convex set models are difficult. Therefore, a new uncertainty model called the fuzzy convex set(FCS) model is built and investigated... In small-sample problems, determining and controlling the errors of ordinary rigid convex set models are difficult. Therefore, a new uncertainty model called the fuzzy convex set(FCS) model is built and investigated in detail. An approach was developed to analyze the fuzzy properties of the structural eigenvalues with FCS constraints. Through this method, the approximate possibility distribution of the structural eigenvalue can be obtained. Furthermore, based on the symmetric F-programming theory, the conditional maximum and minimum values for the structural eigenvalue are presented, which can serve as nonfuzzy quantitative indicators for fuzzy problems. A practical application is provided to demonstrate the practicability and effectiveness of the proposed methods. 展开更多
关键词 Structural eigenvalue FUZZY Convex set Conditional extreme Symmetric F-programming
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部