In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line select...In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.展开更多
Severe faults have caused many earthquakes around the world throughout history.More recently,earthquakes have occurred in Taiwan,China(Chi-Chi fault),and elsewhere,causing loss of lives and destroying many buildings a...Severe faults have caused many earthquakes around the world throughout history.More recently,earthquakes have occurred in Taiwan,China(Chi-Chi fault),and elsewhere,causing loss of lives and destroying many buildings and structures.These tectonic movements have gained attention from engineers,and in the past 15 years,the focus has been on faulting mechanisms.In this study,a physical model(1 g)was fabricated and used to evaluate the impact of a reverse fault in a field with a tunnel.In the 1 g model,researchers installed additional gauges on the tunnel,so that all the displacements could be adjusted,and all the responses could be monitored during faulting.An experimental study of various soil properties(cohesion and friction angles)in reverse faults on the tunnel lining were carried out and are described herein.A comparison of results for different levels of soil cohesion revealed that it can dramatically reduce the displacement by as much as 40%,and that friction angles of 27ºcan record approximately 60%more displacements than at 37º.Furthermore,a comparison of fault angles of 30ºand 60ºindicates that the displacements can be different by more than 43%in cohesionless soil and about 64%for a friction angle of 27º.展开更多
The rupture dimensions of earthquake faults are important parameters for characterizing earthquake ruptures and ground motions. Two key parameters to be determined are the rupture depth and dip angle of earthquake fau...The rupture dimensions of earthquake faults are important parameters for characterizing earthquake ruptures and ground motions. Two key parameters to be determined are the rupture depth and dip angle of earthquake faults. Dislocation theory in an elastic half space indicates that if a seismic rupture directly runs up to the ground surface, there exist zero points of horizontal strain in the surface deformation, which correspond to the rupture depths, except for pure strike-slip faults. In this study, we use numerical simulations to investigate the possibility of inferring rupture depths from zero-strain points for cases of buried faults and heterogeneous media. The results show that the correspondence of zero-strain points to the rupture depths can be influenced by the heterogeneity of the underground media and the stress field. For buried faults, the correspondence relationship is approximately valid when the fault depth is <1 km. In addition, the range of earthquake fault dip angles can be estimated by horizontal displacements on the ground. We also study how to determine the rupture depths of faults from InSAR data after large earthquakes, and successfully apply the method to the 2008 Wenchuan earthquake. The method proposed here, which determines the parameters of fault geometry according to surface deformation, is simple and easy to perform. With independent of aftershocks, it can provide valuable constraints to kinematic inversions.展开更多
The Aegean area of the western Anatolian region of Turkey,controlled by the low-angle detachment normal fault system,forms an extensional province,the West Anatolian Extensional Province(WAEP).The tectonic deformation...The Aegean area of the western Anatolian region of Turkey,controlled by the low-angle detachment normal fault system,forms an extensional province,the West Anatolian Extensional Province(WAEP).The tectonic deformation which occurred in the Miocene Period,including the Plio–Quaternary Period has created different structures in both the basement rocks and intra-basin deposits of the crust.One of these structures,high-angle normal faults,controls the supradetachment Soke-Kusadasi Basin(SKB).Within this basin,there are folds with different axes and thrust faults with a north-northwestnortheast(N,NW,NE)trend.These folds and thrust faults in the SKB deformed the sedimentary structures of intra-basin deposits.The folds and thrust faults,which caused the rotation of beddings and imbrications in the SKB,are mainly associated with the tectonic process of the low angle detachment normal fault,which affected the SKB and the Aegean part of western Anatolia.In the SKB,during the process of extensional deformation associated with primary low angle detachment normal faulting,the ramp-flat and inversion geometry observed in the basement rocks and basin deposits of the crust caused folds and thrust faults in only intra-basin deposits.In the WAEP,it is determined for the first time that the folds and thrust faults causing limited shortening deformed the Plio–Quaternary sediments.展开更多
文摘In the distribution network system with its neutral point grounding via arc suppression coil, when single-phase grounding fault occurred near zero-crossing point of the phase voltage, the inaccuracy of the line selection always existed in existing methods. According to the characteristics that transient current was different between the fault feeder and other faultless feeders, wavelet transformation was performed on data of the transient current within a power frequency cycle after the fault occurred. Based on different fault angles, wavelet energy in corresponding frequency band was chosen to compare. The result was that wavelet energy in fault feeder was the largest of all, and it was larger than sum of those in other faultless feeders, when the bus broke down, the disparity between each wavelet energy was not significant. Fault line could be selected out by the criterion above. The results of MATLAB/simulink simulation experiment indicated that this method had anti-interference capacity and was feasible.
文摘Severe faults have caused many earthquakes around the world throughout history.More recently,earthquakes have occurred in Taiwan,China(Chi-Chi fault),and elsewhere,causing loss of lives and destroying many buildings and structures.These tectonic movements have gained attention from engineers,and in the past 15 years,the focus has been on faulting mechanisms.In this study,a physical model(1 g)was fabricated and used to evaluate the impact of a reverse fault in a field with a tunnel.In the 1 g model,researchers installed additional gauges on the tunnel,so that all the displacements could be adjusted,and all the responses could be monitored during faulting.An experimental study of various soil properties(cohesion and friction angles)in reverse faults on the tunnel lining were carried out and are described herein.A comparison of results for different levels of soil cohesion revealed that it can dramatically reduce the displacement by as much as 40%,and that friction angles of 27ºcan record approximately 60%more displacements than at 37º.Furthermore,a comparison of fault angles of 30ºand 60ºindicates that the displacements can be different by more than 43%in cohesionless soil and about 64%for a friction angle of 27º.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41074070, 41174035)the SinoProbe Program (Grant No. SinoProbe-08-01)
文摘The rupture dimensions of earthquake faults are important parameters for characterizing earthquake ruptures and ground motions. Two key parameters to be determined are the rupture depth and dip angle of earthquake faults. Dislocation theory in an elastic half space indicates that if a seismic rupture directly runs up to the ground surface, there exist zero points of horizontal strain in the surface deformation, which correspond to the rupture depths, except for pure strike-slip faults. In this study, we use numerical simulations to investigate the possibility of inferring rupture depths from zero-strain points for cases of buried faults and heterogeneous media. The results show that the correspondence of zero-strain points to the rupture depths can be influenced by the heterogeneity of the underground media and the stress field. For buried faults, the correspondence relationship is approximately valid when the fault depth is <1 km. In addition, the range of earthquake fault dip angles can be estimated by horizontal displacements on the ground. We also study how to determine the rupture depths of faults from InSAR data after large earthquakes, and successfully apply the method to the 2008 Wenchuan earthquake. The method proposed here, which determines the parameters of fault geometry according to surface deformation, is simple and easy to perform. With independent of aftershocks, it can provide valuable constraints to kinematic inversions.
文摘The Aegean area of the western Anatolian region of Turkey,controlled by the low-angle detachment normal fault system,forms an extensional province,the West Anatolian Extensional Province(WAEP).The tectonic deformation which occurred in the Miocene Period,including the Plio–Quaternary Period has created different structures in both the basement rocks and intra-basin deposits of the crust.One of these structures,high-angle normal faults,controls the supradetachment Soke-Kusadasi Basin(SKB).Within this basin,there are folds with different axes and thrust faults with a north-northwestnortheast(N,NW,NE)trend.These folds and thrust faults in the SKB deformed the sedimentary structures of intra-basin deposits.The folds and thrust faults,which caused the rotation of beddings and imbrications in the SKB,are mainly associated with the tectonic process of the low angle detachment normal fault,which affected the SKB and the Aegean part of western Anatolia.In the SKB,during the process of extensional deformation associated with primary low angle detachment normal faulting,the ramp-flat and inversion geometry observed in the basement rocks and basin deposits of the crust caused folds and thrust faults in only intra-basin deposits.In the WAEP,it is determined for the first time that the folds and thrust faults causing limited shortening deformed the Plio–Quaternary sediments.