Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics...Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.展开更多
The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomp...The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermo-gravimetric/differential scanning calorimetry and scanning electron microscopy. The results show that spinnability of gel largely depends on molecular structure of metal-carboxylate complex that is a linear-type structure formed in the gel. As a result, the gels exhibit a good spinnability. Metal Ni, Co and Fe fine fibers are featured with diameters of around 1 μm and a high aspect ratio up to 1×106.展开更多
The interfacial characteristics of the Li metal anode(LMA)play a crucial role in its overall performance.Despite various materials being applied to modify the interface,a comprehensive understanding of their specific ...The interfacial characteristics of the Li metal anode(LMA)play a crucial role in its overall performance.Despite various materials being applied to modify the interface,a comprehensive understanding of their specific mechanisms remains to be investigated.Herein,we have prepared carbon cloth(CC)frameworks with their surfaces modified using ferromagnetic metal/LiF heterogeneous films(T^(M)-LiF-CC)as the substrate for LMA,which exhibit superior electrochemical performance.Utilizing ferromagnetic Co as a representative example,our study demonstrates that the enhanced performance of Co-LiF-CC,compared to bare CC,is attributed to the spinpolarized interface contributed by the Co/LiF heterostructure.Co and LiF play individual roles in redistributing electrons and Li^(+)to promote homogeneous Li deposition.Co nanoparticles play a crucial role in generating strong surface capacitance by storing electrons in spin-split bands,while LiF,with low surface diffusion barriers,ensures fast transportation of Li^(+).The Co-LiF-CC@Li electrodes deliver long lives of 7400 and 3600 h at 1 and 2 mA·cm^(-2)in symmetric cells,respectively;moreover,they enable full batteries with high and durable capacities,particularly when the N/P ratios are low(3.3 or even 1.7).展开更多
The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic...The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs,which was deemed as a half-metallic ferromagnet related to dynamic correlations.Based on the combination of density functional theory and dynamical mean field theory,we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the DFT+U regime with effect U values ranging from 1.5 eV to 2.5 eV.Meanwhile,we also investigate the magnetization-dependent topological properties;the results show that the change of magnetization directions only slightly affects the positions of Weyl points,which is attributed to the weak spin–orbital coupling effects.The topological surface states of VAs projected on semi-infinite(001)and(111)surfaces are investigated.The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces.Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective U values range from 1.5 eV to 2.5 eV.展开更多
Structural,electronic,and magnetic properties of new predicted half-Heusler YCrSb and YMnSb compounds within the ordered MgAgAs Clb-type structure are investigated by employing first-principal calculations based on de...Structural,electronic,and magnetic properties of new predicted half-Heusler YCrSb and YMnSb compounds within the ordered MgAgAs Clb-type structure are investigated by employing first-principal calculations based on density functional theory.Through the calculated total energies of three possible atomic placements,we find the most stable structures regarding YCrSb and YMnSb materials,where Y,Cr(Mn),and Sb atoms occupy the(0.5,0.5,0.5),(0.25,0.25,0.25),and(0,0,0) positions,respectively.Furthermore,structural properties are explored for the non-magnetic and ferromagnetic and anti-ferromagnetic states and it is found that both materials prefer ferromagnetic states.The electronic band structure shows that YCrSb has a direct band gap of 0.78 eV while YMnSb has an indirect band gap of 0.40 eV in the majority spin channel.Our findings show that YCrSb and YMnSb materials exhibit half-metallic characteristics at their optimized lattice constants of 6.67 and 6.56 ,respectively.The half-metallicities associated with YCrSb and YMnSb are found to be robust under large in-plane strains which make them potential contenders for spintronic applications.展开更多
Ferromagnetic bulk metallic glasses(FBMGs)possess excellent soft magnetic properties,good corrosion resistance,and high strength.Unfortunately,their commercial utility is limited by their brittleness.In this work,we r...Ferromagnetic bulk metallic glasses(FBMGs)possess excellent soft magnetic properties,good corrosion resistance,and high strength.Unfortunately,their commercial utility is limited by their brittleness.In this work,we report the enhancement in the room-temperature plasticity during the compression(25%)and bending flexibility of Fe_(74)Mo_(6)P_(13)C_(7) FBMG by using water quenching.The high-energy synchrotron X-ray measurements,high-resolution transmission electron microscopy,three-dimensional X-ray microtomog-raphy,and finite element simulation were performed to reveal the origin.It was found that the M-shape profile of residual stress improves the mechanical properties of FBMGs,particularly their plasticity.The reversal of the heat-transfer coefficient and cooling rate from the'vapor blanket'to'nucleate boiling'transition during water quenching processing is the main cause of the unusual profile of residual stress in glassy cylinders.Encouraged by the progress in developing flexible silicate glasses,this work highlights a processing method to improve plasticity and surmount technical barriers for the commercialization of FBMGs.展开更多
We present a simulation of the magnetization curves, energy, probability, and torque landscapes of uniaxial systems with up to five anisotropy constants. The total energy used in the simulation is the sum of the aniso...We present a simulation of the magnetization curves, energy, probability, and torque landscapes of uniaxial systems with up to five anisotropy constants. The total energy used in the simulation is the sum of the anisotropy and Zeeman energies. The exchange interaction is not considered in the present work in which we treat single-domain-particle systems within a classical mechanics-based model. Diverse features of the calculated magnetization curves are highlighted for the studied systems. These diverse features are strongly dependent on the sign and magnitude of the simulation parameters.The model is versatile enough to handle both hypothetical and real material systems, e.g. HoFe(11)Ti and Y2Co(17).展开更多
Three factors control the transition from paramagnetic insulator to ferromagnetic metal. The first is the hole doping. The second factor is the average ionic radius of the A site cation rA. The last one concerns the i...Three factors control the transition from paramagnetic insulator to ferromagnetic metal. The first is the hole doping. The second factor is the average ionic radius of the A site cation rA. The last one concerns the ionic size mismatch σ^2 at the A site. In order to study the effect of σ^2, a series of samples were prepared with constant value of x and rA.展开更多
Magnetic semiconductors with Curie temperatures higher than room temperature show potential for developing spintronic devices with combined data processing and storage functions for next-generation computing systems.I...Magnetic semiconductors with Curie temperatures higher than room temperature show potential for developing spintronic devices with combined data processing and storage functions for next-generation computing systems.In this study,we present an n-type Co_(19.8)Fe_(8.6)Nb_(4.3)B_(6.0)O_(61.3) magnetic semiconductor with a high Curie temperature of~559 K.This magnetic semiconductor has a room-temperature resistivity of~2.10×10^(4)Ωcm and a saturation magnetization of~76 emu/cm^(3).The n-type Co_(19.8)Fe_(8.6)Nb_(4.3)B_(6.0)O_(61.3)magnetic semiconductor was deposited on p-type silicon to form a heterojunction,exhibiting a rectifying characteristic.Our results provide the design principles for discovering high Curie temperature magnetic semiconductors with determined conduction types,which would play an essential role in realizing nonvolatile spin-based transistors that break free from the confines of currently established Si-based information technology.展开更多
Two-dimensional(2D)ferromagnetic and ferroelectric materials attract unprecedented attention due to the spontaneous-symmetry-breaking induced novel properties and multifarious potential applications.Here we systematic...Two-dimensional(2D)ferromagnetic and ferroelectric materials attract unprecedented attention due to the spontaneous-symmetry-breaking induced novel properties and multifarious potential applications.Here we systematically investigate a large family(148)of 2D MGeX3(M=metal elements,X=O/S/Se/Te)by means of the high-throughput first-principles calculations,and focus on their possible ferroic properties including ferromagnetism,ferroelectricity,and ferroelasticity.We discover eight stable 2D ferromagnets including five semiconductors and three half-metals,212D antiferromagnets,and 11 stable 2D ferroelectric semiconductors including two multiferroic materials.Particularly,MnGeSe3 and MnGeTe3 are predicted to be room-temperature 2D ferromagnetic half metals with Tc of 490 and 308 K,respectively.It is probably for the first time that ferroelectricity is uncovered in 2D MGeX3 family,which derives from the spontaneous symmetry breaking induced by unexpected displacements of Ge-Ge atomic pairs,and we also reveal that the electric polarizations are in proportion to the ratio of electronegativity of X and M atoms,and IVB group metal elements are highly favored for 2D ferroelectricity.Magnetic tunnel junction and water-splitting photocatalyst based on 2D ferroic MGeX3 are proposed as examples of wide potential applications.The atlas of ferroicity in 2D MGeX3 materials will spur great interest in experimental studies and would lead to diverse applications.展开更多
Edge effects are predicted to significantly impact the properties of low dimensional materials with layered structures. The synthesis of low dimensional materials with copious edges is desired for exploring the effect...Edge effects are predicted to significantly impact the properties of low dimensional materials with layered structures. The synthesis of low dimensional materials with copious edges is desired for exploring the effects of edges on the band structure and properties of these materials. Here we developed an approach for synthesizing MoS2 nanobelts terminated with vertically aligned edges by sulfurizing hydrothermally synthesized MoO3 nanobelts in the gas phase through a kinetically driven process; we then investigated the electrical and magnetic properties of these metastable materials. These edge-terminated MoS2 nanobelts were found to be metallic and ferromagnetic, and thus dramatically different from the semiconducting and nonmagnetic two-dimensional (2D) and three-dimensional (3D) 2H-MoS2 materials. The transitions in electrical and magnetic properties elucidate the fact that edges can tune the properties of low dimensional materials. The unique structure and properties of this one-dimensional (1D) MoS2 material will enable its applications in electronics, spintronics, and catalysis.展开更多
A new Ni(Ⅱ) cubane-like complex, namely, [Ni(L)(CH3OH)]4·(CH3OH)2, has been obtained via self-assembly of nickel(Ⅱ) and Schiff base, where the ligand L is a raceme of(R)-2-[(2-hydroxy-1-phenyl-ethy...A new Ni(Ⅱ) cubane-like complex, namely, [Ni(L)(CH3OH)]4·(CH3OH)2, has been obtained via self-assembly of nickel(Ⅱ) and Schiff base, where the ligand L is a raceme of(R)-2-[(2-hydroxy-1-phenyl-ethylimino)-methyl]-6-methoxy-phenol. X-ray diffraction analysis reveals that the complex shows a cubane-like [Ni4O4] cluster and similar coordination environment around the metallic centers. Magnetic measurements indicate there is ferromagnetic interaction within the Ni4 cluster.展开更多
Using first-principles calculations, we study the tailoring of the electronic and magnetic properties of gallium sulfide nanoribbons(Ga2S2NRs) by mechanical strain. Hydrogen-passivated armchair-and zigzag-edged NRs...Using first-principles calculations, we study the tailoring of the electronic and magnetic properties of gallium sulfide nanoribbons(Ga2S2NRs) by mechanical strain. Hydrogen-passivated armchair-and zigzag-edged NRs(ANRs and ZNRs)with different widths are investigated. Significant effects in band gap and magnetic properties are found and analyzed. First,the band gaps and their nature of ANRs can be largely tailored by a strain. The band gaps can be markedly reduced, and show an indirect-direct(I-D) transition under a tensile strain. While under an increasing compressive strain, they undergo a series transitions of I-D-I-D. Five strain zones with distinct band structures and their boundaries are identified. In addition,the carrier effective masses of ANRs are also tunable by the strain, showing jumps at the boundaries. Second, the magnetic moments of(ferromagnetic) ZNRs show jumps under an increasing compressive strain due to spin density redistribution,but are unresponsive to tensile strains. The rich tunable properties by stain suggest potential applications of Ga2S2 NRs in nanoelectronics and optoelectronics.展开更多
First-principles calculations by means of the full-potential linearized augmented plane wave method using the generalized gradient approximation with correlation effect correction(GGA+U) within the framework of spi...First-principles calculations by means of the full-potential linearized augmented plane wave method using the generalized gradient approximation with correlation effect correction(GGA+U) within the framework of spin polarized density functional theory(DFT+U) are used to study the structural,electronic,and magnetic properties of cubic perovskite compounds RbXF3(X = Mn,V,Co,and Fe).It is found that the calculated structural parameters,i.e.,lattice constant,bulk modulus,and its pressure derivative are in good agreement with the previous results.Our results reveal that the strong spin polarization of the 3d states of the X atoms is the origin of ferromagnetism in RbXF3.Cohesive energies and the magnetic moments of RbXF3 have also been calculated.The calculated electronic properties show the half-metallic nature of RbCoF3 and RbFeF3,making these materials suitable for spintronic applications.展开更多
In La-Cr-As system,the first ternary compound La3CrAs5 has been successfully synthesized under highpressure and high-temperature conditions.La3CrAs5 crystallizes into a hexagonal Hf5Sn3Cu-anti type structure with a sp...In La-Cr-As system,the first ternary compound La3CrAs5 has been successfully synthesized under highpressure and high-temperature conditions.La3CrAs5 crystallizes into a hexagonal Hf5Sn3Cu-anti type structure with a space group of P63/mcm(No.193)and lattice parameters of a=b=8.9845A and c=5.8897A.The structure contains facesharing octahedral CrAs6 chains along the c-axis,which are arranged triangularly in the ab-plane and separated by a significantly large distance of 8.9845A.The magnetic properties,resistivity and specific heat measurements were performed.La3CrAs5 exhibits a metallic state with Fermi liquid behavior at low temperatures and undergoes a ferromagnetic transition at Curie temperature TC^50 K.First-principles theoretical studies were conducted to calculate its band structure and density of states(DOS),which indicated that the non-negligible contribution of La to the DOS near the Fermi level caused La3CrAs5 to be a three-dimensional(3D)metal.The crystal orbital Hamilton population(-COHP)was also calculated to explain the global stability and bonding characteristics in the structure of La3CrAs5.展开更多
Fe/(Ga,Mn)As heterostructures were fabricated by all molecular-beam epitaxy.Double-crystal X-ray diffraction and high-resolution cross-sectional transmission electron micrographs show that the Fe layer has a well or...Fe/(Ga,Mn)As heterostructures were fabricated by all molecular-beam epitaxy.Double-crystal X-ray diffraction and high-resolution cross-sectional transmission electron micrographs show that the Fe layer has a well ordered crystal orientation and an abrupt interface.The different magnetic behavior between the Fe layer and(Ga, Mn)As layer is observed by superconducting quantum interference device magnetometry.X-ray photoelectron spectroscopy measurements indicate no Fe_2As and Fe-Ga-As compounds,i.e.,no dead magnetic layer at the interface, which strongly affects the magnetic proximity and the polarization of the Mn ion in a thin(Ga,Mn)As region near the interface of the Fe/(Ga,Mn)As heterostructure.展开更多
We review the giant tunnel magnetoresistance (TMR) in ferromagnetic-insulator-ferromagnetic junctions discovered in recent years, which is the magnetoresistance (MR) associated with the spin-dependent tunneling betwee...We review the giant tunnel magnetoresistance (TMR) in ferromagnetic-insulator-ferromagnetic junctions discovered in recent years, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal films separated by an insulating thin tunnel barrier. The theoretical and experimental results including junction conductance, magnetoresistance and their temperature and bias dependences are described.展开更多
基金support of Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0450101)the National Natural Science Foundation of China(Grant Nos.12125408 and 11974322)+1 种基金the Informatization Plan of Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0105)the support of the National Natural Science Foundation of China(Grant No.12174363)。
文摘Understanding the photoexcitation induced spin dynamics in ferromagnetic metals is important for the design of photo-controlled ultrafast spintronic device.In this work,by the ab initio nonadiabatic molecular dynamics simulation,we have studied the spin dynamics induced by spin–orbit coupling(SOC)in Co and Fe using both spin-diabatic and spin-adiabatic representations.In Co system,it is found that the Fermi surface(E_(F))is predominantly contributed by the spin-minority states.The SOC induced spin flip will occur for the photo-excited spin-majority electrons as they relax to the E_(F),and the spin-minority electrons tend to relax to the EFwith the same spin through the electron–phonon coupling(EPC).The reduction of spin-majority electrons and the increase of spin-minority electrons lead to demagnetization of Co within100 fs.By contrast,in Fe system,the E_(F) is dominated by the spin-majority states.In this case,the SOC induced spin flip occurs for the photo-excited spin-minority electrons,which leads to a magnetization enhancement.If we move the E_(F) of Fe to higher energy by 0.6eV,the E_(F) will be contributed by the spin-minority states and the demagnetization will be observed again.This work provides a new perspective for understanding the SOC induced spin dynamics mechanism in magnetic metal systems.
基金Projects(50474038 50674048) supported by the National Natural Science Foundation of China
文摘The organic gel-thermal reduction process was used for the preparation of ferromagnetic metal Ni, Co and Fe fine fibers from the raw materials of citric acid, lactic acid and metal salts. The structure, thermal decomposition process and morphologies of the gel precursors and fibers derived from thermal reduction of these gel precursors were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, thermo-gravimetric/differential scanning calorimetry and scanning electron microscopy. The results show that spinnability of gel largely depends on molecular structure of metal-carboxylate complex that is a linear-type structure formed in the gel. As a result, the gels exhibit a good spinnability. Metal Ni, Co and Fe fine fibers are featured with diameters of around 1 μm and a high aspect ratio up to 1×106.
基金financially supported by the National Natural Science Foundation of China(No.52002270)the China Postdoctoral Science Foundation(No.2020M670661)。
文摘The interfacial characteristics of the Li metal anode(LMA)play a crucial role in its overall performance.Despite various materials being applied to modify the interface,a comprehensive understanding of their specific mechanisms remains to be investigated.Herein,we have prepared carbon cloth(CC)frameworks with their surfaces modified using ferromagnetic metal/LiF heterogeneous films(T^(M)-LiF-CC)as the substrate for LMA,which exhibit superior electrochemical performance.Utilizing ferromagnetic Co as a representative example,our study demonstrates that the enhanced performance of Co-LiF-CC,compared to bare CC,is attributed to the spinpolarized interface contributed by the Co/LiF heterostructure.Co and LiF play individual roles in redistributing electrons and Li^(+)to promote homogeneous Li deposition.Co nanoparticles play a crucial role in generating strong surface capacitance by storing electrons in spin-split bands,while LiF,with low surface diffusion barriers,ensures fast transportation of Li^(+).The Co-LiF-CC@Li electrodes deliver long lives of 7400 and 3600 h at 1 and 2 mA·cm^(-2)in symmetric cells,respectively;moreover,they enable full batteries with high and durable capacities,particularly when the N/P ratios are low(3.3 or even 1.7).
基金the National Natural Science Foun-dation of China(Grant Nos.12204074,12222402,92365101,and 12347101)the Natural Science Foundation of Chong-ging(Grant No.CSTB2023NSCQ-JQX0024).
文摘The realization of 100%polarized topologicalWeyl fermions in half-metallic ferromagnets is of particular importance for fundamental research and spintronic applications.Here,we theoretically investigate the electronic and topological properties of the zinc-blende compound VAs,which was deemed as a half-metallic ferromagnet related to dynamic correlations.Based on the combination of density functional theory and dynamical mean field theory,we uncover that the half-metallic ferromagnet VAs exhibits attractive Weyl semimetallic behaviors which are very close to the Fermi level in the DFT+U regime with effect U values ranging from 1.5 eV to 2.5 eV.Meanwhile,we also investigate the magnetization-dependent topological properties;the results show that the change of magnetization directions only slightly affects the positions of Weyl points,which is attributed to the weak spin–orbital coupling effects.The topological surface states of VAs projected on semi-infinite(001)and(111)surfaces are investigated.The Fermi arcs of all Weyl points are clearly visible on the projected Fermi surfaces.Our findings suggest that VAs is a fully spin-polarized Weyl semimetal with many-body correlated effects in the effective U values range from 1.5 eV to 2.5 eV.
基金the Higher Education Commission (HEC) of Pakistan for their financial support under research grant number 550/SRGP/R&D/HEC/2014
文摘Structural,electronic,and magnetic properties of new predicted half-Heusler YCrSb and YMnSb compounds within the ordered MgAgAs Clb-type structure are investigated by employing first-principal calculations based on density functional theory.Through the calculated total energies of three possible atomic placements,we find the most stable structures regarding YCrSb and YMnSb materials,where Y,Cr(Mn),and Sb atoms occupy the(0.5,0.5,0.5),(0.25,0.25,0.25),and(0,0,0) positions,respectively.Furthermore,structural properties are explored for the non-magnetic and ferromagnetic and anti-ferromagnetic states and it is found that both materials prefer ferromagnetic states.The electronic band structure shows that YCrSb has a direct band gap of 0.78 eV while YMnSb has an indirect band gap of 0.40 eV in the majority spin channel.Our findings show that YCrSb and YMnSb materials exhibit half-metallic characteristics at their optimized lattice constants of 6.67 and 6.56 ,respectively.The half-metallicities associated with YCrSb and YMnSb are found to be robust under large in-plane strains which make them potential contenders for spintronic applications.
基金National Natural Science Foundation of China(No.52171165)。
文摘Ferromagnetic bulk metallic glasses(FBMGs)possess excellent soft magnetic properties,good corrosion resistance,and high strength.Unfortunately,their commercial utility is limited by their brittleness.In this work,we report the enhancement in the room-temperature plasticity during the compression(25%)and bending flexibility of Fe_(74)Mo_(6)P_(13)C_(7) FBMG by using water quenching.The high-energy synchrotron X-ray measurements,high-resolution transmission electron microscopy,three-dimensional X-ray microtomog-raphy,and finite element simulation were performed to reveal the origin.It was found that the M-shape profile of residual stress improves the mechanical properties of FBMGs,particularly their plasticity.The reversal of the heat-transfer coefficient and cooling rate from the'vapor blanket'to'nucleate boiling'transition during water quenching processing is the main cause of the unusual profile of residual stress in glassy cylinders.Encouraged by the progress in developing flexible silicate glasses,this work highlights a processing method to improve plasticity and surmount technical barriers for the commercialization of FBMGs.
文摘We present a simulation of the magnetization curves, energy, probability, and torque landscapes of uniaxial systems with up to five anisotropy constants. The total energy used in the simulation is the sum of the anisotropy and Zeeman energies. The exchange interaction is not considered in the present work in which we treat single-domain-particle systems within a classical mechanics-based model. Diverse features of the calculated magnetization curves are highlighted for the studied systems. These diverse features are strongly dependent on the sign and magnitude of the simulation parameters.The model is versatile enough to handle both hypothetical and real material systems, e.g. HoFe(11)Ti and Y2Co(17).
文摘Three factors control the transition from paramagnetic insulator to ferromagnetic metal. The first is the hole doping. The second factor is the average ionic radius of the A site cation rA. The last one concerns the ionic size mismatch σ^2 at the A site. In order to study the effect of σ^2, a series of samples were prepared with constant value of x and rA.
基金supported by the National Natural Science Foundation of China (Grant No. 51922053)。
文摘Magnetic semiconductors with Curie temperatures higher than room temperature show potential for developing spintronic devices with combined data processing and storage functions for next-generation computing systems.In this study,we present an n-type Co_(19.8)Fe_(8.6)Nb_(4.3)B_(6.0)O_(61.3) magnetic semiconductor with a high Curie temperature of~559 K.This magnetic semiconductor has a room-temperature resistivity of~2.10×10^(4)Ωcm and a saturation magnetization of~76 emu/cm^(3).The n-type Co_(19.8)Fe_(8.6)Nb_(4.3)B_(6.0)O_(61.3)magnetic semiconductor was deposited on p-type silicon to form a heterojunction,exhibiting a rectifying characteristic.Our results provide the design principles for discovering high Curie temperature magnetic semiconductors with determined conduction types,which would play an essential role in realizing nonvolatile spin-based transistors that break free from the confines of currently established Si-based information technology.
基金This work is supported in part by the National Key R&D Program of China(No.2018YFA0305800)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB28000000)+2 种基金the National Natural Science Foundation of China(No.11834014)the Beijing Municipal Science and Technology Commission(No.Z118100004218001)the fundamental research funds for the central universities,and University of Chinese Academy of Sciences.
文摘Two-dimensional(2D)ferromagnetic and ferroelectric materials attract unprecedented attention due to the spontaneous-symmetry-breaking induced novel properties and multifarious potential applications.Here we systematically investigate a large family(148)of 2D MGeX3(M=metal elements,X=O/S/Se/Te)by means of the high-throughput first-principles calculations,and focus on their possible ferroic properties including ferromagnetism,ferroelectricity,and ferroelasticity.We discover eight stable 2D ferromagnets including five semiconductors and three half-metals,212D antiferromagnets,and 11 stable 2D ferroelectric semiconductors including two multiferroic materials.Particularly,MnGeSe3 and MnGeTe3 are predicted to be room-temperature 2D ferromagnetic half metals with Tc of 490 and 308 K,respectively.It is probably for the first time that ferroelectricity is uncovered in 2D MGeX3 family,which derives from the spontaneous symmetry breaking induced by unexpected displacements of Ge-Ge atomic pairs,and we also reveal that the electric polarizations are in proportion to the ratio of electronegativity of X and M atoms,and IVB group metal elements are highly favored for 2D ferroelectricity.Magnetic tunnel junction and water-splitting photocatalyst based on 2D ferroic MGeX3 are proposed as examples of wide potential applications.The atlas of ferroicity in 2D MGeX3 materials will spur great interest in experimental studies and would lead to diverse applications.
文摘Edge effects are predicted to significantly impact the properties of low dimensional materials with layered structures. The synthesis of low dimensional materials with copious edges is desired for exploring the effects of edges on the band structure and properties of these materials. Here we developed an approach for synthesizing MoS2 nanobelts terminated with vertically aligned edges by sulfurizing hydrothermally synthesized MoO3 nanobelts in the gas phase through a kinetically driven process; we then investigated the electrical and magnetic properties of these metastable materials. These edge-terminated MoS2 nanobelts were found to be metallic and ferromagnetic, and thus dramatically different from the semiconducting and nonmagnetic two-dimensional (2D) and three-dimensional (3D) 2H-MoS2 materials. The transitions in electrical and magnetic properties elucidate the fact that edges can tune the properties of low dimensional materials. The unique structure and properties of this one-dimensional (1D) MoS2 material will enable its applications in electronics, spintronics, and catalysis.
基金Supported by the National Natural Science Foundation of China(21101090 and 21561021)the Natural Science Foundation of Jiangxi Province(20114BAB213001)the Education Department of Jiangxi Province(GJJ12041)
文摘A new Ni(Ⅱ) cubane-like complex, namely, [Ni(L)(CH3OH)]4·(CH3OH)2, has been obtained via self-assembly of nickel(Ⅱ) and Schiff base, where the ligand L is a raceme of(R)-2-[(2-hydroxy-1-phenyl-ethylimino)-methyl]-6-methoxy-phenol. X-ray diffraction analysis reveals that the complex shows a cubane-like [Ni4O4] cluster and similar coordination environment around the metallic centers. Magnetic measurements indicate there is ferromagnetic interaction within the Ni4 cluster.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174220 and 11374226)the Key Scientific Research Project of the Henan Institutions of Higher Learning,China(Grant No.16A140009)+2 种基金the Program for Innovative Research Team of Henan Polytechnic University,China(Grant Nos.T2015-3 and T2016-2)the Doctoral Foundation of Henan Polytechnic University,China(Grant No.B2015-46)the High-performance Grid Computing Platform of Henan Polytechnic University,China
文摘Using first-principles calculations, we study the tailoring of the electronic and magnetic properties of gallium sulfide nanoribbons(Ga2S2NRs) by mechanical strain. Hydrogen-passivated armchair-and zigzag-edged NRs(ANRs and ZNRs)with different widths are investigated. Significant effects in band gap and magnetic properties are found and analyzed. First,the band gaps and their nature of ANRs can be largely tailored by a strain. The band gaps can be markedly reduced, and show an indirect-direct(I-D) transition under a tensile strain. While under an increasing compressive strain, they undergo a series transitions of I-D-I-D. Five strain zones with distinct band structures and their boundaries are identified. In addition,the carrier effective masses of ANRs are also tunable by the strain, showing jumps at the boundaries. Second, the magnetic moments of(ferromagnetic) ZNRs show jumps under an increasing compressive strain due to spin density redistribution,but are unresponsive to tensile strains. The rich tunable properties by stain suggest potential applications of Ga2S2 NRs in nanoelectronics and optoelectronics.
文摘First-principles calculations by means of the full-potential linearized augmented plane wave method using the generalized gradient approximation with correlation effect correction(GGA+U) within the framework of spin polarized density functional theory(DFT+U) are used to study the structural,electronic,and magnetic properties of cubic perovskite compounds RbXF3(X = Mn,V,Co,and Fe).It is found that the calculated structural parameters,i.e.,lattice constant,bulk modulus,and its pressure derivative are in good agreement with the previous results.Our results reveal that the strong spin polarization of the 3d states of the X atoms is the origin of ferromagnetism in RbXF3.Cohesive energies and the magnetic moments of RbXF3 have also been calculated.The calculated electronic properties show the half-metallic nature of RbCoF3 and RbFeF3,making these materials suitable for spintronic applications.
基金supported by the National Key R&D Program of China and the National Natural Science Foundation of China(2018YFA0305700,11974410,2017YFA0302900,2015CB921300,11534016 and 11974062)。
文摘In La-Cr-As system,the first ternary compound La3CrAs5 has been successfully synthesized under highpressure and high-temperature conditions.La3CrAs5 crystallizes into a hexagonal Hf5Sn3Cu-anti type structure with a space group of P63/mcm(No.193)and lattice parameters of a=b=8.9845A and c=5.8897A.The structure contains facesharing octahedral CrAs6 chains along the c-axis,which are arranged triangularly in the ab-plane and separated by a significantly large distance of 8.9845A.The magnetic properties,resistivity and specific heat measurements were performed.La3CrAs5 exhibits a metallic state with Fermi liquid behavior at low temperatures and undergoes a ferromagnetic transition at Curie temperature TC^50 K.First-principles theoretical studies were conducted to calculate its band structure and density of states(DOS),which indicated that the non-negligible contribution of La to the DOS near the Fermi level caused La3CrAs5 to be a three-dimensional(3D)metal.The crystal orbital Hamilton population(-COHP)was also calculated to explain the global stability and bonding characteristics in the structure of La3CrAs5.
基金supported by the National Natural Science Foundation of China(Nos.61076117,60836002)the Fundamental Research Funds for the Central Universities(No.11ML33)
文摘Fe/(Ga,Mn)As heterostructures were fabricated by all molecular-beam epitaxy.Double-crystal X-ray diffraction and high-resolution cross-sectional transmission electron micrographs show that the Fe layer has a well ordered crystal orientation and an abrupt interface.The different magnetic behavior between the Fe layer and(Ga, Mn)As layer is observed by superconducting quantum interference device magnetometry.X-ray photoelectron spectroscopy measurements indicate no Fe_2As and Fe-Ga-As compounds,i.e.,no dead magnetic layer at the interface, which strongly affects the magnetic proximity and the polarization of the Mn ion in a thin(Ga,Mn)As region near the interface of the Fe/(Ga,Mn)As heterostructure.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59801006) the Key Teachers Supporting Project (Grant No. G00032) and the Starting Foundation for Returned Researchers (Grant No. B29904) of the National Education
文摘We review the giant tunnel magnetoresistance (TMR) in ferromagnetic-insulator-ferromagnetic junctions discovered in recent years, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal films separated by an insulating thin tunnel barrier. The theoretical and experimental results including junction conductance, magnetoresistance and their temperature and bias dependences are described.